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A critical survey is made of the mechanism of color confinement by
“dual superconductivity” of QCD vacuum. Tests by Monte Carlo simu-
lations on a lattice are reviewed.
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1. Introduction

QCD is believed to be the theory of strong interactions. Quarks and
gluons, however, are not observed in nature as free particles. This fact
leads to the statement that colour is confined, which is a way of saying that
asymptotic states are only made of colorless particles.

The obvious question is if colour confinement is built in QCD. Pertur-
bative expansion of QCD is highly infrared singular: no picture of physics at
large distances emerges from it. Lattice, being the only known formulation
of the theory which does not rely on perturbative expansion, is the right
tool to investigate this problem. Evidence that QCD does indeed confine
colour was already produced by the early numerical simulations [1]. The
Wilson loop of size T'a X Ra (a is the lattice spacing) behaves at large values
of R and T as the exponential of the area.

W(R,T) %»aexp[—aazTR] , (1.1)

W(R,T) is the parallel transport along the rectangular path C of size Ta x
Ra

W(R,T) = exp i/A“ dz* |} . (1.2)
C

* Presented at the XXXIII Cracow School of Theoretical Physics, Zakopane,
Poland, June 1-11, 1993,
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It can be proved by general arguments that in the limit of infinite mass of
the quarks
W(R,T) ~ exp (- V(Ra)Ta) (1.3)

with V(r) the interaction potential between @ and Q. Eq. (1.1), (1.3) imply

V(r) L= or (1.4)

which means quark confinement.

It would be interesting to understand the mechanism of confinement,
t.e. if it has analogies with some other known physical phenomenon. There
are indications that the mechanism could be “dual superconductivity of the
second kind”(2, 3]. In what follows I will discuss

(i) what this evidence consists of

(i) how the mechanism works
(#4i) how the mechanism can be tested on lattice.

2. Strings in hadron physics

The dual resonance models [4], which were based on the so called s - ¢
duality [5] led to the idea that the spectrum of hadrons described by Regge
trajectories and their daughters, is the spectrum of a string. The action of
the Veneziano model is the area of the world sheet of a string [6]

S = a/dpdr\j; [(aa);">2+ (aa]:")z]. (2.1)

Quantizing this action gives parallel straight Regge trajectories of par-
ticles plus ghosts. Ghosts disappear in 26 dimensions or in 10 dimensions if
fermions are included.

The main result established by the intensive study of dual models was
that, whatever the fundamental theory of strong interactions would be, its
effective hamiltonian at the scale of 1fm should be that of a string.

Fifteen years later strings became again fashionable, in the frame of a
kind of opposite philosophy [7]. String theory is the fundamental theory at
very short distances, (Planck distance). (Planck mass)? plays the role of &
and the standard model is seen as the effective action at the Fermi scale.
Also the language has become highbrow, involving concepts of differential
geometry.

Nielsen and Olesen [8], inspired by dual models, put forward the idea
that strings could be produced by the mechanism which generates Abrikosov
flux tubes in a superconductor of 2nd kind [9, 10]. Nambu developed further
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the idea, studying the motion of open strings with quarks at their ends [11].
After the advent of QCD the idea of string was revived by G. ’t Hooft [2]
and S. Mandelstam [3]. QCD vacuum acts as a superconductor of second
kind which confines the chromoelectric field in Abrikosov like flux tubes.
Much work was also devoted to the 1/N. expansion of QCD [12] in which
planar diagrams correspond to free strings, and unitarity corrections are
classified in terms of topology of the graphs.

3. Flux tubes from lattice

If an ensemble of equilibrium configurations of QCD on a lattice is
cooled by a local updating procedure, short distance fluctuations at the
scale of lattice spacing rapidly disappear, while correlations at a distance
£ > 1 survive a much larger number of cooling steps t. (t. stays for computer
time), with

2
te(€) ~€°. (3.1)
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Fig. 1. The SU(2) string tension o as extracted from x(7,7) along cooling, (8 =
2.5). Statistical errors are strongly reduced as short range fluctuations are elimi-
nated. Data correspond to a sample of 50 configurations [13].

The observed behaviour along cooling [13, 14] of the expectation value of
the Creutz ratios is shown in Fig. 1. Creutz ratios x(R,T) are defined in
terms of Wilson loops by the equation

W(R+1,T+1)W(R,T)
W(R, T+ 1)W(ER+1,T)

x(B,T) = ~log (3.2)

If Eq. (1.1) is satisfied
x(R,T) = oa. (3.3)
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Since a is known as a function of 3 at large 3’s, by renormalization group
arguments

1
a= - f(8), (34)
2
N 8 bi/2b¢ 8
£(8) =~ (m) xp ("2Nbo) 49
1 ! N 1
bo = % praNe=2N7), by = g (N2 —omy (g0 + 50 ))

o/A? can be extracted from the values of x produced by numerical sim-
ulations. These values are displayed in Fig. 1. Fluctuations due to short
range quantum excitations are drastically reduced after a few cooling steps,
while the string tension, which is related to long range corrections, survives
with small errors and with a value consistent with what is measured without
cooling, on much larger samples of configurations [15]. One can then explore
[16] the field configurations produced by the propagating @ Q pair, polished
of uninteresting local quantum fluctuations. This is done by measuring the
correlations

4

Lo lo b

4N\

= ag {(F,,,,)QQ - (Fyu)vac} (3.6)

@

The plaquette II,, measures, (as a — 0), the field strength F,,: the point
in which F,, is measured, as well as the orientations (which correspond to
different components of Eand B fields) can be varied, and a map of the field
can be constructed. The lines joining the plaquette to the Wilson loop in
(3.6) are needed to make the definition of the field strength gauge invariant:
in continuum language they correspond to a parallel transport. Of course
for an abelian theory they are trivial.

The result of this exploration can be synthetized as follows. At fixed
time the component of the chromoelectric field parallel to the line joining
the position of Q and Q is constant along the line, is maximum at zero
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transverse distance, and decreases exponentially as the transverse distance
is increased

E| = Ej(0) exp(—zT/A), A~ 0.3fm. (3.7)

Other components of the electric field and the magnetic field are much
smaller. The configuration is shown schematically in Fig. 2. An alternative
way of exploring the configuration is by measuring the correlation

K8 = g {(Fgq - (FPvac)  (38)

This correlation is smaller numerically than the correlation (3.6) since
it is proportional to (a®F,,)?, and a?F,,, is a small number (~ 107!) in the
scaling region. It has also been measured without cooling [17] and indicates
configurations of the same shape as the correlations of Fig. 2. The net
result of these investigations is that chromoelectric flux tubes do exist in
the region of space between Q Q pairs.

Fig. 2. The chromoelectric field in the region of space between heavy Q Q pair.
Transverse size of flux tube is A ~ .5fm [16].

It would be nice to study not only the lowest configuration of such
strings, but also their excitations. Some attempts do exist in the literature
in this direction, [18], even if the distances which can be explored in numer-
ical simulations are only few lattice spacings, and therefore the excitations
severely distorted with respect to continuum.

4. Superconductivity. Meissner effect

Let us consider the Higgs model, which is a relativistic version of the
Landau Ginzburg equation.

= (Dup)' (Dup) - V(p) - 1F,, F*. (4.1)
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In this model the photon field is coupled minimally to a scalar charged
field ¢:

D, =0, +ied, (4.2)
and

V(p) = ~~—¢ o + (‘P p)?. (4.3)

If 42 > 0, since X must be positive to have a stable vacuum, the shape
of the potential V(¢) as a function of ¢; = Rep 92 = Im¢p is shown in
Fig. 3. The theory (4.1) is invariant under the gauge transformation

—iea(z)

p —pe
A, — A, - 8,a(z). (4.4)

The ground state corresponds to a minimum of V(¢), (4.3). The solutions of
the equation 8V (¢)/0¢ = 0, are ¢ = 0, which corresponds to the maximum

in Fig. 3 and
7
7= “T el (4.5)

with arbitrary §. Any choice of § makes the ground state U(1) non invariant.
A situation in which a theory is invariant under a group of transformations,
but its ground state is not, is usually called a spontaneous breaking of the
symmetry. The above Higgs model spontaneously breaks U(1) invariance.
The physical consequence of this breaking is superconductivity. If we put

o =peXe, (4.6)
a gauge transformation (4.4) acts as follows
voy, x-oxta. (4.7)
In terms of the fields Eq. (4.6)

Dyp = e'X [0 + ie(Ap — Bux)] 9. (4.8)

Putting
A, = A, - d.x, (4.9)

L =0,90"p + V(¥) + 2?4, A* - LF, FH . (4.10)
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Fig. 3. Potential V() of the Higgs model.

All the quantities appearing now in Eq. (4.10), including fi“ are gauge

invariant. Putting
2
Y= S g, (4.11)

the equation of motion for A » becomes, at the lowest order in the interaction
with the field §,

2,2
¢ ;‘ A, =0 (4.12)

which is the equation of a massive vector field. Eq. (4.12) is equivalent to

O Fpuy +

(O+m?)4, =0, 09*4,=0. (4.13)

The first of these equations describes Meissner effect: the field has a
finite penetration depth into the medium. Deep inside the vacuum, i.e. far
from currents A, = 0. Integrating on a path around a flux tube

f A, dz* =0, (4.14)

or, by Eq. (4.9)
fAu dz¥ = Ax. (4.15)
The difference in the value of x, Ay, after a winding can only be such that
eAx = 2w, (4.16)

by Eq. (4.16) and this means flux quantization.
In a real superconductor

o ~ ey, (4.17)
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is the field describing a Cooper pair, which is a pair of electrons in singlet
spin state. As in our relativistic model two lengths appear in a real super-
conductor: a correlation length of the Higgs field, £, (4#~! in our model)
and the inverse mass of the photon £; = V/A/ue. If £; > {3 the supercon-
ductor is first kind: when the magnetic field becomes higher than the critical
value the field fills the sample and Meissner effect disappears. If {3 > {;
the superconductor is 2-nd kind. As the magnetic field grows above some
critical value, as shown first by Abrikosov [9], it becomes energetically ad-
vantageous that the field penetrates through flux tubes of transverse section
{;, whose density becomes larger and larger as the magnetic field increases,
until they fill the sample and superconductivity disappears.

The question we will address is if the flux tubes observed in QCD are
in fact Abrikosov flux tubes of some superconductor. Of course the role of
electric and magnetic field has to be exchanged with respect to an ordinary
superconductor, since flux tubes, as shown in Sec. 3 are of chromoelectric
field: this is the meaning of the word “DUAL”.

What superconductor is then QCD vacuum, or what U(1) invariance is
spontaneously broken? In analogy with Cooper pairs, monopoles, or more
generally operators with non trivial monopole number should condense in
the ground state. An additional complication appears, as compared to usual
superconductors: QCD vacuum is invariant under charge conjugation, which
is an exact symmetry of strong interactions. Moreover the symmetry which
must break spontaneously to produce superconductivity cannot correspond
to a subgroup of the colour group, which is also known to be an exact
symmetry.

Monopoles do exist in gauge theories [19, 20]. In a gauge theory with
gauge group SU(2), and a scalar field ¢ in its adjoined representation [21]

£=-1G,.G" + D,gD*3 - V(3?) (5.1)
with
2 A
V(e = -5+ 267 (5.2)

Higgs phenomenon takes place . If one looks for solutions with finite energy
necessarily

el _— ¢l (5.3)

|&|—e0

with @y the field which makes V() minimum. Therefore these solutions
correspond to mapping of the 2d sphere at infinity on SU(2). The homotopy
group of such mapping is an integer which counts monopoles. In Ref. [19, 20]
an explicit example is found of such solutions known as hedgehog solution.
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At large distances the solution behaves as follows

@ z _
—_— N =1, 5.4
ol 1210 J2] (5.4)
- zk
A;j e S (5.5)

In Eq. (5.5) ¢ means space component, j component in the SU(2) space. As
in Ref. [19, 22] we define

-

F“y—_-ﬁ'F#y (5.6)

and .
B,=1-A,. (5.7)

In the hedgehog solution F,, is, at large distances, the field strength pro-
duced by a Dirac monopole, and is a colour singlet.
Also B, is a colour singlet. In general [22]

F”,y = a“By - 3;,3# + ;’(aﬂﬁA ayﬁ . T-i. (5-8)

If we choose a gauge 7i = (1,0,0) then the last term in Eq. (5.8) vanishes
and
F,,=06,B,-90,B,, (5.9)

F,, looks like an abelian gauge field, with vector potential B,. Such choice
of gauge is called an abelian projection.

The field F,,, as well as the charge of the monopole which produces
it are singlets of the gauge group and invariant under charge conjugation
(Eqs (5.6), (5.7)). The corresponding U(1) symmetry would then be a good
candidate for breaking spontaneously, and give the dual superconductivity
needed to confine colour.

However, contrary to the above model, QCD has no ¢ field. How can
monopole be defined and with them an abelian projection? A solution was
proposed by ’t Hooft [23]. We will consider for the sake of simplicity an
SU(2) gauge group: the discussion for SU(3) is completely analogous. The
idea is that any operator 0o transforming in the adjoined representation can
define an abelian projection and monopoles as follows.

In general we will have

O(z) = 8(z) - 7. (5.10)
A gauge transformation which diagonalises O(z), ¢.e. which rotates 5(3:) to

#'(z) with .
&'(z) = (0,0, #5(z)),



224 A. D1 Giacomo

is singular on the world lines when & = 0. This singularity corresponds to a
mapping of the 2d sphere on SU(2), which has the topology of a monopole
[24].

Of course the location and the number of such monopoles do depend
on the choice of the operator O(z), being related to its zeros. The idea of
’t Hooft is that physics, (i.e. monopole condensation) should be independent
of the choice of O(z).

We will explore two possibilities:

(a) ’t Hooft is correct in the sense that, whatever operator O(z) one chooses,
the corresponding monopoles give rise to confinement by condensing in
the vacuum.

(b) There exists at least one choice of O(z) for which the phenomenon takes
place.

6. Results from a lattice. Conclusions

If °t Hooft is right, after abelian projection of any operator O(z), the
chromoelectric field E-/"" inside the flux tubes observed in the lattice simula-
tions, should be directed along the third axis (diagonal) [27, 28]. The three
color components of the parallel field depicted in Fig. 2, can be measured
after abelian projection. Contrary to the expectation the orientation of the
field is random in SU(2) space.

The test was made for O(z) = Fi(z); for O(z) the Polyakov line,
defined as the trace of the parallel transport, at a fixed spatial position Z,
along the time axis, with negative result.

Equally negative answer is obtained [27] for the so called maximal
abelian projection [25], which consists in minimizing by gauge transfor-
mations the quantity

Tr {U“(n)aaU;ﬁ(n)a';;} .

The maximal abelian projection is not of the type suggested by 't Hooft,
but can equally well define monopole like singularities of the field strength.

The conclusion is that ’t Hooft idea does not work, at least in its wider
sense: the answer to question (a) of Sec. 5 is negative.

The possibility (b) is, however, still open.

Many groups [25, 26] have measured on lattice the density of monopoles
by looking at the abelian projected magnetic field across the plaquettes at
the border of a spatial cube. The flux ¢ is measured as [ A,dz* along the
edges, modulo 27

p=2rn+¢,
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n counts Dirac singular strings of monopoles crossing the plaquette. The
net number of strings coming out of a cube counts the monopole inside it.

The idea behind these investigations is that a sudden change in the
monopole density as a function of temperature could indicate a transition
from a phase with monopole condensation (superconductivity) to a normal
phase. On one hand, however, such a definition of monopole density proves
to be plagued by lattice artifacts [27], on the other hand the density of
monopoles is not a good order parameter for signaling such a phase tran-
sition, much in the same way as the density of electrons is irrelevant for
superconductivity.

To detect dual superconductivity the vacuum expectation value of an
operator with nontrivial monopole charge should be found [27] different from
zero in the confined phase, and zero in the deconfined phase.

An operator with these properties O(z) can be constructed. The con-
struction is inspired by Ref. [28]

O(z) = exp (13} / 37 B(Z - 2) ﬁ(z)) , (6.11)
with II*(Z) the conjugate momentum to the field Af‘(z)

[n"(s, t), A3(, t)] = i 6956)(z - §), (6.12)

—

B(Z) is the vector potential of the field produced by a Dirac monopole

B, 2
Bi(%) = €453 R (6.13)
O(z) has non trivial monopole number, as can be easily seen in the Schrédin-

ger picture for the fields, where it acts as a translation operator on the field
O(NA(Z,1)) = |A(z,1) + = B(2)).

Work is in progress to measure (O(z)) on the lattice after different abelian
projections.

In conclusion
(i) Flux tubes do exist in QCD.

(ii) Not all abelian projections are equivalent.

(iii) The picture of QCD vacuum as a dual superconductor is fascinating
and physically appealing. There is a way to test it, by looking at the
condensation of operators like O(z) Eq. (6.11). Work is in progress on
this subject.
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