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We review recent developments concerning the partonic structure of
the proton. We describe a recent parton distribution analysis which in-
corporates the new precision deep inelastic scattering and related data.
We discuss the application of perturbative QCD in the small = regime
which is currently being probed, for the first time, by the experiments at
HERA. We introduce, and consider applications of, the BFKL equation.
We summarige the status of parton shadowing calculations. We briefly
discuss implications of the new polarized neutron structure function mea-
surements.

PACS numbers: 12.38. Bx, 12.38. Qk, 13.60. Hb

1. Introduction

The precise determination of the partonic structure of the proton is im-
portant, since the parton densities are universal and are essential ingredients
in the detailed study of any hard interaction involving a proton. The dis-
tributions are determined by the values of the structure functions F;(z, Q?)
measured in muon (or electron)-nucleon (or nucleus) and neutrino-nucleus
deep-inelastic scattering experiments, as well as by data from other related
processes. For example, the relation between the observable structure func-
tion F.fp and the parton densities f; is of the form

1
F2(e,07) = Y dafy(e,@)+ @) Y ¢ [ Falon(5,0h),

1=gq,§ i=9,4,9
(1)

* Presented at the XXXIII Cracow School of Theoretical Physics, Zakopane,
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at next-to-leading order in a,, where the coefficients ¢;(z) are known, but
scheme dependent, functions. As usual z and Q2 are independent invariant
variables that can be constructed from the 4-momenta of the proton, p, and
the probe, ¢; that is Q% = —¢2 and z = —¢2/p-q, see Fig. 1. Fig. 1 displays
possible partonic structure of the proton as seen by the probe, g. Recall
that z is equal to the fraction of the proton’s momentum that is carried by
the struck (massless) quark.

Fig. 1. Possible partonic structure of the proton as seen by a probe of 4-momentum
q¢- The struck quark carries a fraction z of the proton’s momentum. The gluon
chain may contain quark links, particularly at large z.

Recent fixed-target deep-inelastic scattering data from NMC [1] and
the CCFR collaboration [2] have considerably improved our knowledge of
the parton distributions. Indeed the global description of these, and other
related, data in terms of a set of universal parton densities provides an
impressive confirmation of perturbative QCD. However it is the results that
are just starting to come from the electron-proton collider, HERA, that
are causing excitement. The reason is that HERA is probing the previously
unexplored small z regime (z ~ 10~3) where novel perturbative QCD effects
are anticipated. The application of perturbative QCD in this region requires
a resummation of a,log(1/z) terms, corresponding to the sum over gluon
chains like the one shown in Fig. 1. To leading order this is accomplished
by the BFKL equation [3] and leads to a singular small z behaviour of the
gluon distribution of the form

zg ~ z~A , (2)

where A = 0.5, and similarly for the sea quark distributions since they are
driven by the gluon, via ¢ — ¢§. This behaviour is stable to evolution in
@? and thus the QCD expectation at small z is that

F3P(z,Q%) ~2g~ 27", (3)

This singular behaviour must eventually, as z decreases, be tamed by shad-
owing. The rise of F3, with decreasing z, observed by H1 [4] and ZEUS [5]
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Fig. 2. The new measurements of Fi? by NMC [1] and of F,” at HERA [4],
together with previous BCDMS (6] data. ZEUS [5] obtain similar results in the
HERA range. At lower Q2 values the NMC values reach down to z ~ 10~2. The
figure is taken from the CERN Courier, October 1993.

at HERA is perhaps the first evidence of this singular behaviour. Typical
new experimental developments for F; are shown in Fig. 2.

2. Determination of parton distributions

The parton densities f;(z,Q?) at some scale must be determined by
experiment. The basic procedure is to parametrize the z dependence of
fi(z,Q?) at some low Q2 but where Q2 is sufficiently large for perturbative
QCD to be applicable. Then to evolve up in Q2 using next-to-leading order
Altarelli-Parisi equations to determine f;(z,Q?) at all values of z and Q?
where deep-inelastic and related data exist, and in this way to perform a
global fit to the data.

The deep-inelastic muon and neutrino data pin down the valence and
sea quark distributions, but hardly constrain the gluon distribution, which
only enters directly at next-to-leading order; essentially the only constraint
is the momentum sum rule which shows that the gluon carries just less than
50% of the proton’s momentum at Q2. On the other hand the gluon enters
at leading order in prompt photon production. Indeed for “large” pr pho-
tons, produced by pp — 7X, the dominant QCD subprocess is g¢ — v¢, in
contrast to pp — X where the annihilation process ¢§ — 7g is much more
important. The relevant data are from the WA70 collaboration [7] which
determine the gluon for z ~ 0.35. Combined with the momentum sum
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rule constraint, the global fit [8] is found to give an input gluon behaviour
(1 —-2)53 at large z. Data for the Drell-Yan pN — u*pu~ X process, which
at leading order is mediated by ¢y@sea — 7*, constrain the (1 — z)7* be-
haviour of the sea quark distributions. Measurements of W production at
pp colliders impose tight constraints on the u and d distributions, particu-
larly when the accurate NMC measurements of F)' ™ /F}'? have to be fitted
simultaneously.

To be specific we present the latest MRS analysis [9, 8]. The input
parametrizations at Q2 = Q2 (= 4 GeV?) of the gluon (g), valence (u,,ds)
and sea (& = d ~ 23) quark distributions each are assumed to have the form

efi(2, Q%) = Az (1 - 2)Pi(1 + 72 /% + 6;2), (4)

where 4 = fy, = Uy + Ugeay U = Ugea €fc. and where the parameters
A, Aiy Biy i, 6i are to be determined by the fit to the data. In practice not
all these parameters are free. Three of the A; are determined by the flavour
and momentum sum rules. Moreover we have some idea of the values of A;
and f(; from the expected behaviour of the parton distributions as z — 0
and z — 1 respectively. Naive counting rule estimates suggest 8; ~ 2n, — 1
where n, is the minimum number of spectator partons accompanying the
probed parton. So for valence quarks, gluons and sea quarks we expect
Bi to be 3, 5 and 7 respectively. Naive Regge arguments suggest \j=, =~
apsr(0) — 1 ~ —0.5 since in this model the ¢ — 0 (i.e. p- ¢ — o) behaviour
of the valence quarks distributions is controlled by the intercept aps(0) of
the (leading) p — a2 — w — f» meson Regge trajectory. On the other hand
Asea = Ag =~ ap(0) — 1 ~ 0 if we assume that the Pomeron has intercept
about 1. However we have mentioned that there are theoretical reasons
from perturbative QCD to believe Agsea =~ Ay =~ 0.5. We must therefore
distinguish the “soft” pomeron (applicable in the Regge domain, Q% =~
0) from the “hard” or “BFKL” pomeron (applicable at Q% values where
perturbative QCD is valid). To illustrate the difference MRS obtain parton
sets with Ay = Asea = 0 (sets Dy and Sp) and a set with A\j = Ajea = 0.5
(set D_).

Let us return to the input assumption that the sea quark distributions!
satisfy 4 = d = 23. The evidence that the strange sea is about half as
weak as the non-strange seas comes from the observations of deep-inelastic
dimuon production, vN — u~ut X, for which the dominant subprocess is
vs — p~(c — p*). The latest CCFR [12] next-to-leading order analysis is
shown in Fig. 3 and indicates that the MRS assumption for 3 is satisfactory.

1 CTEQ [10] use freely parametriged input distributions for #,d and 5. A critique
of this approach (which yields an unphysically large strange sea distribution
for  ~ 0.05) is given in Ref. [11], see also Fig. 3.
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Fig. 3. The shaded band shows the strange quark distribution extracted by CCFR
from their dimuon data [12], together with the MRS [8] and CTEQ [10] distribu-
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Fig. 4. The upper curves are the accumulated contribution, f:, to the Gotifried
sum rule, (6), as a function of z, the lower limit of integration, corresponding
to partons sets So, Do and D_ [9]. The lower curves compares the integrand,
F}? — FI™ with NMC data [13].

Until recently all global analyses assumed @ = d, but recent NMC data
[13] imply that this equality may not be exact. This is best seen in terms
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of the Gottfried sum rule
1 P 1 1
z -
Igsr E/—;(Fz"p - Ff™) = %/d:c(u,, —dy) + %/dm(ﬁ— d) = %, (6)
0 0 0

if # = d. On the other hand NMC [13] find

0.8
d
/ f(F;‘P — FI™) = 0.236 + 0.016, (1)
0.004

at Q% = 4 GeV?. A straightforward comparison of (6) and (7) implies & # d.
To allow for this MRS [9] parametrize

d—a=Az"%(1 - z)P, (8)

where a ~ aps(0), since the difference may be associated with the lack of
Regge p — a; exchange degeneracy. When this is done (sets Dg,D_), it is
found d > & and that Iggg of (6) is about 0.26. It is interesting to note
that it is still possible to maintain % = d and to obtain an equally good
global description of deep-inelastic and related data but at the expense of
a contrived small z behaviour of the valence distributions, see set Sg of
[9]. However it is more physical to allow @ # d and so the discussion will
concentrate on sets Dg and D_. Fig. 4 summarizes the Gottfried sum rule
discussion.

In addition to the parameters describing the input distributions there
is the parameter a,(MZ%) which specifies the QCD coupling and which de-
termines the rate of evolution in Q2. Using deep inelastic data we have

a,(M3%) = 0.113 + 0.005 (BCDMS data [14])

as(M%) = 0.111 + 0.006 (CCFR data [2])
a,(M%) = 0.1125 + 0.005 (MRS global fit [8]).

These determinations lie below, but are consistent with, the LEP value of
as(M%) = 0.120 £ 0.006 (LEP average [15]).

In summary, MRS fit to deep inelastic and related data with a total of about
15 parameters. The quality of the fit is shown in Figs 5-8.

To determine f;(z, @?) from the evolution equations it is only necessary
integrate from z up to 1. Thus the fits to the data do not involve, or deter-
mine, f;(z, Q?) for values of z below that for which data exist. However the
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Fig. 5. The BCDMS [6] and NMC [1] measurements of F;?, together with the
description obtained in the global analyses of KMRS and MRS [8]. The NMC data
were not available for KMRS. The figure is taken from Ref. [8].

precision of the data means that we should now have reliable sets of parton
distributions at least in the region =z 2 0.02. Extrapolations outside the re-
gion of the data are notoriously unreliable. All we can do is to use the input
parametric forms, together with the evolution equations, to extrapolate to
small z to show the general trends.

Fig. 9 shows parton sets Dy and D' ; recall that the latter set incorpo-
rate the singular BFKL-like forms zg,z§ ~ 2~ %5 at small z. We see that
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FY™ /| Fi? given by the Sp,
from Ref. [8].
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Fig. 7. The continuous curves show the description of the CCFR [2] measurements
of Fy¥(z,Q?) and zFy¥¥ (=, Q?) by the D} set of partons [8]. The data are shown
after correction for the heavy target effects and after the overall renormalization
of 0.95 required by the global fit, see Ref. [8].
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Fig. 8. The description of Drell-Yan and W production data obtained by the MRS
partons of Ref. [8].

T YT 7

0= 20Gev?

T

LR e S o

MRS{0,1

08

T

08

i, 0%

04

0.2

Y T

TR R | .

M|

T

PRI U U W NGRS G TR AT

—e

T
T T T

\ o'= 20Gev’

08

LA

xf(x,0%)

o
-

LJNLERAS S A e S B B

YT

3

Fig. 9. The D) and D’ sets [8] of parton distributions of the proton at Q? =
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fitted (z 2 0.02) they differ greatly at small = due to the more singular (physically
motivated) input forms used for the gluon and sea quarks in set D_.
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the two sets are essentially identical for z 2 0.02 (though there is a little
difference in the gluon that is necessary to conserve momentum), but they
are dramatically different at small z. The recent HERA measurements of
F,? (4, 5] lie somewhat nearer to the D’_ extrapolation than to Dg.

3. Summing leading logs: GLAP and BFKL equations

So far we have used the GLAP or Altarelli-Parisi equations to evolve
up in Q? from a starting distribution at Q3. For a non-singlet quark distri-
bution the equation is of the form

4 [ d
;i:gQQ?) 2., y 99( )Q(y,Q ) = qu ®gq. (9)

To keep the discussion sxmple we consider just leading order and fixed,
rather than running, coupling a,. By rewriting (9) in terms of moments
it is easy to show that the equation effectively sums the leading (a,logQ?)
contributions. The (a,log@?)" contribution corresponds (in a physical or
axial gauge) to the n-rung ladder diagram of Fig. 10 [16]. In fact this leading
log arises from the strongly-ordered region of transverse momenta

Q> Kr>... B> Q.

Suppose now we wish to study the behaviour at small z. Then we encounter
new logarithmic contributions of the form (a,log(1/z))". These will need
to be summed. First consider the case when

2
a,logllog-g— ~1, (10)
0

but where a,log(1/z) and a,log(Q?/Q2) are both small. At small z the
gluon dominates and so we keep only zg(z, Q?). Now the leading

1. Q*\"
(a ,log;log%f)
0

contribution comes (in a physical gauge) from the n-rung ladder diagram
where both the longitudinal and transverse momenta are strongly ordered
as indicated in Fig. 11. Summing over these gluon ladders gives?

2 3a,, 1 2 1/2
20(2, Q") ~ exp (2| Zr1og 10g0?| ) (1)

3 This form applies if zg(z, Q3) ~ constant. If zg(z, Q3) ~ z~'/2 say, then this
singular behaviour is stable to evolution and overrides (11).
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Fig. 10. The n-rung “ladder” diagram.

Fig. 11. The three different limits of g(z, Q?) in the logQ?, log(1/z) plane: (i)
the leading logQ? region where a,logQ? ~ 1 but a,log(1/z) is small, reached by
Altarelli-Parisi evolution from g(z, Q2) and ¢(z, Q3), (ii) the double leading log
region where a,logQ%log(1/z) ~ 1 but a,logQ? and a,log(1/z) are both small,
and (iii) the leading log(1/z) limit where a,log(1/z) ~ 1 but a,logQ? is small,
reached by evolution from g(zo, Q) using the Lipatov or BFKL equation. We
also indicate the strongly-ordered regions of longitudinal and/or transverse parton
momenta along the chain which give the leading log behaviours.

so that the gluon grows faster than any power of log(1/z) as z decreases.
This is called the double leading log approximation or DLLA.

For HERA we need QCD predictions for small z but moderate Q2.
Starting from a knowledge of g(zo, @2) (with say z¢20.01) we wish to pre-
dict g(z, Q%) at smaller z, that is to evolve in the upwards direction in Fig. 11
at moderate Q2. Therefore we must sum the leading log(1/z) terms but
keep the full Q? dependence, not just the leading log(Q?) terms. Clearly we
must relax the strong ordering of the k7 's which gave the leading log(Q?)
behaviour, and integrate over the full k1 phase space. As in the other cases
we can picture the leading log(1/z) behaviour as a sum of ladder diagrams,
but now the QCD calculation is more involved. The resulting structure does
indeed look like a summation of ladder diagrams but actually they are only
an effective representation for a whole set of Feynman diagrams, which were
originally summed by Lipatov and coworkers [3]. The (a,log(1/z))™ contri-
bution comes from the n-rung diagram with strongly-ordered longitudinal
momenta, see Fig. 11. The summation is effected by the Lipatov or BFKL
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equation® which has the differential form

(k) [ o o
dlog(1/z) / dk K (kr, k) f(2, kT) (12)

where f(z,k32.) is the unintegrated gluon distribution in which the “last”
k2. integration along the ladder is unfolded

2

dk2
zg(z, Qz) = _l;kizf(zv k%‘) . (13)
T

The full expression for the kernel K can be found in [3], or more recently in
(18], for example. The BFKL equation, (12), can be written in the symbolic
form of

dlog(1/z)

where A are the eigenvalues of K. The solutions of (14) have the form f ~
z~> and so the z — 0 behaviour is controlled by the maximum eigenvalue
of A. For fixed a, the leading small z behaviour can be found analytically.
The maximum eigenvalue is

=K®f=Af, (14)

3:’410g2 ~0.5. (15)

A=

This result is the motivation of the MRS(D ) input small z behaviour with
Ag = Asea = 0~5-
It is worth looking at other features of the analytic form

f@ k) (zfz) > —log’(k3/RE)
(k2)1/2 " {2xA"log(zo /=) /2 \ 2A"log(zo/2)

(16)

with A" = (3a,/7)28((3) where the Riemann zeta function {(3) = 1.202.
Form (16) displays another characteristic feature of the solution of the
BFKL equation. Since there is no ordering in k7 there is a “random walk”
in k7 as we proceed along the gluon chain and evolution to smaller z will be
accompanied by a diffusion in k7. Eq. (16) shows that the diffusion pattern
is a Gaussian distribution in logk2. with a width that grows as (log(1/z))*/2

3 More recently an alternative derivation has been given by Marchesini et al.
[17], in which the virtual emissions are included by means of a non-Sudakov
form factor. In this way they have obtained an equation which reduces to the
BFKL equation at small z and to the Altarelli-Parisi equation at large z.
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Fig. 12. The variation of the width of the Gaussian logk2 distribution of (16) as we
use the BFKL equation to evolve down in z from a starting distribution at ¢ = z¢
of width ~ v/A. There is diffusion into the infrared region (shown dotted).

as z decreases, see Fig. 12. We foresee that diffusion will be a problem in
the applicability of the BFKL equation since it can lead to an increasingly
large contribution from the infrared (and ultraviolet) region of kZ. where
the equation is not expected to be valid. We return to this discussion after
we have introduced “shadowing”.

4. Shadowing and the GLR equation

A A

The increase f ~ 27" or zg ~ 27", as z decreases, cannot go indefi-
nitely. If the density of gluons within the proton becomes too large they can
no longer be treated as free partons. The growth, as 2 — 0, must eventually
be suppressed by gluon recombination. When do we expect the “shadow-
ing” contributions to start to become appreciable? If we view the proton
from a frame in which its momentum p is large, but in which zp > @, then
a measurement of g(z,@?) probes a gluon of transverse size ~ 1/Q, but
much smaller longitudinal size ~ 1/pz, so that the proton appears as a thin
disc. The number of gluons, ny, per unit of rapidity is zg(z, Q%) and the
gluon-gluon cross section & ~ a,(Q?)/Q?, so the crucial parameter is

ngo a,(Q?)

W ~
xR? =wR2Q?

zg(z,Q%), (17)

where R is the radius of the proton. In regions of z and Q2 where W < 1 the
interaction between the gluons should be negligible. However at sufficiently
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small z, when W ~ a,, we must allow for a suppression of the growth of the
gluon density due to 29 — g recombination. By considering QCD diagrams
which become important at small z, recombination was estimated some time
ago by Gribov, Levin and Ryskin [19], and a little later by Mueller and Qiu
[20]. To a first approximation the normal evolution, Fig. 13(a), is corrected
by including Fig. 13(b) (the so-called “fan” diagram) in which the gluon
ladder branches into two ladders which couple to the proton.

(a) (b) {c)

Fig. 13. (a) The type of ladder diagram associated with the BFKL “linear” evo-
lution, (12), at small z; (b) the basic gluon shadowing or recombination diagram,
also pictured as a “fan” diagram; (c) the sum of fan diagrams, such as the one
shown, encapsulated in the “quadratic” GLR equation, (18).

The triple ladder vertex (shown as a rectangle) represents the sum of several
(non-planar) diagrams. The iteration of this fan diagram produces a whole
series of fan diagrams like the one shown in Fig. 13(c). In order to make
progress GLR made simplifying assumptions: (%) for the form of the three-
ladder vertex, (ii) that there are no correlations between the two gluon
ladders (in Fig. 13(b)) which recombine and (%) that the coupling of n
gluon ladders to the proton is proportional to the n** power of the single
ladder coupling. In this way they were able to account for these shadowing
effects by including an additional term in the BFKL equation, (14), so that

0f(=, k)
dlog(1/z)

8laj(kF)

ot 9= (18)

=K®f-

The minus sign and the quadratic nature of the extra term reflect the sup-
pression of growth of f, as ¢ decreases, due to gluon recombination. The
equation is known as the GLR equation [19].

Recently Bartels [21], and subsequently Levin et al. [22], have found
assumption (4i) is not valid. There is a coupling (~ 1/N? ~ 10%) between
the ladders, which effectively increases the shadowing term by a factor of
about 1.7 [23]. This result calls the validity of the GLR equation into
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doubt, although it is probably still reasonable to use the “enhanced” form
of (18) to estimate the onset of shadowing. Clearly the GLR equation is
only applicable in the region where W<O(a,), see Fig. 14. From (17) we
see that as Q? increases shadowing becomes less important.

4
/s
w2 O(as) @

&
(x\\\ 0:,‘\{& wsolad
&

log;‘—(

\

BFKL eq.

Ok e

Fig. 14. The (=, Q?) regions of validity of the various evolution equations. The
gluonic content of the proton (as resolved by a Q? probe) is also indicated. Per-
turbative QCD is applicable below the critical line.

Non-perturbative Regge region

log a?

Quantitatively the crucial “shadowing” parameter in (18) is R. It says
how the gluons are concentrated within the proton. The conventional as-
sumption is that they are uniformly spread across the proton; then R is
the proton radius (~ 5 GeV~!). However it has been advocated that they
may be concentrated in “hot-spots” within the proton, so analyses are also
often performed with R = 2 GeV~!. The numerical studies {24] of shad-
owing effects using (18) indicate that the kinematic regime accessible at
HERA is well below the critical line and the shadowing will be small, unless
“hot-spots” exist.

5. Small z physics: some applications of the BFKL equation

The resummation of gluon ladders, f(z, k%), is a universal ingredient
in the perturbative QCD predictions of all small z processes driven by
the gluon. For example f(z, k,-zr) occurs in the calculation of the structure
functions; of deep-inelastic events with jets; of heavy quark-pair, J/¢ and
prompt photon production; as well as deep inelastic diffraction at small z.

Recently there have been several studies of the properties of the solu-
tions f(z, k%) of the BFKL equation [18, 24-27]. In some cases numerical
solutions ha.ve been obtained. The usual technique is to solve the differential
form of the equation, (12) (or (1 )), by step-by-step integration down in z
from an input distribution f(zo, k%), at say 2o = 0.01, determined from the
gluon of one of the parton sets of Sectxon 2. Running a, and the effects of
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shadowing have been incorporated [18, 24, 27]. There are different treat-
ments of the infrared region. We can impose a simple lower-limit cut-off
k3 on the k2 integration of (12), or, better, we can introduce a physically
motivated parametnc from f(z,k%) ~ k%./(kZ% + k2) below k2 [27]. For a
given value of kZ, the characteristic behaviour f(z,k2.) ~ Cz~> soon sets
in with decreasing z. The normalization of the solution C is found to be
much more sensitive to the infrared region than is the value of A\. Indeed
for k2 ~ 1 GeV? we find that A ~ 0.5, essentially independent of the value
of kZ. and only weakly dependent on lc2 (or k2).

5.1. QCD prediction of F3 at small z

@ {a) DIS o (b) DIS +jet
X }F(o) X
Xk
X, § X,
F—e X. ?
Xo X; al @ J‘kl’j

~nion - perf
regnon

X Xj
%

Fig. 15. The upper diagrams show the gluon ladder contributions to small z (a)
deep inelastic scattering and (b) together with an energetic jet. The lower sketches
show the variation of the width of the logkZ, diffusion patterns as we proceed along
the ladder.

At small z, say z ~ 1073, the deep inelastic probe dominantly interacts
with a sea quark and so, to leading order, the structure function F(z,Q?)
reflects the small z behaviour of the sea quark distributions. Since the
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Fig. 16. The perturbative QCD predictions for F3(z, Q?) obtained [27] from the
kr factorization formula (20). The continuous curves correspond to the infrared
parameter k2 = 1 and 2 GeV?, and the dashed curves show the suppression caused
by conventional and “hot-spot” shadowing for k2 = 1 GeV?. The data are from
H1 [4] and ZEUS [5).

density of gluons increases rapidly with decreasing z, the sea quark distri-
butions are themselves increasingly dominated by the gluon distribution,
via ¢ — ¢¢. This component may be calculated in perturbative QCD. The
relevant diagram is shown in Fig. 15(a). According to kp-factorization, the
contribution is of the form

Fi(z,Q?) = / / BE fE FOE Q). (19)

where z/z' is the longitudinal momentum fraction carried by the gluon
which dissociates into the g§ pair. The function F(°) corresponds to the
calculable quark box (and cross box) shown in the upper part of Fig. 15(a).
The perturbative QCD prediction [27] for F,? is compared with the recent
HERA data in Fig. 16. We see that, up to an overall (infrared cut-off depen-
dent) normalization, the QCD predictions [27] are in excellent agreement
with the data. The comparison suggests that HERA may have obtained
the first evidence of the BFKL growth coming from the resummation of soft
gluons.

The variation of the width of the kp diffusion pattern, as z; varies
between z (where the width is given by the quark box) and zq (controlled
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by the gluon input), is sketched in the lower part of Fig. 15(a). Even for
large Q2, the boundary conditions at zo mean that the non-perturbative
infrared region is penetrated, which is reflected in the infrared sensitivity of
the normalization of F; shown in Fig. 16.

5.2. Deep inelastic events with a measured jet

Mueller [28] has emphasized the special features of deep inelastic (z, Q?)
events which contain a measured jet (z;, k% ;) in the kinematic regime where
(i) the transverse momentum of the jet satisfies k.. ~ Q?, (ii) the jet longi-
tudinal momentum, z;, is as large as is experimentally feasible (z; ~ 0.1),
and (#i) z = z/z; is small. A diagrammatic representation of the process
is shown in Fig. 15(b); for “large” z; strong-ordering at the parton a-gluon
vertex should be a good approximation. The beauty of this measurement
in that attention is focussed directly on the BFKL z~* type behaviour at
small z arising from the resummation of soft gluon emissions. The choice
k2 ;= Q2 neutralizes the ordinary gluon radiation which would have arisen
from the Altarelli-Parisi evolution in Q2. The differential structure function
has a leading small z behaviour of the form [29]

oF,
JW = aa(Q ) [Z z].fa.(3]s kTJ)] ’ (20)

where Y f, = g + 3(¢ + §) is known from the global parton analyses. This
observable contains the anticipated z~* behaviour, where, as before, A is
the maximum eigenvalue of the BFKL kernel, and so, in principle, it should
allow an unambiguous identification of A.

Another advantage of this process is that we can choose k2 ~ Q?

sufficiently large so as to minimize the k7 diffusion into the mfrared region;
see the diffusion pattern sketched in Fig. 15(b), or calculated in Ref. [26].

6. Polarized structure function measurements

This year has also seen the measurement of the polarized structure
function g; of the deuteron by SMC [30] and the neutron by E142 [31], to
complement the earlier measurement of g; for the proton by EMC [32]. The
measurements may be used to determine

1
I'= [di@), (21)
0
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for i = p,n, d, and hence to test the fundamental Bjorken sum rule

2
I"-I"‘---lg—‘i (1-ﬂ-(il+...) + higher twist. (22)
6gv x

Ellis and Karliner {33] show that both the new SMC and E142 measure-
ments, when combined with EMC, are compatible with the Bjorken sum
rule provided the Q2 dependence is taken into account. (Some adjustment
of their higher twist contribution is still necessary [34].)

The “spin crisis” dates to when only I, was measured. With an ad-
ditional assumption that the strange sea within the proton is unpolarized,
Ellis and Jaffe [35] were then able to predict IP and I™ separately, and also
the fraction of the proton’s spin carried by the quark constituents (namely
Agq = 0.58). The “old” EMC measurement of I? disagreed with the Ellis-
Jaffe prediction by some 2.5 standard deviations, and moreover implied
Ag ~ 0. This is so-called “spin crisis”. Close and Roberts [36] have trans-
lated all 3 experiments to Q% = 5 GeV? and used updated input wherever
possible to produce the comparison shown in the Table below.

Ellis-Jaffe pred. Experiment (— Q? = 5 GeV?) Ag
Ir 0.172 4+ 0.009 EMC: 0.1354+ 0.011 0.21 £ 0.11
m —-0.018 4 0.009 E142: —-0.028 4+ 0.006 0.49 & 0.06
I 0.077 + 0.009 SMC: 0.041 £ 0.016 0.24 £ 0.15

The spread of values and the uncertainties are too large to be sure
whether or not there is a spin crisis. Clearly the “ball is in the experi-
mentalists court”. SMC will improve their statistics and will measure I?.
Experiments have been approved at SLAC (E143) and at HERA (Hermes)
to measure both IP and I™.

7. Conclusions

It has been a vintage year for deep inelastic scattering. The great im-
provement in fixed target data mean parton distributions should be reliable
for z 2 0.02, though further information on the gluon is urgently needed.
The dramatic rise of F; observed at HERA is suggestive of the effect of soft
gluon resummation. However experiment and theory for small z are in their
infancy, and we can look forward to much progress in this area. This year
has also seen a rekindling of interest in polarization structure functions with
the promise of definitive data for both the proton and neutron in the near
future.
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