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In two dimensional SU(N) theories confinement can be understood
as a topological property of the vacuum. In the bosonized version of
two dimensional theories non trivial boundary conditions {topology) play
a crucial role. They are inevitable if one wants to describe non singlet
states. In abelian bosonigation, color is the charge of a topological current
in terms of a non-linear meson field. We show that confinement appears
as the dynamical collapse of the topology associated with its non trivial
boundary conditions.
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1. Brief overview of confinement in QCD,

The study of confinement in two dimensional Quantum Chromodynam-
ics has been a much discussed problem in the literature since the pioneering
work of 't Hooft [1]. Many controversies about the realization of confine-
ment in QCD2 have arisen over the years. Contrary to 't Hooft’s results,
other approaches show several phases in parameter space (M (quark mass),
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e (coupling contant) and N (number of colors)) [2-4]. The large N ap-
proximation appears responsible for the exceptionality of the confinement
mechanism in the model of ’t Hooft.

In the large N limit strong suppresions occur in the set of diagrams of
the theory. Only planar diagrams contribute, there are no vertex correc-
tions and quark loops dissapear. Under these severe restrictions the quark—
antiquark interaction is controled by the One Gluon Exchange Potential
(OGEP) exclusively. Unlike in the four dimensional case the 2D OGEP is
confining. The 2D Poisson equation in the presence of a static charge tells
us that the zero component of the gauge field must raise linearly with the
distance. The gluon propagator is then,

87 %(2,9) = 3lz1 — »1l6(z0 — w0), (1)

which to first order in 1/N is proportional to the ¢g interaction. Thus con-
finement here is a peculiarity of the dimensionality of space-time [5]. The
resolution of ’t Hooft’s equation confirms this mechanism leading to a dis-
crete, stable and infinite spectrum [1]. However the formalism is much more
powerful eliminating those amplitudes which would violate confinement ex-
plicitly [6, 7]. Let us study for example the process meson — ¢§. It can be
shown that the amplitude for it is given by

ab i

ab
Feb(t,r_) = _FP/ t')2’

if t € [0,1). The notation follows that of Ref. [1]. In order to obtain the
physical amplitude one has to impose the on mass shell restrictions, i.e.,

pzzMz, (p—r)zzzMg, rzzri, (3)
where M; are the renormalized quark masses and r, the corresponding

meson mass. The on mass shell condition leads to the following relation for
the adimensional momentum ¢
2 _ Qa ag
= — 4+ — 4

and therefore ’t Hooft’s equation becomes

/ ca ) )
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which implies the vanishing of the amplitude for the process. Therefore an
expected consequence of the confinement mechanism is that no quarks can
be liberated from a bound state.

Another limit in which the confinement mechanism can be understood
is that of very heavy quarks. In the leading order, that is when quarks are
infinitely heavy M — 00, QCD; becomes a pure gauge theory with static
external color sources. Confinement for such a theory is trivial. As in the
large N limit the quark propagator, as well as the ¢g§ potential, becomes
linearly raising with the distance. Analogously to the N — oo limit, in
a pure gauge theory with static external sources there are no sea quark
contributions, nor non-planarity effects, nor vertex corrections. Therefore
no special assumptions are needed to prove confinement when e € M — oo.
In the next to leading order in 1/M, the eigenvalue equation for the mesonic
amplitudes can be reduced to a one dimensional Schrédinger equation [8].
The g7 potential appearing in this equation is again linear. In this case
only the zero component of the gauge field survives the Non Relativistic
limit and it is proportional to the gluon propagator. The spectrum exhibits
the same features as t’ Hooft’s one. It is discrete, infinite and stable. No
quarks are allowed.

Nevertheless once we move away from these two limits in the space of
parameters, QCD, becomes extremely complex. The aforementioned sea
quark excitations, vertex corrections and non-planar contributions are now
of great relevance. Consequently the confinement mechanism becomes much
more complicated than in the above cases.

In this paper we give an alternative description of the confinement mech-
anism for two dimensional Quantum Chromodynamics, which has the ad-
vantage of being universal in the space of parameters. We develop it in
an SU(2) gauge theory, without any restriction associated with large N or
large mass. Therefore our results hold in any regime of the theory including
those where naive confinement cannot take place.

2. Realization of color symmetry in the bosonized free massless
theory

The bosonized action for a massless quark (1 flavor, N = 2 colors) using
abelian bosonization is [10]

S = / P2{1(0,0)* + 1(8,m)} . (6)

The bosonized Lagrangian (6) shows an explicit splitting of flavor and color
degrees of freedom when expressed in terms of the bosonic fields ¢ and 7.
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There is nothing special about the realization of the U(1) flavor symme-
try of the original fermion model. The ¢ field takes care of the U(1)y®@U(1) 4
flavor symmetry in a complete manner. The vector syminetry is conserved
in a topological way (that is without resorting to the ¢ equation of motion)
thanks to the presence of the fully antisymmetric tensor in the bosonized
form of the flavor current (J# = (1/v/27)e#*8,¢). On the contrary the
axial flavor current is a real Noether current. Its conservation is guaranteed
by the massless character of the ¢ field.

The ¢ field realizes the U(1) flavor symmetry in a linear and local
way!. Nevertheless it holds Non Trivial Boundary Conditions (NTBCs) so-
lutions as it is required by the vector current bosonization rule, which relates
the baryon charge to the ¢ boundary conditions (B = (1/v27)[p(+00) —
@¢(—00)]). The full equivalence of the fermion and boson theories forces
its bosonized version to have operators generating states carrying fermion
quantum numbers [12]. Because baryon number (as well as the third com-
ponent of color-isospin) is a topological charge, the only way to achieve
baryonic charged operators in the U(1)p sector of the bosonized model is
through NTBCs (Ao = /7 /2B # 0).

On the contrary the realization of color symmetry is much more subtle.
It can seem surprising that such a simple action as (6) can realize the full
global SU(2) color symmetry. A mere counting of color degrees of freedom
seems to imply that some color field might be missing?. The answer to this
apparent contradiction lies in the topology of the 7 field. The non-triviality
of its BCs forces 7 to transform under a non-linear non-local representation
of SU(2). Nevertheless n can be related to linearly transforming objects
through non-linear non-local expressions. For example, it can be related to:

) Objects in the fundamental representation:
z
s°(e )= expil-) 2 T4 [ acictnen s (@
—o0

where a = —1/, +1/.

1 This can be easily seen if we rewrite the U(1) part of the bosonized lagrangian
in its ‘group form’, 8,¢8* ¢ = (1/2x)8,(exp(iv27rp)d* exp(—iv2mp).

2 Non-abelian bosonization would lead to an action in terms of the SU(2) fields
9 = exp (ir°x%/2),a = 1,2, 3, with three color degrees of freedom, where the
#x° fields transform according to the adjoint representation.
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ii) Objects in the adjoint representation’:

J+(z,t) =: exp +iv2n { / d(ﬁ(c,t)+n(z,t)} :

J(z,t) = expim‘x{ / dCﬁ(C,t)-n(z,t)}=,

Jg(zat) = \712=raz77(2,t), (8)

as can be checked explicitly.
But, as we already mentioned, in order for these relations to occur the
7 field must possess non-trivial boundary conditions, i.e.,

I .

T8 = ——ln(+o0) - n(-0)]. ©)
Thus the action in Eq. (6) can only realize the full SU(2) group if one in-
corporates besides the conventional solutions ng(+o00) = 0, those associated
with non-trivial boundary conditions (n(+) = +4/7/2, n(—o00) = 0).
That they exist for the free theory has been proven by construction [10].
Moreover they are dynamically allowed since the finiteness of the energy for
physical states,

By= [det(n) = [ dzd(oun)’ < o, (10)

only requires the asymptotic vanishing of the derivative. Thus the 7 field
can tend to different constants at +oo, and generate solitonic solutions.
These states are stable because they are protected from desintegrating into
conventional T3 = 0 states by topological conservation laws.

By means of the canonical commutation relations of the 7 field one can
prove that the operators in (8) close a SU(2)®SU(2) current algebra,

(), 4 (9)] = 43 (2)8(z — 9) + i28.5(z - v), (11)

(identically for J) [10]. Their conservation is guaranteed by topology in the
case of J§' and by the equations of motion in the case of J+ and J4. The

3 In our notation J = Jo + J; and J = Jo — J;. The subindex = stands for the
lowering and raising color-isospin currents.
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spatial integrals of the zero components of the (J4, J}') currents define the
conserved SU(2) color charges (T4,T3). Analogously, by using the same
techniques leading to the current algebra (11) one finds that the soliton
operator (7) is really in the fundamental representation of SU(2) because

Ta

[T®, §%(z,t)] = (7) ﬁSﬂ(z,t). (12)

In this way n transforms under the action of the lowering and raising
operators of SU(2) as follows [10],

[Ts,n(z,1)] = +VZx / deTL(Cr1). (13)

The fact that the §* and J4 operators lie in irreducible representations
of the color group prevents the 7 field to transform linearly and locally
under the group. The complexity of the relation between T3 # 0 tensorial
objects and the field supporting the symmetry (Eqs (7) and (8)) causes this
particular realization of the non-abelian structure. Observe that is only the
value of 7 at 400 -not 7 itself- which transforms properly under the adjoint
representation of SU(2). This is because n(+o0) = v/27T3, Eq. (9)%. Thus
the BCs contain crucial information associated with the realization of color
symmetry.

Now it is easy to understand how the bosonization procedure operates.
We have just learned that it is possible to build non-trivial color operators
based upon the 7 field. For this reason the original Fermi field can be
expressed in terms of soliton operators carrying (B = T = 1/, T3 = £1/2)
quantum numbers. That is to say?,

g% (2, t) = k25 (2,t)5%=, 1), (14)

where k is a numerical constant and x a renormal ordering mass [13]. The §
operator creates the B = 1/, ‘flavor’ soliton in terms of the ¢ field, whereas
S5 does the same for the color soliton. Thus any fermion operator is capable
of being expressed in terms of the ¢ and n boson fields by means of the
previous relation. Diagonal operators in color (T3 = 0) will be local in 7.
In the same way B = 0 operators will be local in ¢. Any other operator
will contain non-local pieces, as those occuring in the charge operators of
Eqs (7) and (8).

* We have chosen n(—o0) = 0.
5 In 2D g is a bi-spinor, ¢ = (1/21/4)(g4,¢-)-
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In the more modern language of Conformal Field Theories (CFT), the
above construction expresses the possibility of writing the same CFT —
defined by its central charge ¢ and its level k- in different free field repre-
sentations. For a theory realizing an affine U(1)®@SU(N) symmetry at level
k = 1, the central charge is ¢ = N. This is fulfilled both for a theory of N
free complex fermions and for a theory of N free bosons. Because ¢ and k
define completely the current algebra of the theory (Kac-Moody algebra),
both representations have the same current algebra (Eq. (11)) and therefore
preserve the same symmetries. Our diagonal current J§ (= (1/v/27)e**8,1)
represents the Cartan subalgebra of color SU(2), whereas the charged cur-
rents JY, are ‘vertex operators’ with conformal weights (1,0) and (0,1) rep-
resenting the remaining SU(2) currents. The 7 field itself is not a con-
formal field because of its 2D infrared behavior. It is not a primary field
and it has not well defined conformal dimensions. Only its derivative (J}')
or its exponential (J4) have good conformal properties. Due to the deep
link beetwen conformal symmetry (Virasoro algebra) and internal symme-
try (Kac-Moody algebra) in 2D, the strong IR behavior of the 7 field also
spoils its SU(2) properties. Because 7 is not a primary field it cannot pro-
vide a linear representation of the color group either [14]%. This peculiar
regeneration of the whole SU(IV) structure out of its Cartan subalgebra in
2D is called the Frenkel-Kac—Segal or ‘Vertex Operator’ construction [11]".

It is important to stress that it is the existence of non-trivial boundary
conditions which generate the full SU(2)¢ algebra. The raising and lowering
operators connect different topological sectors, i.e.,

T_ln(oo) = V2mt)  n(c0) = VEx(t - 1)). (15)

If NTBCs did not exist the non-local pieces of the non-diagonal operators
would dissapear leading us to a trivial abelian current algebra instead of
(11). The ‘Vertex Operator’ construction would not be possible anymore.
NTBCs are a necessary condition for the non-linear non-local realization of
the whole non-abelian symmetry. This is precisely the crux of the matter
which we will exploit systematically in next sections.

3. Vacuum structure of the bosonized free theory

The introduction of a mass term in the fermion Lagrangian (6) does not
alter the previous construction [10, 12]. The bosonized form of the mass op-

8 Note the difference between 7 and the non-abelian bosonization field gg- The
latter is really a primary field of the WZWN model and thus it belongs to the
(1/N, 1/N) representation of SU(N)®@SU(N).

7 We are grateful to E. Alvarez for this reference.
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erator is easily obtainable from the soliton-fermion operator correspondence
(14) leading to

SMm = /dz:c{kzuM(cos V2rp),(cos vV21n),.}, (16)

M being the fermion mass. The classical potential has a minimum at

Vm(8,7) = —k*uM, (17)
which implies a degenerate minima structure formed by the infinite set of
points [10]

0=0rUdyy, (18)

where

0= { (V2rn, vV2rm) eI
=\ (Var(n+ 3),var(m+ })) eIl
(n,m)e Z. (19)

Although the mass term has no effect on the ‘Vertex Operator’ construc-
tion, it possesses a very appealing property, namely, it allows us to relate §
to the SU(2) content of the theory. The minima give us precise information
about the solutions of the bosonized theory, since they are related to the
possible boundary conditions [5, 15}, i.e.,

L (p(2),7(2)) = (Prsrms) €9 (20)

Therefore there exists also a close link between the minima structure
and the non-linear non-local realization of color symmetry. Charge opera-
tors (B # 0, T3 # 0) connect different minima (different BCs) in the infinite
lattice defined by . Thus any charge operator of the fermionic theory can
be represented by means of solitonic operators linking different lattice points
(see Fig. 1). In this way the realization of the whole SU(2) color symmetry is
guaranteed. Every state generated by any of these operators will transform
linearly under the color group.

We can use the (¢, 7) minima structure plane §§ as a diagram for physical
states, just recalling the relation between (B,T3) charges and the asymptotic
conditions of the fields. Fig. 1 shows that all states described by arrows
of the same length and direction are equivalent, i.e., they have the same
(B,T3) charges. Thus we can define an equivalence relation and choose
just one representative per class. For example, we proceed by attaching
the arrows to the same point (¢(—o0) = n(—o00) = 0), since we have the
freedom to select one of the boundary conditions. With this restriction all
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Fig. 1. Examples of allowed states: a) Diagonal arrows: up-color quark state
(B =4, T® =1/); b) Horizontal arrows : up-color vector state (B = 0, T3 = 1);
¢) Vertical arrows: color singlet baryon state (B =1, T® = 0).

the physical states will be represented by the points of the vacuum structure
lattice, which becomes in this way a (B, T3) plane (see Fig. 2).

Global SU(2) transformations leave the potential invariant. This is
easily seen in the non-abelian bosonization scheme where the potential is
proportional to tr(g) = cosy/2xy, an SU(2) invariant, and cos /27y, a
function of ¢, invariant by construction [16]. Therefore the set of physical
states, the lattice, is invariant under these transformations. Moreover it is
also invariant under the discrete ‘orthogonal’ translations (horizontal and
vertical shifts) [10]

=+ V2rn
n— 1+ vV2rm
(n,m)e Z

and the ‘diagonal’ ones

x
‘P—*‘P+\/’2’n
ks

n 4+ m = even. (21)

Before closing this section it is important to emphasize that the topo-
logical structure just studied coincides with that of the chiral limit of the
theory. The topological charges of the physical states are mass independent.
They survive in the chiral limit together with the asymptotic conditions that
generate them. The minima of the potential become the NTBCs, which are
allowed by energy considerations.
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Fig. 2. Representation of the physical states in the (B, T?) plane.
4. The vacuum structure of QCD;

The introduction of the color gauge interaction is carried out in the
usual way, that is, by minimally coupling gluons to matter in the free
fermionic Lagrangian (6) and by adding a gauge invariant gluon kinetic
term. The new lagrangian is local gauge invariant and thus it is, in partic-
ular, global gauge invariant. Therefore there must exist conserved charges
associated to this global symmetry. Certainly these charges are nothing but
the color charges of the SU(/N) symmetry and they are conserved®. But now
we have two different sources generating this internal degree of freedom: the
fermions (quarks) and the colored gauge particles (gluons). The conserved
color current is the sum of both contributions,

J'=j*+G% a=1,...,N* -1, (22)
where j¥ is the quark current and

GY = i[A,, F*],. (23)

The J? current is conserved through the equations of motion of the
gluon field D, F#¥ = ej¥,

0, FH = ej + eGY = eJ? (24)

and thus 8,Jf = 0. The quark current is a covariant object under local
gauge transformations. This is not the case of the gluon current which does
not transform as a tensor, as one can see from its definition (23) (6uG” =

8 Because the SU(N) vector symmetry is anomaly free this holds also at the
quantum level.
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e~1[(8,U)U 2, F#*]). However, global color symmetry is preserved in any
gauge (24). Therefore, also in any gauge, we have at our disposal a set
of N2 — 1 different color charges commuting with the hamiltonian. These
charges will be related in different gauges by local gauge transformations.

In order to perform our calculation we proceed to fix the gauge. The
techniques developed in the previous section require gauges in which the
topological character of the color current shows up explicitly. The so-called
‘hybrid gauges’, involving restrictions on both the gauge field and the field
strength, can be used for our purpose. In particular to generate, for N = 2,
a topological J§ current it is enough to demand G5 = 0 in the desired
gauge. In this way, JJ = j3.

Once we integrate out the gluons, we are left with a theory with only
fermionic degrees of freedom. By means of the bosonization techniques we
will obtain a theory for the 7 field possessing the topological color conser-
vation law, 8, J§' = 0, since

1
JY =3y = \/i;e‘“’a,,n . (25)
A ‘Vertex Operator’ construction provides the conditions to understand
the effects of the 7 dynamics on the U(1)¢c topology, i.e., the color structure
of the theory.
If we write the F#¥ = ¢V F and A* adjoint fields in the spherical basis®,
then the condition G¥ = 0 is equivalent to require

FiA* =F_A%, p=0,1. (26)

There are many gauges which fulfill (26) and thus the topological con-
dition (25). We take the gauge of Baluni, in which a complete bosonization
of the theory has been already worked out [3]. This gauge generates a very
convenient framework to study the topological realization of color symmetry
in QCD,. Baluni’s gauge clearly satisfies the two above conditions, since it
requires that the non-diagonal terms of the field strength (F., F_) be zero.
To fix the gauge completely another independent condition is needed, which
in Baluni’s gauge is Al = 0.

The bosonized form of the 3rd component of the field strength is the
same in any ‘topological’ gauge (26). From the equation of motion (24) and
the bosonization rule (25) it is clear that

e

3FF3 = 72_;3“1]

(27)

and then

® F=F.T_+ F,T; + F5T; (the same for A*). .
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e

F3(2) - \/2—7r7’(z) + E? (28)
where E is a constant color background field which can be attributed to
the existence of classical charges at spatial infinity. In the abelian case such
a background field has physical relevance. It generates the # angle of the
massive Schwinger model. 6 is a mass and coupling constant independent
parameter possessing important physical properties [17]. However, in the
non-abelian case, the corresponding angle associated to E has no physical
consequences. Thus we consider that there is no color background field by
setting £ = 0 [5]. This bosonizes unambiguosly the gluon kinetic term
producing a mass term for the 7 field.

The bosonization of the other terms is more involved but straightfor-
ward. Nevertheless we would like to draw attention to an important detail
of the bosonization procedure. After the integration of the gluons in any
‘topological’ gauge, one is able to bosonize completely the effective fermionic
action by means of the fermion-boson correspondence (14). The gauge de-
pendent effective fermion interaction can be extremely complicated, but it
has to verify a very nice property when bosonized, namely, that it must
be local in the color field 5. This has to be so because the hamiltonian is
a diagonal operator in color (T3 = 0). An analogous argument holds for
the ‘flavor’ field ¢. Therefore in any ‘topological’ gauge the final outcome
of the bosonization procedure is a local action in the bosonic fields ¢ and
7. Moreover this action must include a mass term for the color field 7§,
corresponding to the bosonized form of the pure gauge action.

Baluni’s bosonized action is an explicit example of a ‘topological’ gauge
and therefore satisfies the features just described. In this case the potential
arising from the quark-gluon interaction is

(29)

Vi(n) = —in + kS 2{ s““@’?”}

Vv27mn

where k& and p are the parameters appearing in the bosonization formula
(14). What are the implications of the above potential in the U(1)¢ color
topology of the gauge theory? We proceed to provide an answer.

Due to the relation between the minima structure and NTBCs (20), our
first task is to find the constraints induced by Vi(7n) into the full action,

S = / d*z {38,00"¢

+38,10%n + k* uM (cos V2rp) 4(cos V21n), — Vi(n)} . (30)



Topological Confinement in QCD, 203

The potential V; is positive definite and it has only one absolute minimum
Vi(n) = 0 which occurs for n = 0

Vi(n) =0~ n=0. (31)
Therefore the full potential has a lower bound

Vie.n) = Vm(e,n) + Vi(n) 2 ~k*uM, V(p,n). (32)
The equality is only saturated if the following conditions are met
cos V2rpcosv2rnp=1 and Vi(n)=0. (33)

Thus the minima form the set

Pqcp, = {(¢n, M0 =0) n€ Z}, (34)
which correspond to the shaded lattice points shown in Fig. 3.

@

Fig. 3. The color singlet sector of QCDg.

So far only mathematics have been invoked. Now we have to put the
previous properties into physical words. This will require a careful analysis
of both the global SU(2) properties of the vacuum and the non-linear non-
local realization of color symmetry.

We start by paying attention to the first of these two important issues.
The full potential V is SU(2) invariant just by construction. In order to
obtain it, we have rewritten the invariant interaction hamiltonian of the
fermion model in terms of the 7 field by means of the fermion-boson equiv-
alence (14). Because bosonization is exact, when writing V in terms of 5
dependent tensorial objects we must obtain the same SU(2) fermionic in-
variant interaction, no matter how complicated the transformation law of
the 7 field is.



204 A. FERRANDO AND V. VENTO

Consequently, in any ‘topological’ gauge the shape of the full potential
must be preserved by global color transformations (this is exactly what
happened in the free case too). Because the V; potential is exactly the
same before and after a SU(2) transformation its minimum in 79 = 0 must
stay. In other words, a global SU(2) transformation cannot move the V;
minimum from 7y = 0. Certainly a color transformation will not shift a
‘flavor’ minimum ¢,, into another for the simple reason it does not act on
the ¢ field. Thus any of the fgcp, minima will remain unaltered by a
global color rotation.

The special realization of color symmetry has provided us with a po-
tential depending on one single real scalar field. This means, that the set
of minima @QCD, can only be a discrete set (no typical 2D ‘Mexican hat’
potential is allowed because we have a function depending only on one real
variable). Therefore only discrete transformations can shift one of this min-
ima to another. A global continuous transformation will leave these minima
untouched. If we choose one of them as the real vacuum, it will be necesser-
aly invariant under continuous global color tranformations. This is nothing
more than an explicit example of the more general result, that a continuous
symmetry cannot be spontanously broken in 2D [9]'°. This is a general
statement valid for any value of the quark mass, the coupling constant and
the number of colors.

The second issue is to unveil the consequences of the new interaction
and the new vacuum structure on the realization of color symmetry. This
cannot be done in a standard group theory fashion because 1 does not realize
the color symmetry in a standard way.

To see this, in a more transparent way, let us proceed ad absurdum.
Assume that 7) can be naively interpreted as a conventional color field, which
does not carry third component of color charge (recall [T3,7] = 0 and (13)).
Furthermore, let it belong to an irreducible representation of SU(2), e.g.,
behaves like 7o in the pion triplet. Then the hamiltonian can not be a color
singlet. To see this, one realizes that the hamiltonian may be expanded in
powers of n%(~ n3), but n?(~ x2) is not a SU(2) invariant object (only 7,7,
is). Thus we arrive to the absurd result that the bosonization procedure is
inconsistent!!.

The 7 field is not adequate to study the color symmetry, but its BCs
are. The 7 field NTBCs determine not only the topology of the U(1)¢c sub-
group of color SU(2) but its whole structure. We have therefore to establish

10 In Coleman’s paper Noether currents are used. Nevertheless it is easy to see
that a topological current like (25) verifies also the theorem.

11 Note that we could use the same argument for the free massive action (see
Eq. (16)).
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the new U(1)c topology induced by the interaction. This is easy using
the relation (20) between BCs and the minima structure of the potential.
We can understand what happens just by comparing the set of minima of
the free theory @ to that of QCD;. Because of the interaction the U(1l)¢
topology experiments a complete collapse. Only trivial BCs solutions, i.e.,
n(+00) = n(—00) = no = 0, are allowed by the minima structure of QCD,.

This result can be expressed in a more dynamical way. If we wish
to calculate the mass of a T3 = n/2 (n € Z) charged particle, we need to
evaluate the expectation value (,|V|ty), V being the interaction potential
operator and |,) a generic charged state. In bosonized language such a
state will be built upon the vacuum by means of ‘vertex operators’ of the
kind §¢ or J4. Because the vacuum is not charged — it is color invariant —
the T3-charge of this state will coincide with that of the ‘vertex operator’.
These states are certainly responsible of NTBCs solutions because they
produce the soliton ‘jump’ of the 7 operator [12],

z — —00

ali@m) = { /2 mez 20 e, (35)

If we expand this expectation value in powers of the Planck’s constant,
the leading term will be just the classical soliton solution,

(¥nlii(2)|¥n) = n5(z) + O(R). (36)

Analogously we can expand the total energy of the charged particle (at
rest) in powers of A,

<¢n|V|¢n) = E(n, ) + O(h), (37)

where the static classical energy £ can be calculated just by means of the
classical potential [15]

o0

e~ [ devish. (38)

—0o0

But this integral is necesseraly divergent unless 7 (+00) is an absolute
minimum 7, of the classical potential V. Then it becomes clear from the
QQCD structure that only n = 0 solutions can remain with finite energy.
The interaction has eliminated all the possible (7,,n # 0) minima thus
giving an infinite mass to any (T3 = (n/2) # 0) state!?.

12 In a recent paper by Ellis et al. [4] they find color solitons in bosonized QCD;
with infinite energy. We claim that their constituent gquarks correspond to
solitons which do not connect absolute minima.
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Apparently the previous mechanism only allows to eliminate the T3
charged particles from the physical spectrum. In principle, finite energy
color states are still possible. Those states belonging to non-singlet mul-
tiplets but with T3 = 0 charge have still a chance of remaining in the
spectrum. We will prove next that these states have also infinite mass. We
only need to remember two basic properties of the QCD; interaction which
we have extensively discussed:

(i) The interaction is SU(2) global color invariant,

[V,T%]=0.
(#1) It gives rise to a neutral color vacuum,
T.|0) = 0. (39)

These properties force the physical states to accomodate in representa-
tions of the SU(2) color group. Let us now consider a representation having
total color charge T = m (m = 1,2,3,...). It certainly contains a state
with T3 = 0. According to our previous arguments, states described by a
non-trivial boundary condition, get through the dynamics infinite energy.
Consequently, all the states of this representation with T3 # 0 acquire an
infinite mass. But so does the T3 = 0 state because it is degenerate with its
multiplet partners since the color symmetry is not broken. However there
is one representation which evades this mechanism, namely the singlet one
(T = 0). It only contains a single state arising from trivial boundary con-
ditions (T3 = 0) and therefore has finite energy.

The previous result is not a surprise. As we showed in the last section,
NTBCs are a necessary condition to recover the whole SU(2) structure in
the ‘Vertex Operator’ framework. Now the dynamics does not allow us to
keep NTBCs and therefore the non-abelian character of the charge operators
disappears in the realization of the spectrum.

Let us show how this mechanism works in an explicit way. In QCD;
dynamics forces any state to verify ordinary BCs (n = 0). According to
(35) this implies that

(Bliz)|$) * =50, (40)

for every physical state |¢). The question is, what kind of 7-dependent
operators are allowed now under the restriction (40)?

The |¢) state will be generated out of the vacuum by some generic
operator § depending on 7. The color quantum numbers of the state will
be the same as those of the operator since the vacuum is a singlet. The
topological current (25) is conserved independently of the dynamics and
does not generate charged states when applied to the vacuum (it preserves
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(40)). Thus the T3 charge is a good quantum number. What happens to
T3 charged operators when the new BCs (40) are dinamically imposed?

A T3 = n/2 charged operator has the following commutation relation
with the T3 current

[$™(2), ()] = 56(z - 9)5™(=). (41)

This implies that the  and S™ operators will verify the non-trivial commu-
tation relation

8@ )] = 378z - 95" (2). (42)

But if this relation holds, then

(nli(@)ln) "5 [Z0 £ 0, [9n) = 57)0). (43)

in contradiction with the dynamical constraint (40).

From the preceeding argument we conclude that charge operators are no
longer allowed. In particular, we cannot construct the non-diagonal currents
J; to enlarge the symmetry from U(1)¢ to SU(2)c, as we did in the free
case, Therefore the only symmetry that remains is the topological U(1)¢
restricted to zero charge particles.

The 7 field does not transform under color transformations, since if
it did, the existence of the non-diagonal currents J§ would be required
Eq. (13), and those cannot be constructed due to the dynamical restrictions.
Thus the color symmetry has dissapeared from the bosonized QCD; action!

It is clear why we do not run into any inconsistency with the color
invariance of the hamiltonian. The 5 is not a T3 = 0 particle in the ad-
joint representation. The special realization of the color symmetry on g
along QCD2 boundary conditions tells us, that the 7 is really a color singlet
field. Consequently the potential V(n) is trivially invariant, as it must be
according to the bosonization procedure.

An important remark becomes necessary before concluding. We have
learned that the cornerstone of the confinement mechanism in QCD; is
the minima structure @QCD, induced by the interaction. However this set
of minima is obtained by looking at the shape of a classical potential V.
This fact can be worrisome because we know examples in which radiative
corrections can shift away the classical minimum from its original position
[18]. We have to take into account that Coleman’s Theorem does not prevent
the spontaneous breaking of the discrete symmetry 7 — —1n. Thus we
cannot exclude a priori the possibility of a radiatively induced spontaneous
symmetry breakdown.
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Let us assume that this possibility really occurs. For the sake of sim-
plicity we consider the case that radiative corrections induce only two new
symmetric minima. That is, we deal with the case of a 1D ‘Mexican hat’
effective potential. We call this couple of minima (v, —v), v being some
dimensionless function of the action parameters M and e. Due to this new
topology we are now energetically allowed to construct two soliton operators
connecting this two minima. A state generated by this operator will have
finite energy and T3 = 4/2/7v. For v = }/;4/7/2 we would get a couple of
finite energy ‘quark-like’ solutions, T3 = +1/,. Once we choose one of the
two minima as the real vacuum we break the n — —7 (Z2) symmetry of the
action. We define a new 7’ field having zero vev just by shifting n (we chose
—v as the real vacuum),

n=n+v. (44)

If we look now at the bosonization rule of the field strength (Eq. (28)),
we realize that the previous operation is equivalent to a shift in F3 ,

Fy=Fs + ——v. 45
3 3 \/2—“_ ( )

The vev of the 7 field gives rise to a constant color background field
E = (e/v2x)v. We already argued that such a constant background field
had not physical sense in a non-abelian theory, which motivated our choice,
E=0.

The reason to set this background field equal to zero in the non-abelian
case arises when we compute the above shift for the pure gauge action. Since
the pure gluon term is quadratic in the field strenght, we pick up after the
shift one term of the form

/ Pz (~1EuFu(z)), (46)

where F, is the dual field strength and E, = (0,0, E). E, is an ezternal
constant background field which does not change under local gauge trans-
formations. A term like (46) violates local gauge invariance!®. Local gauge
invariance prevents the interaction to produce the violating term (46) to all
orders in h. The classical potential cannot have such a term and quantum
corrections are not allowed to produce it. Thus we are forced to take E = 0
and consequently v = 0 as well.

Local gauge invariance teaches us that the original Z; symmetry of the
bosonized lagrangian cannot be spontanously broken. The original 8qcp,

13 Notice the peculiar fact that in the abelian case this term is perfectly gauge
invariant and therefore allowed.
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structure is thus preserved and the mechanism of confinement explained
above is valid in its full extent.

8. Confinement and topology

We have learned that the vacuum structure of the free field theory is
the consequence of the existence of non-trivial boundary conditions. The
stability of the soliton numbers (B, T?3) is guaranteed by the existence of
topological conservation laws for the U(1)r and U(1)¢ currents

) 1 1

j* = ﬁe‘w VP, J;‘ = Es#vay". (47)
Because the (B,T3) charges depend on the values of the (y,n) fields on
the border of the one-dimensional space, they can be related to topological
properties of the groups associated with them. The (B, T3) charges generate
the U(1)p®U(1)c explicit symmetry of the free Lagrangian. Its action can
be written in terms of the U(1)p@U(1)c fields (exp(iv/27p), exp(iv277))
using

Bupdt = o-0,("VTT) ke VIS, (48)

where ¢ = ¢, 7. This means, that when calculating any functional integral
of this theory in a finite volume (finite length L), we have to consider all
different sectors induced by the topological non-trivial mapping from the
$1 sphere (the compactified one-dimensional space) into the U(1)r®@U(1)c
group space (S ® §1). Each of the different homotopic solutions can be
characterized by two integers (vp,vc). These topological charges are ob-
tained by means of the integral formulas in terms of group elements [5]

. 2« d
L= Pt
Vi = oo / dbgi—-9; " » (49)
0
where g; € U;j(1),i = F,C and therefore
2
vp = \/;[50(2#) - ¢(0)] =28,
2
ve = \/;[n(%) ~ n(0)] = 27°. (50)

The non-trivial boundary conditions produce the winding numbers asso-
ciated with the homotopy classes of these mappings. The lattice of physical
states gives just the first homotopy class of the group

0~ IL{U(1)F ® U(1)c) ~ 1 [U(1)F] x IL{U(1)o] = Zr ® Zc.  (51)
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Let us now add a confining interaction. The free vacuum structure
collapses into §gcp, (see Fig. 3). In topological language the non-trivial
topology induced by the mapping

L [U(1)c] = Zc, (52)

disappears. The interaction forces the physical solutions to have trivial BCs
(T® = vo = 0). Because NTBCs are a necessary condition to recover the
whole SU(2) structure in the ‘Vertex Operator’ construction, triviality in
U(1)c implies triviality in SU(2)c as well. The trivial topology induced
by the interaction in the maximal abelian subgroup of SU(2)¢ (U(1l)c)
determines that all physical states have to be color singlets.

Confinement is recognized in the effective action (30) by the fact that
the 7 field is a color singlet field. Since 5 is a color singlet it must have
simple relations with SU(2)¢ invariant quantities. This is easily established
when we compare simple operators in their abelian and non-abelian forms.
For example, we can express the non-abelian bosonized field g in its abelian
form

trg = g1 + 93 = 2cos V2r7. (53)

But because ¢ € SU(2)¢ it also has a standard representation in terms
of the adjoint fields »%, g5 = exp (ix® (T"/2)aﬂ) and therefore n(z) =
(Sign(z)/2V27)/Fa®s 4. We may write the full potential V(1) in terms of
the scalar singlet |x| thus generating an ezplicit color invariant interaction
V(|x|). We could proceed to calculate straight off the spectrum of the
theory.

In the chiral limit the ¢ and |x| actions decouple. The first givesrisetoa
massless pseudoscalar particle, the second is the responsible for the resonant
meson masses [16]. Resonant states appear as massive!> bound states of the
color singlet field |x|. Obviously, every eigenstate of this hamiltonian will
be a singlet. The spectrum of V(|x|) contains no trace of colored particles.

As we have just seen, color dissapears of the bosonized action com-
pletely. However the U(1)F non-trivial topology remains since we did not
gauge the ‘flavor’ degree of freedom. Nevertheless, it is still affected by the
way U(1)c collapses. If we compare to the free case, due to the minima
structure of the free theory @ (Eq. (19)), the allowed ‘flavor’ states have
B = (m/2) (m € Z) charges. Once we turn on the interaction @ becomes

14 The Sign function is necessary because 7 is a pseudoscalar Eq. (10), whereas
|*| = /%%, is & scalar. Notice that the cosine in (53) is invariant under
n— -7

15 Recall that |x] is massive.
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0qcp, (Eq. (34)) and only B = m states can survive. Thus the singlet spec-
trum is formed by particles of integer baryon number B = m, i.e., by mesons
(m = 0) and by baryons (m = 1,2,...) or antibaryons (m = —1,-2,...).
Particles with half-integer baryon number have dissapeared from the spec-
trum as they should. This result agrees with what is expected from the
fermionic theory. Color singlet states are operators which in color space are
of the form

Q:Qa ’ 5aﬁQaQﬂ ’ QIQaeﬁ‘yqﬁ@y y eee (54)

It must be clear that no restriction on the range of the QCD; parameters
(M and e) has been made. The minima structure fqcp, of the theory is
the same no matter what the values of M and e are. Even in the massless
limit topology stays unaltered. Moreover it is easy to generalize our results
to any N. The main features of the confinement mechanism remain: non-
local non-linear realization of color symmetry in terms of N boson fields,
vacuum inveriance under global SU(N)c and presence of quadratic terms
in the bosonized action.

Finally let us point out that the formalism used to explore confinement
in QCD2 can also be extended to any 2D SU(N) theory. If we add to
the free action a non-confining interaction, then the quarks must be the
only asymptotic in/out states. Thus asymptotically the action is that of
a free (¢, 7) fields with non-trivial boundary conditions and therefore we
obtain a free vacuum structure. The topological conservation law of the
U(1)F®U(1)c charges ensures that the minima structure of the asymptotic
theory is identical to that of the interaction theory. Thus the addition of
a non-confining interaction leaves the free vacuum structure unaltered and
therefore one can charaterize these interactions topologically by Eq. (51).
For N = 2 the bosonized potential of a non-confining SU(2) theory has to be
local in 9 and support the free minima structure §. That is to say, it must
be periodic in 7 and invariant under ‘diagonal’ translations  — n+ /7 /2m
(see Eq. (21)).

From this exhaustive survey on the topology and color structure of
QCGg only the following conclusion can be drawn:

The confinement mechanism in QCD; is purely topological. Confine-
ment occurs for any value of the quark mass, the gauge coupling constant
and for any number of colors. There is only one phase of permanent con-
finement.

6. Conclusions

The problem of confinement in the fermionic formulation of QCD2 be-
comes extremely complex beyond the large N and weak coupling limits. In
these two limits the spectrum, as well as the vanishing of quark creation
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amplitudes, corroborate the non existence of free color non singlet states.
The quark self-energy shows a confining behavior.

However sea quark excitations, vertex corrections and non-planar con-
tributions turn out to be of great relevance in the most general case, compli-
cating our understanding of the confinement mechanism. Nevertheless the
fermionic description seems to indicate in a qualitative manner that QCD,
is a confining theory beyond leading order in the 1/N expansion [6].

In this paper we have given and alternative general method to solve
the confinement problem beyond the large N and large mass restrictions.
According to our investigation the crucial ingredients to understand con-
finement in QCD; are:

i) Boundary Conditions. Non Trivial Boundary Conditions (NTBC) allow
the existence of a non-linear non-local realization of the SU(2) color
symmetry in 2D. This realization is built upon one single colored field
transforming under a non-linear non-local representation of the group.
The color content of the theory dramatically depends on the structure
of the BCs of this field.

tt) Vacuum Invariance. The invariance of the QCD2 vacuum under SU(2)

global transformations is an ezact statement (Coleman’s Theorem [9}).

Its validity is universal for any value of the parameters (M and e and

easily generalizable to any N). These two statements lead to a unique

conclusion:

There is only one phase of permanent confinement in QCD, for every
value of M, e and N. No colored states are allowed for any value of the
parameters.

In the bosonized version of fermionic two dimensional theories topol-
ogy plays a crucial role. States with baryon number and color charge are
described by solitons. The properties of the vacuum, which give rise to
non-trivial boundary conditions, determine the quantum number structure
of the Fock space. We have analyzed initially the rich spectrum of non con-
fining theories by discussing the role of boundary conditions. The existence
of non-trivial boundary conditions is a consequence of the non-trivial topcl-
ogy of the SU(N') maximal abelian subgroup U(1)" on the §! compactified
1D space. This non-trivial topology allows the enlargement of the explicit
U(1)" symmetry into a complete color SU(N) symmetry by means of the
so-called ‘Vertex Operator’ construction. The discussion of color symmetry
can be reduced to the study of the minima structure of the bosonized poten-
tial when written in terms of the U(1)%V color abelian fields. It is appealing
that in the bosonized version of the theory , this discussion can be carried
out purely at the classical level.

When the interaction is switched on the U(1)" color topology breaks
down. The U(1)¥ color abelian charges are dynamically screened and the
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SU(N)¢ symmetry cannot be reconstructed anymore. The invariance of the
vacuum under SU(N)¢ transformations ensures that all SU(N )¢ charges
are likesome screened. Only singlet states can remain in the spectrum. This
topological mechanism is independent of the relation between the coupling
constant and the quark mass and it is valid to all orders in h. QCD; shows
only one single phase of permanent confinement. The mechanism can be
cast in a more mathematical language by invoking homotopy groups, but
one should not avoid the very naive dynamical statement, namely that color
solitons are given infinite energy [4].

The symplicity of the topological description and its generality can be
used in a wider spectrum of 2D SU(N) theories. They can be classified
according to its U(1)" minima structure. Then very strong statements can
be made about their confining properties.

Unluckily at this moment, four dimensional calculations seem to be
pretty unrelated to two dimensional theories. Recent investigations (string
theory [19], dimensional reduction techniques [20], observable effects of
string-like confining mechanisms [21],...) suggest that it might be possi-
ble to make a connection with realistic problems in a near future. The deep
knowledge of QCD; and related theories could be of big help.

Moreover the abstraction associated with the mathematical language
might guide one into the four dimensional case. Is it not possible to write
an approximate bosonized theory in four dimensions? Skyrme type models
have been extremely succesful in describing the low energy flavor properties
of the theory , but they avoid confinement simply by assuming its existence
[22]. They have been already attempts of writing an approximate bosonized
lagrangian in terms of the color degrees of freedom. Quark-like solutions
appear as color Skyrmions of this effective action [23]. Could we find here
an analogous mechanism that produced the collapse of the spectrum ? The
work of 't Hooft [24] has been pioneering in this respect, but again the
dimensionality of space-time makes difficult the connection. No relation
between our topological scheme and his has been as of yet found, but the
endeavor seems sufficiently appealing to embark.

We have received useful comments and criticism from M. Asorey, A.
Gonzélez-Arroyo, D. Espriu, J. Ros and A. Santamaria. One of us (A.F.) is
grateful to H. Leutwyler, P. Minkowski, E. Alvarez and J. Soto for illuminat-
ing discussions. We would like to thank J. Segura for technical assistance.
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