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Critical slowing down of local algorithms in lattice gauge theories can
be used to extract physics at different scales of length. We show that
renor- malization constants of the topological susceptibility of QCD vac-
uum can be determined numerically, without any use of perturbation the-
ory, by a heating and cooling technique based on the above mentioned
principle. The comparison with perturbative computations is discussed.

PACS numbers: 12.38. Ge

1. Introduction

Gauge theories on a lattice were first formulated by Wilson in 1974 [1],
and were part of a research strategy, trying to separate physics at different
scales of length [2]. In 1979 Creutz [3] demonstrated by numerical simula-
tions that continuum physics can be extracted from the lattice. Since then a
number of results have been obtained on lattice by Monte Carlo simulations,
in particular

(i) It has been established that lattice is a regulator of continuum QCD.
At the fixed point g? = 0 lattice and continuum QCD both belong to
the same class of universality.

(i) Color is confined. A string tension exists between static QQ pairs [3].
The string consists of chromoelectric flux tubes [4, 5], joining the two
particles.

(iii) A deconfining phase transition takes place at T. ~ 160 MeV which is
first order in a theory without light quarks (the so called quenched ap-
proximation). T is somewhat smaller and the order of the transition
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not yet established for the more realistic theory including the propaga-

tion of light quarks [6].

(iv) Chiral SU(3)®SU(3) is spontaneously broken to vector SU(3), and ()
is the order parameter. The symmetry is restored above the deconfine-
ment temperature T, [7].

(v) The breaking of axial Uj(1) due to the chiral anomaly [8] can explain
the high mass of the ' (Witten, Veneziano) [9, 10], thus solving the so
called [11] Us(1) problem [12].

The result () means that numerical simulations on the lattice do repre-
sent the theory in its full dynamical content: every physical quantity can, in
principle, be computed on lattice from first principles. The results (it)-(v)
and many others provide evidence that QCD does indeed describe the real
world.

An immediate question is then: are present limitations in the results
obtained from the lattice only due to computer power, or do they also reflect
limitations in our understanding of theory?

I will show in the following that a crucial point is our poor under-
standing of non perturbative field theory. On the one hand what we know
on continuum field theory is mainly based on perturbation theory, and as
a consequence phenomena like confinement, vacuum condensation, dimen-
sional transmutation, Gribov copies ... are out of reach. On the other
hand extracting non perturbative effects from numerical simulations on lat-
tice requires concepts like Wilson Operator Product Expansion (OPE) or
renormalization theory which, strictly speaking, are only understood in per-
turbation theory. A number of non trivial questions in field theory are thus
encountered in the process of extracting physics from the lattice.

There are two main attitudes in lattice community:

A. A “phenomenological” approach which consists in computing quantities
of direct experimental interest [hadron spectrum, weak decay ampli-
tudes, a, from the spectra of heavy quarkonia .. ]

B. A “theoretical” approach, which tries to get information on the mech-
anisms and on field theoretical aspects [mechanisms of colour confine-
ment, structure of the ground state, Gribov copies, string configurations

In this talk I will focus on topological aspects of QCD, a subject which is
somehow in between A and B: it is related to the non perturbative structure
of vacuum, to the mechanism of breaking of U (1) and the role of instantons,
but at the same time to problems of direct phenomenological relevance like
the spin content of the nucleon. The main points of this lecture will be

a) A discussion of renormalization of the lattice regularized QCD. Lat-
tice QCD is a cut-off version of the theory. What is provided by the
numerical simulations are unrenormalized correlation functions, simi-



Eztracting Physics from Lattice Artefacts 229

lar to what would be Pauli-Villars cut-off Green functions in QED. To
get physics the cut-off must be removed by a suitable identification of
multiplicative and additive renormalizations.

b) A systematic use of the so called “critical slowing down” in lattice sim-
ulations, to separate physics at different length scales in the spirit of
Ref. [2]. Any local updating algorithm in Monte Carlo simulations
rapidly brings to equilibrium short wavelength modes, with wavelength
A ~ a, a being the lattice spacing. Modes corresponding to longer wave-
lengths A ~ £a reach equilibrium at a much slower rate. It is easy to
realize that the thermalization time ¢ at a distance {a is governed by a
typical mechanism of diffusion [13]

t~ €%, a~2. (1.1)

Since continuum is reached at the critical point, where the correlation
length goes large with respect to lattice spacing (£ > 1), the phe-
nomenon is called critical slowing down, and represents an inconve-
nience of numerical simulations. We will instead make systematic use
of it and of the renormalizations as described above to extract physics.
In a sense, by the use of Eq. (1.1) we will separate distances in terms
of computer time.
Before doing that I will present the very basic elements of lattice gauge
theories for the benefit of non experts [Sec. 2], as well as an outline of the
physics involved [Sec. 3].

2. Lattice lexicon

Lattice is a discretization of space-time to a cubic array of points Fig. 1.
The building block of the theory is the link U,(n) [1]

Uu(n) = exp [igad,(n)], (2.1)
Ay(n) =) T*A%(n). (2.2)

a

The link is the parallel transport from the site n to the neighbouring site
in direction p. g is the bare coupling constant, T¢ are the generators of the
gauge group in the fundamental representation. A gauge transformation is
defined as a set of group elements f2(n), one for each site, and the gauge
transformed of U,(n) is

Uu(n) = 2(n)U,(n)2N(n + p). (2.3)
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Continuous paths can be formed with links, e.g. the plaquette IT,,(m), as
shown in Fig. 1: a path is defined as the ordered product of the links.

I, (m) = Up(m)U,(m + w)UL(m + v)U(m). (24)
The trace of a closed path is gauge invariant.
Asa—0
M, (m)~1+iga® G, (m) - 1¢%*GL.Guu + ..., (2.5)

Gy being the field strength.
Wilson (euclidean) action is

SwlUl=-B ), Tr[1-I*"(n)] = a* ) G5 ()G}, (n)+0(a%),
n,uly n, 4y,
(2.6)

B = 2N/g? for a gauge group SU(N) plays the role of Boltzman factor 1/kT.
The theory has a fixed point at 8 — o0, corresponding to a higher order
phase transition in the language of statistical mechanics. As 8 — oo the
correlation length tends to infinity in units of lattice spacing a. In formulae

1
a= 'X;f(ﬂ)s

0, () e () 0 () o0

here by and b; are the first two non trivial coefficients of the perturbative
expansion of the 3 function

11— Ny ,102 - 38N,

bo = g—W—, b,} = g——zz‘?—r)d——. (2.8)

The sign of by reflects asymptotic freedom and is what makes the lattice
spacing exponentially small in physical units at the fixed point 8 — oo,
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or makes one Fermi much larger than a. Ay is the physical scale of the
regularization scheme. The generating functional (partition function in the
language of statistical mechanics) is

W= [ H,0d0,(0) exp [-Sw(@) - So@)] ,  (29)

e—Sqe(U) _ /dz/;(n)dq,b(n) exp [-— Z P(n)Dpmyp(m)|, (2.10)
-8q = Trlog D, ,

is the action due to quarks. dU, is the Haar measure of the group. W

is gauge invariant and finite: lattice discretization makes W a ordinary

integral from a functional integral. This integral is computed by Monte

Carlo method. Notice that

(i) In the process preparing a significant sample of configurations by a local
Monte Carlo updating procedure, short wavelengths are thermalized
rapidly, while the computer time for bringing to equilibrium modes
at wavelength £a is longer and roughly proportional to ¢2[Eq. (1.1)]
(critical slowing down). Local minima of the action, which correspond
to classical solutions of the equations of motion, as are the instantons,
can produce metastabilities which make the thermalization time even
longer.

(ii) W is the generating functional of the regularized Green functions. They
have then to be renormalized.

3. Topology in QCD
3.1. The U,4(1) problem
The celebrated current algebra of Gell-Mann {14] was abstracted from
the massless free quark model: the idea of Gell-Mann was that, whatever
the strong interaction lagrangian, it should preserve that basic symmetry.

QCD, which was proposed ten years later as the theory of strong inter-
actions, does in fact preserve SU(3)®SU(3) chiral symmetry.

OHVEz) =0, V2 = @) ab(e),
o4 AL(z) =0, AS = P()1r* (), (3.1)

A% are the SU(3) flavour generators. As required by phenomenology vector
symmetry is realized a la Wigner—Weyl, whilst axial symmetry is realized
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a la Nambu-Goldstone, i.e. it is spontaneously broken. Lattice simulations
demonstrate that, from first principles [7]. Vector U(1) is also a symmetry in
QCD, like in free quark model and corresponds in nature to baryon number
conservation.

V(=) =0,  V*=Pyky. (3.2)

The axial Uy (1) current is conserved in Gell-Mann’s free massless quark
model

0,A¥(z) =0, A* = PpyPaSep, (3.3)
but Up (1) is broken by anomaly in QCD, where
0,A*(z) = NsQ(=). (3.4)

Ny is the number of light quark species (Ny = 3) and

Q) = Zzeme;,,

(3.5)
is the so called topological charge density. This fact opens a possibility of
solving the so called Uy (1) problem {11]. U, (1) must be broken in nature:
if it were not broken its generator Q 4 would commute with the Hamiltonian
of strong interactions. As a consequence on a proton at rest |p)

HQalp) = Q4H|p) = mQalp), (3.6)

implying that the state Q 4|p), which has opposite parity to the proton,
would have the same mass: in nature there is no evidence for parity dou-
blets. If Uy (1) were spontaneously broken, the mass of the corresponding
Goldstone boson, 7', should obey the inequality [11] m,» < 3m,, which is
again not the case in nature. The appearance of the a.nomaly (3.4) in QCD,
as contrasted with the symmetry of the free quark model, eliminates the
contradiction. In fact, it was shown by use of 1/N, expansion [9, 10] that
the n' mass can be explained if

2N,

f—zf—m +md - 2m¥k, (3.7)
x is the topological susceptibility of the ground state of a pure gluon gauge
theory; N is the number of light flavours, fx the = decay constant. Inserting
numbers in Eq. (3.7) gives

x = (180 MeV)4. (3.7)
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The assumption

2 0<<1, (3.8)
q=

is implied in the derivation [10]. By x we mean x(¢? = 0) and

x(q?) = / d42e'7%(0|T (Q(2)Q(0)) [0) - (3.9)

The idea of Refs [9, 10] is that in the limit N — oo Ux (1) is a symmetry,
and is spontaneously broken: () is the corresponding order parameter.
The mass of the ' is produced by non leading corrections in 1/N. which
displace the pole of the Goldstone boson. In a pure gauge theory one should
observe a restoration of the Uy (1) symmetry above a certain temperature.
The obvious question is if that temperature is the same at which chiral
SU(3)®SU(3) is restored, which, in turn, seems to coincide with the decon-
fining phase transition [see Sec. 1]

3.2. The spin content of the proton

The general parametrization of the matrix elements between proton
states |) and |p") of the Ua (1) axial current (3.3) is

(5"14*(0)15) = G a(a®)a(F")r*1°u(@) + Gp(d® )¢ a(F" r*u(p), (3.10)
¢®> = (p' — p)® is the momentum transfer. Recent experiments [15] on

deep inelastic scattering of polarized electrons on polarized protons, have
measured G 4(0) , finding a small number, compatible with 0

G A(0) = .120 + .094 + .138. (3.11)

This result creates problems in the naive interpretation of the spin of the
proton in terms of spins of the quarks (Spin crisis) (See e.g. Ref. [16]).
Using Eq. (3.4) for the anomaly

(7'10, A*(0)1P) = ("IN £Q(0)I5) q,io2MpGA(0)ﬁ(ﬁ')75u(ﬁ')» (3.12)

A measurement of G 4(0) from first principles, amounts then to measure the
matrix element between proton states of the density of topological charge.
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4. Topology on the lattice

How can topology be defined on the lattice, where continuity does not
exist?

4.1. Geometrical approach [17, 18]

The idea is to interpolate discrete lattice configurations by continuous
configurations on which the Chern number can be read: the hope is that at
large B’s, when the scale of strong interactions is large compared to lattice
spacing, large instantons will dominate, and continuum will be reached.
That hope turns out to be wrong [19, 20]: instantons of size a dominate at
large (3: they are called dislocations. No clear solution to this difficulty has
been found.

4.2. Field theoretic approach [21]

A lattice version of Q(z) is defined, e.g. as

2
QL(@)——32W2 Y. P Te (I (2)Tpo(2)} = Q(z)a* + O(af).

+pvpo
(4.1)
The limit @ — 0 above is the formal limit of the operator. Different Q’s
can be defined, which only differ by irrelevant O(a®) or higher terms. Qp,
is a cut-off version of @(z). The general theory of renormalization gives for
the operator Qr(z) in the limit 8 — oo when a — 0 in physical units, or in
the limit in which the cutoff is removed [22]

Qulz) ;= Z(B)Q(z)a*(8) + O(a®), (4.2)

the rule being that any regularized operator mixes with all local operators
with the same quantum numbers and equal or lower dimension (multiplica-
tive and additive renormalizations), apart from irrelevant terms of higher
dimension which vanish with higher powers of the cut-off. @(z) is a pseu-
doscalar of dimension 4, and no other gauge invariant operator of equal or
lower dimension can be constructed out of the field operators with the same
quantum numbers. The lattice topological susceptibility can be defined as

(QL)

XL = E(QL(n)QL(OD =
QL = ZQL(n). (4.4)

(4.3)
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Here again, by use of the general rules of renormalization theory [21]

XL = Z*(B)xa*(B) + Mg(B)G2a*(B) + My (B)Gya*(B)

+P(B)(01]0) + O(a®), (4.5)

Z(P) is the same multiplicative renormalization which appears in Eq. (4.2);
the other terms are generated by the singularity occurring when the two
points of the correlation function coincide.

G2 is known as gluon condensate, and is given by

62 =20 265, 0)63,0), (4.)

G is the chiral condensate, which is present if fermions are included in the
theory

Gy =) (msdss). (4.7)
f

The sum index f runs on light quarks.
I is the identity operator.

Eq. (4.5) must be correct if lattice QCD belongs to the same class of
universality as continuum QCD. In principle Z(8), Mg(8), My(8), P(B) are
well defined functions: they have to be determined to extract the physical
quantities x, G2, Gy from the numerical determinations of x(8).

Since renormalizations are dominated by short range fluctuations [they
correspond to ultraviolet divergences in the limit of zero lattice spacing], one
expects that they can be computed in perturbation theory, due to asymp-
totic freedom. Non perturbative effects are, however, expected to enter at
some order [23].

A related problem is the validity of the perturbative expansion as an
asymptotic series [24]. All these problems can be investigated on lattice if
these renormalization functions can be determined directly from numerical
simulations and are then compared with the perturbative expansion.

The status of the perturbative calculation of different renormalization
functions both in QCD and in 2d O(3)o model is presented in Table I.
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TABLE I
SU(2) SU(3) 0O(3) o model
ZB) =1+8+8B+.. |[n=-21448" |5 =-54" 21 = —.6839
23 = —.0598°
My(B)=54+... dy = 1.58751074¢
M) =g +... e; = 1.87410729 |e; = 6.3226 1034
PB)=g+5t+... |ca=2.648107* jc5 =3.5759107%¢
cq =.7010747 oy =8.4193107*%¢ ¢, = 6.83210"5
c? = 6.192310%¢ |c5 = 5.7221075"

® (22], ® [40], © [27], ¢ [21, 25], ¢ [26], € [41]

The mixing to the chiral condensate is negligible [27], both because it is
OZI forbidden, and because G, is much less than G2 due to the smallness
of current quark masses. In what follows we will neglect it. According to
the general discussion of Secs 1 and 2 (Eq. (1.1)) any local algorithm which
freezes the system (like cooling [28] or smearing [29]) will rapidly thermalize
to large B’s local fluctuations (modes of wavelength ~ a ) while longer
wavelength will take a longer time, and configurations which correspond
to local minima of the action like the instantons, which are protected by
topology, will be metastable and survive a much longer time. In formulae a
B.g will be produced for short range fluctuations along the cooling process,
which becomes larger and larger as cooling goes on, whilst long range modes
will for a while preserve the original 8: in particular the topological charge
will be preserved. Hence [see Eq. (4.5)]

XL = z? (ﬂeﬂ')xa4 + MG(ﬁeﬂ')G2a4 + P(ﬂeff) . (48)
Now [21]
1 1
Motpa),=_0(5-) . Poan),= 0 ()

so after a few cooling steps the corresponding terms rapidly go to zero, and
Z2%(pB) can be measured and compared to the perturbative computations.
After a few steps Z%(8) = 1 and
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Fig. 2. Z(B) determined by cooling.
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Fig. 3. The SU(2) string tension o as extracted from x(7,7) along cooling, (8 =
2.5). Statistical errors are strongly reduced as short range fluctuations are elimi-
nated. Data correspond to a sample of 50 configurations [4].

x can then be extracted [21, 32]. Fig. 2 shows how Z — 1 along cooling.
B.g is determined by using the density of action as a thermometer for local
fluctuations. This method of freezing local fluctuations, while preserving

long range phenomena can be used for more general purposes than the
original cooling procedure, [28], which was limited to deep freezing of topo-
logically protected quantities. The string tension o can be measured by
looking at Wilson loops of a size R, T along cooling [4] at a stage of cooling
where short range fluctuations have already been frozen but distance R has
not yet been reached in the sense of Eq. (1.1). The result will be a dras-
tic reduction of fluctuations, allowing a good measurement of ¢ on a small
sample of configurations {see Fig. 3—-4]. At the same time field configura-
tions produced by the propagating pair of quarks can be studied, polished
of the local quantum fluctuation [4, 30]. By the same procedure gauge
invariant correlations of field strengths at large distance can be measured
[33] which are relevant for models of colour confinement based on stochastic
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Fig. 4. & obtained from x(6,6) (crosses), x(6,7) (diamonds), x(7,7) (squares,
same data as in Fig. 3) at 8 = 2.5, along cooling. They are plotted versus (E)
(the internal energy density) [4]. (E) decreases with cooling. The right most point
corresponds to cooliné step B, the second going to left to cooling step 6 and so on.
The solid line (and the two dotted lines) show o as measured without cooling and
the corresponding error [31].

background fields [34, 35, 36].

5. Making use of Eq. (1.1) to determine numerically the
renormalizations

5.1. Determination of Z(B) [37]

The method, inspired by Ref. [39], has first been tested on O(3) o model
[38]. An instanton is put on lattice by hand: the topological charge mea-
sured by any method is 1. The configuration is then thermalized to any
given value of B, by a local algorithm, and Qp, is measured: the effect
of thermalization will be to bring to equilibrium short wavelength modes
rapidly, whilst long range correlations and the topology need a longer time
to thermalize, according to the general discussion of Secs 1, 2. Since renor-
malization is produced by short range correlations, one expects that, after
a number of steps which is independent of the physical correlation length,
(i.e. of B), the operator Q will be renormalized and will reach a plateau.

QL ~ Z(B)Qr(0). (51)

By Qr(n) we denote the measured value of Q1 at the n-th step of cooling.
This is in fact what happens [See Fig. 5]. The procedure can be repeated at
different values of # and the result can be compared with the perturbative
expansion:

21 22

Z=lt gt

(5.2)
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Fig. 5. Heating an instanton and measuring Q. Gauge group SU(2) [37].
z1 is known by analytic computation [22]. Within our errors, which are

typically of few percent, Z is consistent with an expansion up to terms §—2
like Eq. (5.2) and

z2

22

5.2. Determination of the mizing to G2 and to the identity

48 + .04 for SU(2)
3.3+1.2 for SU(3)

The method was introduced in Refs [27] and [37]. We start from a flat
(zero field) configuration, with all links U(n) = 1, and we thermalize at a
given 8 with a local algorithm. We expect thermalization to set in through
different stages.

(i) Local fluctuations, with A ~ a are rapidly thermalized, after a number
of steps independent of 3. A plateau will appear where the topological
susceptibility will only get contribution from the mixing to the identity,
P(B) in Eq. (4.5), since long range modes giving rise to gluon con-
densation are not yet thermalized, and x = 0 because the number of
instantons is still zero.

(ii)) When, according to Eq. (1.1) wavelengths of the order of the physical
correlation length are thermalized, a new plateau will appear, higher
with respect to the first plateau by an amount equal to the mixing to
G2 in Eq. (4.5).

(iii) After a much longer time the equilibrium value for xz will eventually
be reached.

This is shown in Fig. 6 for SU(2). From the position of the plateaux,
P(B), Mg(B)a*G2 and Z?xa?* can be determined. P(J) is the exact mixing
coefficient to the identity and can be compared with the first few terms of
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10y .

Fig. 6. Heating zero field configuration. The first plateau is P(3); the second is
P{B) + M(B) G;. The upper line is the equilibrium value of xz, which is reached
as n — co. At n = 10, 15 a fast cooling is made to insure that no instantons have
yet been produced by the heating process. Gauge group SU(2) [37].

the perturbative expansion. [See Table I.] A clear indication emerges that
the perturbative expansion is an asymptotic expansion, and that, in the
ranges of f of interest a few terms provide a good approximation, within
the statistical errors.

From the mixing to G, assuming for M () the first significant term of
its perturbative expansion [21, 25] G2/ A} can be determined. It agrees with
previous determinations [42, 43, 47], and, once Ay, is eliminated, e.g. by
comparison with o/ A2, the result is about ~ 3 larger than SVZ [44]. Finally
x/A* can be determined: it agrees with previous determinations [21, 28, 32],
and with the value of Egs (3.7), (3.7’) thus confirming again the analysis of
Refs [9,10]. A test of the inequalities (3.8) by similar procedures [45, 46] is
also positive, giving

1{dx
X

i m??, ~ 10%. (5.3)

¢?=0

Altogether the solution of the Up (1) problem proposed in Ref. [9, 10] is
thus confirmed from first principles.

5.3. The spin of the proton

The determination of Z(3) explained above, allows to extract any ma-
trix element of @ from the corresponding matrix element of @, being

QL = Z(8)Q. (5.4)

In particular, to measure the matrix element (3.12) it will be sufficient to
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measure (7'|@Q1(0)|p). Combining Eq. (3.12) and (5.4)
CAOF Y (B ~ i (1O (5.5)
Work is in progress.

6. Conclusions

(i) Huge renormalizations exist from lattice to continuum.

(i) Non perturbative exact numerical determinations of renormalizations
are well approximated by few terms of the perturbative expansion. This
indicates that the latter is an asymptotic expansion.

(iii) We have found, for a series of problems, a way of disentangling physics
at different scales of length by using systematically inconveniencies of
lattice algorithms (critical slowing down).

(iv) Lattice is far from being a conceptually cheap and mechanical way for
computing physics numerically. Research with lattice requires imagi-
nation, to overcome difficulties which are related to understanding of
physics.
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