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The two versions of the electroweak models are investigated: the left-
right (LR) model (both the symmetric and asymmetric cases) and the
composite one (CM). The total cross sections of the W-pair production
are found in both models. The analysis of LR model results show that
already at LEP II energies we can either establish or limit such parameters
of LR model as Apy, m,, and gr. It is also found that the investigation
of the single production of Z3-boson in pp collisions will be the good tool
for the gn definition. For the CM the deviations value from the SM is
mainly defined by the multiple moments values.

PACS numbers: 12.15. Cc, 11.30. Hv

1. Introduction

Experimental data, collected up to now, strongly support the elec-
troweak model based on the SU(2),xU(1)y gauge group (SM) as being
the correct description of physics at currently accessible energies. No doubt
that the SM exhibits elements of truth. However, in spite of its impres-
sive success, the SM leaves many fundamental questions unanswered: the
motivation in the choice of the symmetry group, the Higgs sector shows,
hierarchy problem, number of generation, origin of parity and CP viola-
tion, ... . All that leads us to the belief that the SM is not a funda-
mental theory, but is only a low-energy approximation to a more general
unified theory. The search for the solution of these problems has resulted
in construction of the SM extensions which can be divided into two main
categories: (a) the model having physical Higgs but evading the deficien-
cies of the SM, (b) the model without any physical Higgs. The first class
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consists of the superstring theories. If we take Eg X Eg from phenomeno-
logical interest, it breaks by the loop mechanism down to some subgroup of
Eg x Eg. The group Eg is one of the most interesting candidates as unifying
group by the following reasons: (a) it contains as subgroups the symmetry
groups of the most popular grand unified theories SO(10), SU(5); (b) it
is the only phenomenologically acceptable group which can arise from ten-
dimensional superstring theories after compactification on the Calabi-Yau
manifold. In the group Eg the GLr =SU(2), xSU(2)r xU(1)g-1 and the
SU(2)L,xU(1)xU'(1) (U"(1)) electroweak symmetry groups can appear as
the intermediate gauge structures. The composite models (CM’s) belong
to the second class. In such models the observed weak interactions are
phenomenological manifestations of some basic confinement dynamics. The
symmetry structure of the current-current Lagrangian of low energy weak
interactions is obtained by imposing on the underlying Lagrangian either
the SU(2)y, [1] or the SU(2), xSU(2)r [2] weak isospin symmetries. All
these versions of the electroweak theories predict either new gauge bosons
or the set of the excited states of the ordinary W, Z bosons. Therefore, if
these new states, or the effects connected with them are found experimen-
tally, we must have the criteria to single out the model corresponding to the
experimental data.

This paper is devoted to the investigation of the models belonging to the
both classes quoted above: (a) the symmetric and the asymmetric versions
of the left-right (LR) model, (b) the composite models. The plan of the
paper is the following: In Section 2 I assume the model which unifies the
wide class of the different versions of the LR model. The obtained model is
analyzed from the point of view of the experiments coming from LEP and
future colliders. In Section 3 I consider the reaction

ete” — WTW™ (1.1)

in CM’s. I obtain the differential and the total cross sections in the analyt-
ical form and compare the results with those of the SM and the LR model.
Finally, I summarize my work in Section 4.

2. LR models

A possible extension of the SM is the LR model based on the Gpgr
gauge group. This model accounts for many, but by no means all, physics
problems which cannot get the satisfactory explanation within the SM. The
parity violation (PV) in weak interactions is one of the examples of such
problems. The observed near maximum PV in low energy weak interaction
may be interpreted in LR models, as arising out of spontaneous breaking
of parity and consequent nonvanishing neutrino masses (possibly required
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by astrophysics and cosmology). There are other important reasons for
considering these models. For example, LR models give the comprehensive
picture of the fermion spectrum [3] (from under 20 eV for the electron
neutrino to over 100 GeV for the yet undiscovered top quark), the quantum
numbers of group U(1) are identified with B-L (instead of Y having no
physical meaning) what allows to link the breaking of parity and breaking of
B-L, LR models allow for the generation of CP violation via the spontaneous
symmetry breaking mechanism and can account for its strength by relating
it to the suppression of right-handed currents [4].

There are a lot of papers in which such models are considered [5-8]. All
of them could be unified into the one common model suggested in Refs. [9,
10]. In that model the neutral current interaction is parameterized by five
parameters (instead of four ones as it takes place in ordinary LR model):
two Z masses, the mixing angle of the neutral gauge bosons ¢, Weinberg
angle Oy, and the angle ¢ characterizing the orientation of the SU(2)gr
generator in the group space. Changing ¢ I can reproduce all the known
LR models. In the case symmetric LR model (g1, = gr) the analysis of Z;
decay parameters being made at LEP I gives the following bounds on ¢ [9]

¢ < few x 10 %rad.

One could show that the SM is reproduced in the SM particles sector
if and only if the following conditions are fulfilled

p=F=(=0, g, =gr=esp, g = e(ck — s%)71/? (2.1)

in the symmetric case and
172 |gr| > gLswey
(2.2)
in the asymmetric one (hereafter I use the notations of Ref. [9]). In con-
clusion, in this case, I pay some attention to the bounds of the gg change
in (2.2). If we start from the GLRr gauge group directly then the coupling
constants gr,, gr and g’ are all arbitrary. Actually, they are not constants,
but functions of Q2 = —p? where Py is a typical momentum relevant to the
process being considered. When the GpR is embedded into a grand unified
theory (GUT) then the three running coupling constants (CC’s) g1,, gr and
g' all must come together at the grand unification scale which value should
be consistent with the proton decay constraint. These demands impose
the limitation on the choice of the unifying group. For example, the non-
supersymmetric SU(N<5) models are ruled out while the sypersymmetric
SU(5) and SO(N<10) models satisfy the demands above. The Q? depen-
dence CC’s can be calculated from the renormalization group equations in

p=F=£=0, g =esyy, ¢' = t(clye™ —gg?)”
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which these quantities enter quadratically. The choice both of the GUT and
the scale of the underlying symmetry breaking fixes the absolute values of
CC’s at the electroweak scale (see, for example, the general LR model [11]
in which ¢ =0, g1, = esy/, ¢’ = (cfye2 — gp2)~1/2, g2/2 > g2 > g2).
Up to now we cannot give preference to the definite GUT with confidence.
Therefore, investigating the GLg gauge theory as a low energy approxima-
tion of GUT we should consider all the possible gg variation in (2.2). It
should be remembered that the sign with which CC’s enter the pieces of the
Lagrangian are fixed by the choice of the signs in front of the fermion fields
placed in the multiplets representations of GUT.

b ——
——

Fig. 1. The diagram corresponding to the decay vp — 1, + V (V =1, Zy,,).

Since I am going to take into account the effects connected with the
existence of the heavy right-handed neutrino vg then I briefly discuss some
of its properties. The value of the mass of the vy depends on two parameters:
(a) the Yukawa coupling of the right-handed Higgs triplets Ag and (b)
the mass of the right-handed Wgr boson. The bounds on the my,, could
be obtained from the cosmological considerations as well as weak decay
processes. For example, if vg are Majorana particles then the known bound
on the neutrinoless double 8-decay half-life of 7®Ge gives the lower bound
(12]

1.6 TeV)“

mWR

myp > 63 GeV(

The upper bound obtained in Ref. [11] on M,y practically does not depends
on mp;, and is about 1000 GeV.
If the right-handed neutrino is too heavy so that the condition

myp > mwyy;, + my, (2.3)

where m; is the mass of a charged lepton, takes place (i = 1,2) then it
would decay into the channels

VR — Wi:t + I:F . (2.4)
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Their decay widths are

2
o _gphimug (2 3
FVR — Wz-}-l - 397 (yt + y? v ’ (2‘5)

. 2 .

=1

where s = (= {256 121
s =

If the neutrino is the Dirac particle then we have the additional factor 1/2
in the right-hand side of Eq. (2.5).
The decays

wm—un+V  (V=79, Z12) (2.6)

also could be allowed. These processes proceed via the Feynman graph
drawn in Fig. 1. The decays widths are defined by the expression

m5
=1

where

2
fi= R sin&("“),

96x myy, my,

. { ¥ V=1
Hgh o) + (84,211 - (dmz, [mug)? V= Za

However, the I, _,, v are very small. For instance, at m,, = 500
GeV, m; =1 GeV and g, = gr = ¢/sw we have

Typ—vg vy = 7.52 sin® £ (GeV).

Analogously, the channel vg — W +1 is very suppressed by the factor
sin? £. Therefore, for the case mwy > myy which I shall, in what follows,
consider I neglect I, .1 for the sake of simplicity.

Now I consider the reaction

fifi — Wewy, (2.8)

where i is the flavour of a fermion and k¥, n = 1,2. I shall be limited
by including the RC at the level of improved Born approximation [13]. I
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assume that neutrinos are Dirac particles. Then the total cross section for
the polarized initial and unpolarized final particles is defined by

glkn) _

2o {222 (10t + (- 1)k+"]+Z2P(z')gw-’dzz|2

]) " A—;~(4cz,-ez[1 F(=1)+)

+ | Z 2P(z')9.413dzz

X Z Pien Dyl Re(dy)s + 4 z l’(z').‘lAtdzz3 Z Pti)gvg )]

1=1
ny , (1=A)(1+2A n i i
D(k )+%)— 2qk (th +EP(Z')(9V1+gAl)SRe(dzx))
l_..
1+A)(1-2A n )y i i
xD(k")+(-——% Zak (Q e +EP( ')(yw—gﬁz)-’Re(dzx))
l—.
14+ X)) (1= n), (=1 +2) 4 kn o (kn
pig + GER=) e (I gn o),

(2.9)

where s = (pw,, +Pw, )%, mw, , = Mk,n.

L] s

m2 +m2\?% (2m,m;\?1"/? . -
ﬂ_[(l—n—k) —(Lk)] ,dzlz(s—m§l+zm1’z,) 1,

o LECED P F[(-1)* 4 (=)™ cos 2 4 [1 - (~1)*+"]sin2¢
:h = 9
4
pho = LE (=1)k+n — (—1)k+nsin® 26 £ [(—1)* + (=1)"] cos 2¢
4 3

(kn) _ g2{(s— m2 — m2)? + 12s(m? + m?) + 8mZm?

Dy =5 2 ;
12mZm%

2 2 2 2,2 4
(kn) _ (8 —mj, — mi) 2 fﬂ_ 2m,my _ My
D21J - mﬁmi 2(mn + mk) + + s 23

8m2Zm?
om2 —m?2 —m2 n’ "k }
x[m,,R m, -my + 38+ 7 1 i“s
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+—‘;[—mn—-mi— %——-}-min(mi-}mi—s)
y (mf,-{-mi 3 mi ) B2smi
2mim2  4s  4smZml 4mim? |’
k 1
ngn) =m{82ﬂ2 - 24m§m§ -+ 128(17&3‘ + mi)
n

- 6m?,n(s—m",: - mf,+3mf",n)] +Cy{[m§n(m3,+mi -8s— m?,n)

m4 m4 2 2
o m,,;(ﬂ A )+’ ,,R(m,,m,,)}

Zm%mi mim?
L m

x [m,z,n(4mf,n ~ 3m? — 3m + 3s) - 43(m3, n mz)]} ,

k
Dg ™ = Dgtn) lmvn=05 ngn) = Dg,:n) 'myR=0,
CV = [mimi - mza(mft + mi - m?’a - 8)]—1 ’
_ m2 + mi + 2m?’n +Bs—s - —1  charged leptons
In Q:

2/3 u - like quarks .
mk +m} +2m2 - fs—s 1/3  d - like quarks

The quantity p entering (2.9) appears due to the RC cased by all heavy
particles and it is defined by

p=14+A4p+A4pm+..., (2.10)

where Apg o~ 3Gpmt /8V2x, m, is the top quark mass, Apy arises due
to the mixing in the gauge vector bosons sector W and has the general
asymptotic form [13]

2 2
Apy = cg(:“) - c';’(mwl) , (2.11)

23 mw,

with ¢ and ¢; constant depending on the VEV’s Higgs particles and the
CC’s. We should remember that when App is not equal to zero then the
effective *’%V in the LR model is connected with the 5";’4, = sin? O of the
SM by the relation
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Additional contributions to p (dots in the p definition) come from Higgs
particles, heavy right-handed neutrinos, etc. They could be both positive
and negative. For example, the contribution from the standard Higgs boson
is logarithmic in the Higgs mass and for my > mw, it has the negative
sign. The contribution connected with the presence of weak isotriplets Higgs
bosons is [14]

24}

v2

(ApTH)LR = —

k]

where v = 246 GeV is the standard Higgs-doublets vacuum expectation
value. I shall, in what follows, make the simplifying assumption that all
these additional contributions to p are mutually cancelled. The constraint
on p coming from the measurements of m, at LEP and mw/m, at UA2
and CDF has the form

p = 1.0066 + 0.0058. (2.12)

So, the upper and lower bounds on Appg coming from the experiments are

(APM)upper lower = (Ap)upper lower — 4pt — 1. (2.13)

From the expression for o(k") we can see that its partial contributions
( ") (3,7 = v, Z1,2, v, r) fastly increase with the energy. Consequently,

each a'(.;") by itself would violate unitarity. However, the o(*7) resulting
from the sum of those contributions decreases with the energy according to

o(km) o hls (2.14)

due to a delicate gauge cancellation among ag‘")
is not a problem.

I start the analysis of the total cross section with the case of unpolarized
electron—positron beams. For the comparison with the SM it is convenient
to introduce the quantity § which characterizes the experimental sensibility
to the deviation from the SM

(o)LR = (9)sm
§= NG V1T, (2.15)

where LT is the integrated luminosity of the collider in units of pb73, (e)r
and (o)sy are the total cross section summed on initial particles polariza-
tions in the LR and standard models, respectively. The § is an observable

so that the unitarity bound
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of the effect from new physics and it gives the deviations from the SM ex-
pressed in the standard error units. Previous work on this problem [15] has
shown that in the LEP II energies region the total cross section of the LR
model calculated at the tree level differs from that of the SM on the values
of order of a fewx10~3. It is well known that the main contribution caused
by the RC is connected with the redefinition of Sy, i.e. with the quantity
Appm. It should be reminded that because of the structure of Apyg given by
Eq. (2.11), Appm can have not only the positive and the negative values but
also the zero ones. In order to get an idea about the values of deviations
caused by RC I shall use the upper, lower and zero bounds of Apy in my
analysis of the obtained cross sections.

§ T+

~2p s

80 260 360 460 {E' GeV

Fig. 2. The & for the symmetric LR model as a function of /s for (ApM)upper
(solid Line), (Apm)iower (dash-dotted line), and Apnm = 0 (dashed line).

First I consider the case of the symmetric LR model. In Fig. 2 it
is shown the § of the reaction (2.8) with ¢ = k = 1 and f; = ¢~ as a
function of the energy in the center of mass system /s for (Apm)upper,
(ApM)iower, and (Appr) = 0 at LT=500 pb~1. I note that at the given
values of m¢ (ApM)iower i negative. In numerical calculations I used the
following values of the SP’s [16, 17]

=0 mg, =800 GeV, mw, =477 GeV, m,, =400 Gev,

F=96x10"3 ¢=3.1x10"2. (2.16)

From Fig. 2 we see that the possible deviations of the LR model from the SM
lie within the region restricted by the curves (Apm)upper and (ApM)iower-
For the reaction

e"et — WrwS
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§ displays a weak dependence on m,p because of the Wivgre coupling is
proportional to sin §. If we vary m, from 400 to 100 GeV then |§| increases
in value an order of 1%. The role of vgr becomes essential for the processes

e"et — WiWF, wywf

by virtue the fact that the Warg e coupling is proportional to cosé.

We see that at the chosen value & and Apy; > 0, §(1/s) has the mini-
mum in the energy region less than myz,. The presence or the absence of this
minimum is defined by the & value only. At the big values of & (4 x 10~%)
the minimum is absent and §(,/s) monotonously increases to /s = mg,
[15]. The analysis shows that the minimum position (1/$)min and its value
0min significantly depend on the chosen values mz, and &, in contrast, the
change of the other SP’s weakly influences both on iy and (v/8)min. At
Apm < 0 the function §(+/s) crosses the axis of abscissae in the point whose
position mainly depends on the mixing angles and myz,. Referring to Fig. 2,
the important feature of §(/s) in the LEP II energies region is the fast
increase of its module with the growth of |App|. Therefore, in depending
on the measurement precision of the total cross section one could either
establish or limit the Apy value.

The analysis shows that in the case of the asymmetric LR model the
unpolarized total cross section displays a weak dependence on gg.

Now I consider the case of the polarized electron—positron beams. Using
the total cross section I can define the polarization asymmetry

_(@1,-1-(9)12
AR = Pl F (@) (2.11)

where (o), 5 is the total cross section either of LR or standard models in

the case when the electron and the positron have the helisities A\ and A,
respectively. In Fig. 3 I display ALr as a function of /s for the case of
symmetric LR model. The dash-dotted line stands for (Apm)upper, the
dotted one does for (AppM)iower and solid one stands for (Apnp) = 0 (the
values of SP are defined by (2.16)). I also display, for comparison, the
results of the SM (dashed line). Again we see that the deviation from the
SM depend on App. The analysis also shows the weak sensibility Apr to
the variations of gr and m,.

For the case completely right-polarized electrons (A = 1) and left-
polarized positrons (A = —1) there is a crucial difference in the total cross
section behaviour for the LR and the standard models. The SM cross section
is defined by the diagrams involving the s-channel exchanged bosons v and
Z, only. In the LR model there are the t-channel contributions connected
with the exchange of the right-handed neutrino. Though, in this case the
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o9l
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iro 210 vo 470 50 5 GeV

Fig. 3. The Apr as a function of /s for (Apm)upper (dash-dotted line), for
(ApM)iower (dotted line) and for (Apm) = 0 (solid line). The results of the SM are
represented by the dashed line.

total cross section at LEP II energies is two order of magnitude lower than
the unpolarized total cross section its investigation would play the decisive
role for the existence of the LR models. Let us define the function é;,. by

51a(s) = (oLr)1,-1 — (osM)1,-1 VIT. (2.18)

V(esm)1,-1

° e e

Fig. 4. The &, versus /s for the cases: (a) m,, = 100 GeV and (Apm)upper (solid
line), (b) m,, = 400 GeV and (Apm)upper (dashed line), (c) m,, = 100 GeV and
(ApMm)iower (dotted line).

In Fig. 4 §;, as a function of /s is presented for the following cases:
(a) myy = 100 GeV and (ApMm)upper (solid line), (b) m,, = 100 GeV and
(ApM)iower (dotted line), (c) m,, = 400 GeV and (Apm)upper (dashed
line) (hereafter the other SP of the LR model are the same as in the case
of Fig. 2). It should be noted here that §,, is also sensitive to the values of
the mixing angles { and . However, the dependence of §;, is just the same
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as § and Apr on & is much more stronger than one on {. For example, at
Apm = 0 the variation of & from 9.6 x 10~3 up to 9.6 x 104 yields the
decrease of §;, on one order of magnitude while the one of ¢ from 3.1 x 102
up to 3.1 X 103 does the increase of §;,. on a few percents. It is immediately
apparent that §;,. could be used for the gg definition. In Fig. 5 I display §;,

versus gr/gr at Vs = 196 GeV.

by e —— S —

2 r

-1 F

-Ll! * -(:o ‘Q‘l ‘Q‘O“ (] “_0‘-. Q“» ‘A.:) l.‘l 9./&

Fig. 5. The §;, as a function of gr /g1, at Vs = 196 GeV. The dashed (dotted) line
stands for (Apm)upper ((APM)iower) and m,,, = 100 GeV. The solid line stands for
(ApM)upper and m,, = 400 GeV.

The hadron colliders provide the nice opportunity for the investigation
of the extended gauge models. For example, the extra neutral gauge boson
discovery limits at the LHC range from 2-3.5 TeV for an integrated luminos-
ity of 10* pb—1 up to 4-5.5 TeV for an integrated luminosity of 5 x 105 pb~1.
Let us consider the possibilities of the hadron colliders for the gr definition.
It appears that the single production of Z3-boson is a good tool for this
purpose. It adopt the spirit of the parton model. Then in the lowest order
of Drell-Yan approximation the total cross section of the process

ab — Z, + anything, (2.19)

where a, b = p, p, is defined by the expression

1 - . 2] _dLgigs
o= (95)% + (9%,)%|r5 %, (2.20)
24m}_\/1+ 2 Z[ i 42 ] dr

3
where 7 = “2n | s = (p + p3)?, f.gf ) (2, Q%) is the distribution function

of the quark flavour i in hadron a, the parameter Q2 which value is of
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order § = (pg; + p;)? includes QCD corrections in the leading logarithmic
approximation amq the differential luminosity 7dLg,q; /d7 is defined by the
following expression

rfoss / @5 @) +@ | e

Again I shall use the quantity § which is now determined by the relation

(UBI')ALR - (UBI')SLR
§= NGO viT, (2.22)

where Br is the Z2 branching ratios. At present § gives the deviations from
the symmetric LR model expressed in the standard error units. In order to
eliminate backgrounds I shall only consider the following leptonic modes of
Zz-decay

Zn —e"et, put. (2.23)

a; Q.‘l u‘o L-l g;/g‘
Fig. 6. The § versus gr /g1 for the pp collisions at LHC.

In Fig. 6 it is shown § of the reaction (2.23) versus gr/g1 for LHC
(v/s = 17 TeV, LT= 10% pb~!) in case of pp collidings. In my numerical
calculation I neglected the distribution of the sea quarks c,s,t,b and used
the parametrization of the parton distribution of Ref. [18] (section 2). I also
used the following values of parameters

mz, = 600 GeV, £=3.1x10"2, ¢=9.6x10"2. (2.24)
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3. The composite models

Now I shall consider the composite models. The basic assumption that
underlies almost all composite model building is that the fundamental con-
stituents often called preons interact by means of a confining hypercolor
gauge interaction. According to current theoretical ideas, the non-abelian
hypercolour theory should be asymptotically free, infrared confining and, of
course, renormalizable. Below a characteristic energy scale A, the hyper-
colour interaction becomes strong and binds the preons into hypercolour—
singlet states much in the same way as the conventional strong interactions
among composite hadrons at Aqcp. When the subenergies /s exceed 4, the
manifestations of compositeness are very direct. At these energies, multiple
production processes would dominate over the familiar two-body scattering
processes. Examples of the sort of inelastic processes that may occur for a
f;f; initial state are

£;f; — LELA;, f,‘f,‘fjfj fjfjfjfj, W WIwW-wt, ete. (3.1)
The consequences of the compositeness are more subtle when /s is small
compared to A. Therefore, I focus on the signals which will be prominent
for /s < A.

The classical test for substructure is to search for form factor effects,
that is, deviations from the expected point-like behaviour in propagators
and vertices. Many other tests of compositeness relies on the existence in
CM’s of new effective four-fermion contact interactions. Also the popu-
lar test is based on the investigation of the triple-vector boson couplings
(TBC’s). It is well known, that in CM’s the TBC’s are not fixed by the
choice of the symmetry group as it happens in the SM. In the following I
shall assume that the theory exhibits an SU(2), xU(1) global gauge symme-
try and the exotic-fermion contact interactions are absent. So, the charged
and the neutral currents have just the same forms as those in the SM. I shall
also assume the P, C and T-invariance of the theory. Then the Lagrangian
describing TBC’s has the form [19]

Lwwy =iev{(WWyo — Wo Wi, + 0s[ks( W, Wo — WoW,,)
- Avm (W Waf - W;fWﬂT)]}Vﬂ . (3.2)
The ky and Ay parameters define the magnetic [weak] dipole moment

l+k.7+z\-y[ (1+kz+Az):|
=e—T—Tlpug =ezg| —— |,

By = 2myy 2myy (3-3)

and electric [weak] quadruple moment

Qq=e'\m—w [Qz = ez (2L ‘kz)]- (3.4)

My
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In the SM and the EGM’s we have
k.,:kz:l, /\7=Az=0 (3.5)

at the tree level. The RC increase the value of both the kz ., and the Az ..
The upper boundary of Ak, = ky — 1 = 1.5% and AA, = 0.25% has been
obtained for the SM [20], for favourable values of the t-quark and the Higgs-
boson masses. The introduction of either the extra fermion generation or
the extra Higgs doublet (HD) increases the values of the kz ., and the Az .,
at the tree level. For instance, in the case of the two HD we have [20]

Ak, =01%,  AX,=0.03%.

Each extra fermion SU(2) doublet gives a contribution to the Ak. less than
0.4%. Thus we see that the substantial deviation of the multiple moments
(MM’s) from their values in the SM can be obtained by a ridiculously large
number of Higgs bosons or fermion families.

The electromagnetic MM’s can be tested in the reaction

£f; — Wy, (3.6)

where f; stands for one of the fermions v,e,u,d, etc., and f'_,- for the cor-
related antifermions. It is known [21, 22] that the angular distribution for
(3.6) vanishes at a certain angle provided the electromagnetic MM’s have the
values imposed by the SM. This critical angle, in the given frame, depends
only on the charges of the particles and not on the masses or energy. In
the case with the quarks when they are embedded into hadrons these radi-
ation amplitude zeros (RAZ) manifest themselves as strong dips in angular
distributions for the processes [22]

pp— W™ + anything. (3.7)

The RAZ are also in the crossed channels of the reaction (3.6). All this is
also true for the extended gauge models (EGM’s). In the non-gauge theories
with arbitrary values of the MM’s, e.g., the CM’s the RAZ are absent. A
good test for the weak MM’s will be provided by the process

f;f; — w-wt, (3.8)

If I assume that the particles in the initial and final states are unpolarized
then for the total cross section of this process I obtain the expression

2
o= 126_2%2 (Z M,'j) R (3.9)

%
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where
i,j=2Z,7,v, y=s/2mdy, B =(1-2/y)"/?,

. - _ l1-=2
dzg=(s-mi +imlz)™ !, e =3% ,ez=¢ b
g{, ___e T§—2Q;z
gi - 4z —T;; ’

z = (2ze2)*((9%)” + (92)°1s*|dz|* D1(kz, kz; Az, Az)/e*,
My, = (22Q,‘)2D1(k1, ky; Az, Az),
M.z = 42Qiez gy sRe (dz) D1(ky, kz; AyAz)/e?,
Mz, = zez(g¥ + g')sRe(dz)D2(kz, Az)/e?,
My, = 2QiDz(ky, Ay),
M,, = D3,

Di(a,b;c,d) = 2ﬁ23ﬂ—5—i§{(ab + 2cd)y®
-[1-d —c+(a+c)(b+d)] +3}+428%(1+a+c)(1+b+d)y,
Dz(a,b) =4822 320 % = O(ay? - y)+4(1+B%)z0 + 162(1 + a+ b)
2(1+a+b)+3
B ’
4 8oy + 201+ 57) +

x (14 B%y) + 4LmW

8zo(1 — 2B%2% + 5%)

2 2320
Ds=Fy Fl(11 57 - 4522’

3

(1+ B+ 2820)
(1+8% - 2820)’

zg is the detector acceptance (for the ideal detector the zg is equal to zero).

The reader should be reminded that the analytical expressions for the
cross sections of the reaction (3.8) have been obtained in the works [23-25].
The authors of those works also used the Lywwy in the form (3.1). Their
results do not coincide with each other. Moreover, none of the obtained
expressions for the s-channel cross section does not coincide with that of
the paper [26] while mine does at zp = 0.

The asymptotic behaviour of the o of the process (3.8) is

L=In

op ~ 8 (3.12)
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in the CM’s. While in the SM and in the EGM’s we have
or~sllns. (3.13)

It should be noted that the CM’s could give the o with the asymptotic
behaviour which is just the same as in the SM. It is possible in the case when
the MM’s have the structure very similar to that of hadrons. I can make
the simplest possible ansatz that all form factors are

s"ci0(Vs — A) + g, (3.14)

where ¢; are the MM’s values in the SM, ¢; are arbitrary constants,

_}jo, z>0
9(“’)‘{1, <0

n > 1 for the Ay and n > 2 for the ky (V = v, Z) [27].

Further on I shall assume that the MM’s are the constant quantities and
work at the energies scale /s < A. Then the (o1)cMm asymptotic behaviour
of the reaction (3.8) (hereafter I consider the case f; = e~) will be defined
by (3.12). One would think that in these circumstances one will be able
to distinguish the CM’s from the other models. In fact, (o1)sm having
reached its maximum at /s ~ 200 GeV starts to decrease according to
(3.13). Analogously, (I take the case when the parameters values are defined
by (2.16) and zg is equal to 1) the (o1)sLr reaches its first maximum at
Vs ~ 194 GeV, then decreases till /s ~ 742 GeV and afterwards starts
to increase till its second maximum. Having reached this maximum at
Vs = 800 GeV the (o1)sLr decreases (see (3.13)). In the CM’s we are
expecting that the op will grow as the linear function of s over the whole
physical region values of s. However, under certain values of the MM'’s the
(oT)oMm exposes an interesting property easily visible from its analytical
expression. The o increases until energy 200 GeV or so, then it falls down
up to its minimum and only after that it starts to grow linearly on s [28].

Giving the SM values to the three MM parameters and varying only a
single one I can write four simplest conditions for the existence of minima

- 0.78 < Ak, < 1.10
—0.61 < A, < 0.77
~0.70 < Akgz < 0.83
—0.57 < AXz < 0.59. (3.15)

No processes have been observed experimentally in which the MM’s
occur at the tree level because present colliders do not have sufficient en-
ergy or luminosity. However, these MM’s occur in loops, and contribute
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to observed processes. Since in calculation some one-loop diagrams with
ultraviolet divergences are involved, one has to fix a procedure to obtain
finite results. Then the more preferable scheme is the use of the regulator,
because one can consider the parameter A which enters into a regulator as
the compositeness scale. In paper [29] the neutrino—nucleon scattering, the
polarized electron—deuterium asymmetry and the process

e et — u—put (3.16)
have been examined at low energies to extract the constraints on the MM’s,
At A = 1 TeV the results are close to the minima existence conditions of
the ot of the reaction (1.1), except the inequality for the Akz (the Akg
bounds obtained in the paper [29) are —0.77 < Akz < 0). The coincidence
of those results with my own are due to the fact that the investigated cross
sections have also the minima when the MM’s values are bounded by the
obtained constraints. These minima are situated enough far away from the
region of the investigated energies. That leads to the small deviations of
the CM cross sections from the SM ones

AR,
a4 t

o2 }

-02 }

- 04 ~02 0.0 02 o4 (1 Akz

Fig. 7. The bounds on the Akz and the A)z following from measurements of the
OT(c-e+—w-w+) fulfilled with a precision of about 5% at energies up to 200 (solid
line) and 500 GeV (dotted line).

In Fig. 71 present the constraints on the value of the Akz and the A\g
which follow from the measurements fulfilled with a precision of about5%
(Aky = Ay = 0). The values of Akz and A)g lie inside the area restricted
by the solid line and dashed one for the energies up to 200 and 500 GeV,
respectively. .

Except of the region of the negative values of Akz my results agree
quantitatively with the ones [29] which were also obtained at the same
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conditions. I am not able to explain the lack of agreement for negative Akg
because the authors of the paper [29] have not used any analytical expression
for the op(e- o+ _w-w+) (the or has been calculated numerically) and have
imposed the approximate relation AAz = A\, which has not been assumed
by me.

I shall again introduce the quantity § which is determined according to

5= (@om—(o)sm o (3.17)

V(o)sm

and compare the § behaviour for the CM’s and the LR models. For this
purpose I choose the values of the energy and the SM parameters just the
same as in the case of Fig. 2. Again, for the sake of simplicity, I shall
give the SM values to the three MM parameters and vary only a single
one. Thus, the notation §(Akz) means that § is a function of Akgz at
Ak, = AAz = A\, = 0 and so on.

2L ~ s

S

-2 0 a2z o4 os  o& 10 T
Fig. 8. The § for the CM as a function of MM’s parameters. The solid (dashed)
line stands for §( Akz) (6(Ak,)) and the dotted (dash~dotted) one does for §(AAz)

(5(4M)).

In Fig. 8 I present the graph of the functions §( Ak,), 6(Ak,), 6(ANz),
and §(AX,). We see that the § is proportional to the deviations of the MM’s
from their SM values. From Fig. 8 and Fig. 2 also follows that the both
models could lead to the same predictions.

For illustrative purposes in Fig. 9 I present the § dependence on /s at
Akg = 1, Aky = AXy = AAz = 0. In the energies region in which the
(oT)cMm is less than the (o )sm the maximum deviations of the CM cross
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~2 b i s .
160 70 150 190 200 240 ’IEGCV

Fig. 9. The & versus \/s at Ak, =1 and Akz = Az = A), =0.

section from the SM one can reach the values of about 0.5%. The inclusion
of the RC will influence the degree of these deviations. The oblique RC
which are determined by all light fermions are common for the SM and the
CM because both the models have some kind of unification. For the CM this
kind of unification is provided by the Vector Boson Dominance mechanism
and the requirement of a global SU(2) weak isospin symmetry. The other
RC can have the origin both similar to one of the SM (virtual exchanges of
the ordinary heavy particles, Bremsstrahlung, ...) and different from that
of the SM (a shift in the W mass due to the MM’s). The latter could give
either the increase or the decrease of the CM cross section depending on
the sign of the MM parameters. I am going to discuss in detail their role
elsewhere.

4. Conclusions

The model which unifies all the possible symmetric and asymmetric LR
models has been investigated. At the definite parameters values it repro-
duces the SM in the sector of the ordinary SM particles. The differential and
the total cross sections of the W-pair production in e~e* colliding beams
have been calculated. The results of the analysis of the total cross section
at LEP II energies could be formulated as follows. The investigation of
the cross section in the case of the right-polarized electrons and the left-
polarized positrons o;, will give the answer to the question whether the LR
model is the true model of the electroweak interactions or not. If it is then
with the help of the unpolarized cross section we can determine the quantity
Apwm, reliably. Then reinvestigating o;, we could obtain more strict bounds
on the mass of the heavy right-handed neutrino, the mixings angles { and
&, and the coupling constant gg than we had before.

A single production of Z3-boson in pp collisions has been investigated.
It has been shown that this reaction is a good test for the gr definition.
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I have also obtained the total cross sections of (1.1) for the CM’s. It has
been found that at the definite MM’s values the obtained total cross section
has the minimum. Its value and its position significantly depends on the
MM’s values. The comparison with the results of the LR model has shown
that the predictions of both the models could coincide into some interval
of energies. The measurement of the total cross section of the process (1.1)
fulfilled with a precision of about 5% gives us the opportunity to constrain
the values of Akz and A)z in the interval 28% (12%) and 16% (7%) at the
energy up to 200 (500) GeV, respectively.

The author would like to thank the organizers of the XXXIII Cracow
School of Theoretical Physics for constructive and nice atmosphere.
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