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We analyse the QCD chiral phase transition in the nonlinear and linear
o-model. The strategy is the same in both cases. We fix the parameters
of the effective meson theory at temperature T = 0 and extrapolate the
models to temperatures in the vicinity of the phase transition. The linear
o-model in SU(3)xSU(3) gives a first order phase transition at T, = 164
MeV. At this temperature chiral SU(2)xSU(2) is restored. The disconti-
nuity in the energy density is small Ae/e ~ 10%. We also calculate meson
masses as a function of temperature.

PACS numbers: 11.30. Rd, 12.38. Lg

1. Introduction

Relativistic nucleus—nucleus collisions with cm-energies
E > 20 GeV/nucleon
create large systems of sizes R > 20 fm at freeze-out with > 10* pions [1].
It is natural to try statistical methods to describe such hadronic fireballs. A
good starting point may be to use equilibrium thermodynamics with pions
when one is interested in the later stages of these collisions, where the tem-
perature is below possible phase transitions. The low energy interaction of
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pions is fully determined by chiral symmetry [2, 3]. Below T ~ 120 MeV this
interaction can be parametrized by the nonlinear sigma model O(4) with
one scalar (o) and three pseudoscalar #-fields, which are constrained by the
condition 02 +#%2 = f2, where f, is the pion decay constant. Above this tem-
perature region also heavier hadrons give a non-negligible contribution to
the condensates and thermodynamic quantities. One way of including part
of the heavier mesons is provided by the choice of SU(3)xSU(3) as chiral
symmetry group rather than SU(2)xSU(2). The linear SU(3)xSU(3) sigma
model includes a nonet of pseudoscalar (O~ )-fields and a nonet of scalar
(O)-fields. The spontaneous breaking of the SU(3)x SU(3) symmetry leads
to massless (O ™) Goldstone modes. Obviously a massless pseudoscalar octet
does not provide an adequate approximation to the experimentally observed
meson spectrum. Therefore we include explicit symmetry breaking terms to
account for the physical mass values of the octet-fields. A determinant term
in the meson fields guarantees the correct mass splitting of the n— ' masses
which is due to the U(1)-anomaly. It reflects the 't Hooft-determinant on
the quark level.

The experimental challenge is to measure the equation of state of pions
from the inclusive pion spectra. The theoretical task is to calculate this
equation of state. For this purpose we need reliable techniques to treat field
theories at finite temperature. One can then extrapolate from the measured
physics at T' = 0 to the yet unknown physics at high temperatures. A
very accurate treatment of the soft modes with lowest mass is essential
at low temperatures. We calculate the partition function Z in terms of
a selfconsistent field which is chosen to extremize In Z. It gives effective
masses to the meson fields. This saddle point approximation to the partition
function corresponds to the leading order of a 1/N expansion.

The paper is organized as follows. In Section 2 we discuss the nonlinear
o-model for SU(2) xSU(2). In Section 3 we calculate the partition function
in the linear o-model for SU(3)xSU(3). Section 4 is devoted to a short
discussion.

2. The nonlinear o-model: SU(2)xSU(2)

The partition function Z for the SU(2)xSU(2) nonlinear o-model is
given in terms of the O(4)-multiplet (ng, i) = (o, %) with n? = ¢% + #% as:

= g 32 [1(8,n)% — en.
z_/Dn(z)];[anz(z)—fz)exp{—/o dr/vd z [3(8,m) 0]}.
(1)

At zero temperature T := 1/8 = 0 the parameters of the model are well
known. The pion decay constant f, equals to 93 MeV. The classical vacuum
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expectation value of ng is determined as (ng) = fr by minimizing the
vacuum energy. Expanding the dependent field ng = /f2 — 7i? to leading
order in 72/ f2, one obtains the mass of the pion as m% = ¢/ fx.

The basic idea of our method is to eliminate the nonlinear constraint
n? = 0% + #2 = f2 by the introduction of an auxiliary field A(z) via an
integral along the imaginary axis

a+to0

Z= / DA(z) / Dn(z)

8
X exp —/d‘r/dsz [3(8.n)% + A(n? = f2)—engl 3 . (2)
0 1 4

After shifting the zero-th component ng to 7y

~ - = c
fi = (fg, 1) = (no — 2—/\,n),

we obtain a Gaussian action for the O(N) multiplet field 74, when we evaluate
Eq. (2) in a saddle point approximation. The resulting partition function is

given as
A 2
2= /'Dﬁ(z)exp ~/d1'/d3a: [%(3“1"1)2 4+ a2 - Af2 — i—x] . (3)
0 \4

Here we have dropped the A-integration and chosen A(z) = A = const. The
optimal choice for A will be determined later, cf. Eq. (11).

Upon Gaussian integration over the four (N = 4) 7i-fields we end up
with a partition function of a free relativistic Bose gas with N = 4 compo-
nents and effective masses

mig = 2. (4)

2= exp{ - [Ur(min, 1)+ Vomin, )22 - 5]} ©)

Here U denotes the contribution from thermal fluctuations

A
Up(m?g, A) = 4l -—‘-i-ilf-ln (1 —ex (—ﬁ k2 4 m? )) (6)
eff? 8] @n) P off
0
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and Uy the zero point energy

4
ek 1
Uo(mig, 4) = 4 (—2;*)35\/132 +mlg. (M)
0

We regularize the k-integrations in Eqs (7) and (8) with a cut-off A, since
we do not believe our 7-effective theory to be correct for momenta beyond
A. At momenta k > A the compositeness of the pions manifests itself in
resonance excitations and/or higher derivative couplings of the pion states,
which are neglected. For the numerical calculations we take cut—off values
A =700 MeV, 800 MeV, 1000 MeV.

After regularization we adopt the following renormalization procedure.
We define a renormalized potential at arbitrary T according to

U™ (mlg, A) =Ur(mlg, A) + Us(mig, A)
Uy
6m§ff

~ |Uo(mZ, 4) + (mlg — m3)

2] )

The two subtractions guarantee the two renormalization conditions at T = 0

mzﬂ‘(’\o) = mfr ) (9)
<ng>=fr. (10)

It is well known that the nonlinear sigma model is not renormalizable
in four dimensions. Therefore higher order divergences can only be compen-
sated by higher order derivative terms in the original action. The coefficients
of these higher order terms have to be determined by experiment. We do
not include such terms in contrast to Ref. [2]. In Section 3 we will extend
the calculation to the linear o-model (SU(3)xSU(3)) which contains higher
masses and strange mesons.

The thermodynamic observables at finite T are obtained from the par-
tition function Z approximated as

24 = e {-gv [migO) -2 - Sy

where A*(T') extremizes In Z at a given temperature T # 0. The saddle
point equation for A* is solved numerically, since in the interesting temper-
ature range the relevant parameter m.g/T = v/2A*/T can have values in
the range 0 < m g /T < oo.
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A = 1000 MeV
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Fig. 1. The order parameter for chiral symmetry breaking (gq(T'))/(gq(T = 0)) for
two different cut-offs A = 700 MeV (solid line) and A = 1000 MeV (dashed line).
The diamonds represent the result of the linear o-model in Section 3.

Let us first study, how the order parameter of chiral symmetry breaking
(no) behaves as a function of temperature. In Fig. 1 we present the result
for

(no(T)) _ Ol Z(T) (aan(T = 0))-1
(no(T=0)) ¢ Oc )

In quark language this ratio corresponds to the ratio of the quark conden-
sate (§g(T')) at finite temperature over the quark condensate at T = 0, since
the symmetry breaking term of the O(4) Lagrangian Lsp = cny is identified
with the symmetry breaking term Lgg = —2mgq in the QCD-Lagrangian.
We also show the result of the linear o-model SU(3)xSU(3), which are pre-
sented in the next section, and the results of chiral perturbation theory [2].
The result for (§g(T))/(Gg(T = 0)) is rather insensitive to the cut-off. It
agrees well with the three loop calculation of Ref. [2]. Chiral symmetry
is only very gradually restored. At low temperature the wr-interaction is
weak and (§g) does not change very much.

The linear o-model: SU(3)xSU(3)

For a Euclidean metric the Lagrangian of the linear sigma-model is
given as

£=10,80,8% - Ludurdd™ + f; (t:68%)" + fotr (887)°
+g (det & + det 1) + 900 + €503, (12)

where the (3 x 3) matrix field #(z) is given in terms of Gell-Mann matrices
Ae(L=0,...,8) as
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8
1 .
=75 ) (00 +ime) A

=0

Here o, and x, denote the nonets of scalar and pseudoscalar mesons, respec-
tively. As order parameters for the chiral transition we choose the meson
condensates {0g) and (o). The chiral symmetry of L is explicitly broken
by the term (~ego9 — €303), corresponding to the finite quark mass term
2m,dq + m,3s on the quark level. The chiral limit is realized for vanishing
external fields €9 and €3. Note that the action § = f d3zdrL with L of
Eq. (12) may be regarded as an effective action for QCD, constructed in
terms of an order parameter field ¢ for the chiral transition. It plays a
similar role to Landau’s free energy functional for a scalar order parameter
field for investigating the phase structure of a $*-theory [4].

The six unknown couplings of the sigma-model (Eq. (12)) (12, f1, f2»
g, €0, £8) are assumed to be temperature independent and fitted to the
pseudoscalar masses at zero temperature. Further experimental input pa-
rameters are the pion decay constant fy == 93 MeV and a high lying (O7)
scalar mass m, = 1.59 GeV (cf. Table I). For the remaining scalar masses
and the coupling constants we obtain the values of Table I.

(13)

TABLE I

Tree level parametrization of the SU(3)xSU(3) linear sigma model (input data
taken from experiment).

Input
my [MeV] | mg [MeV] | m, [MeV] | my [MeV] | fx [MeV] | m, = my, [MeV]
138.04 495.66 547.45 957.75 93 1590
Output
pa[GeV3] h fa g[GeV] |e0[GeV3)]. es [GeV?E)
0.758 12.166 3.053 1.527 0.02656 -0.03449
mg, [MeV] |mg; [MeV] |my [MeV] | fx [MeV]
914.05 913.35 764.71 128.81

The interpretation of the observed scalar mesons is controversial. There
are good reasons to interpret the (0) mesons at 980 MeV as meson bound
states. The model underestimates the strange quark mass splitting in the
scalar meson sector, the value for m Kk comes out too small.

The effective theory can be related to the underlying QCD Lagrangian
by comparing the symmetry breaking terms in both Lagrangians and iden-
tifying terms with the same transformation behaviour under SU(3)xSU(3).
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Taking expectation values in these equations we obtain the following rela-
tions between the light quark condensates, strange quark condensates and
meson condensates

g0 (00) = —§ (2 + m,) (2(qq) + (33)) ,
es (o8) = —3 (h — m,) (2(gg) — (33)) . (14)

We use i = (my, + myq)/2 = (11.25 + 1.45) MeV and m, = (205 + 50) MeV
for the light and strange quark masses at a scale A = 1 GeV [5]. From the
scalar meson condensates at T = 0, (09) = 0.144 GeV and (o) = —0.0415
GeV we get

(3q) = — (235 + 60MeV)® ,
(3s) = — (290 + 30MeV)? , (15)

in accordance with values from PCAC relations [5] within the error bars.
Since we treat the coefficients g, €3 of (09) and (03), and rr, m, of (§¢) and
(3s) as temperature independent, we will use Eqs (14) for all temperatures
to translate our results for meson condensates into quark condensates.

We also check that the pseudoscalar meson mass squares, in particu-
lar m% and m% are linear functions of the symmetry breaking parameters
€0,€8. Varying €9, while keeping the other couplings fixed we can simu-
late the sigma model at unphysical meson masses. Since the current quark
masses are assumed to depend linearly on £¢ and ¢g, an arbitrary meson
mass set can be related to a mass point in the (m, 4,m,)-plane by spec-
ifying the choice of (£9,€8). This may be useful in order to compare our
results for meson (and quark) condensates with lattice simulations of the
chiral transition.

The thermodynamics of the linear sigma model is determined by the
partition function with the Lagrangian of Eq. (12)

Z = /'Dﬁexp —idr/d:’zﬁ(di(i:',r)) . (16)

0

We will treat Z again in a saddle point approximation. As mentioned above,
the saddle point approximation amounts to the leading order of a 1/N-
expansion. In this model N = ZN; = 18. Note that £ of Eq. (12) would
be O(N)-invariant, if f2 = 0 and ¢ = 0. Our input parameters lead to
non-vanishing values of f, and g, therefore the O(N)-symmetry is only
approximately realized.
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We calculate the effective potential as a constrained free energy den-
sity Uesr(£0,€s), that is the free energy density of the system under the
constraint that the average values of oy and os take some prescribed val-
ues {o and {g. The values {_, and {s_. that minimize U.g, give the
physically relevant, temperature dependent vacuum expectation values, i.e.
(70) = €0,5> (08) = 8,,;,- Hence we start with the background field ansatz

oo = €0 + 09,
og :68’*“7;’ (17)

where o and o} denote the fluctuations around the classical background
fields & and £g. All other field components are assumed to have zero vacuum
expectation value, i.e. 0, =0, for{=1,...,7and 7y = 7, for £=0,...,8.
The relation between the effective potential U.g and Z is given by

Z= / dfo / dgs exp (—AVU.g (6o, €s)) - (18)

Next we insert the background field ansatz (17) in £ and expand the
Lagrangian in powers of ' = (1/v/2) E§=0(0’2 + i7r,)A¢. The constant
terms in @' lead to the classical part of the effective potential U,j,s. Linear
terms in ¢ vanish for all £ = 0,...,8 due to the §-constraints in Eq. (18).
Quadratic terms in &' define the isospin multiplet masses mzq, where @ =
1,...,8 labels the multiplets.

The cubic part in &' will be neglected, while the quartic term £(4)(#')
is quadratized by introducing an auxiliary matrix field Y (Z,7). This is a
matrix version of a Hubbard-Stratonovich transformation [6].

In the saddle point approximation we drop [DX and use a SU(3)-
symmetric ansatz with a diagonal matrix ) = diag(s, s, s). Hence the effect
of the quadratization procedure is to induce an extra mass term (s + u2)
and a contribution Usagqie to Ueqr, which is independent of { and £s. This
way we finally end up with the following expression for Z

2(60, 683 3) = exp (-IBV(Uclass + Usaddle))
B

8
X/ [l Degexp —/dT/d%%Zy(Q)(@w'Qawg + X4000d) | »

Q=1 0 Q
(19}

where
XéEmZ,Q-{—p%-{—s, (20)
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(,ab denotes og, for @ = 1,...,4 and 1r'Q for @ = 5,...,8, g(Q) is the
multiplicity of the isospin multiplet. We have g(1) = 3 for the pions, ¢(2) =
4 for the kaons, ¢(3) = 1 = g(4) for 5, 7', respectively. Correspondingly, the
multiplicities for the scalar nonets are g(5) = 3, g(6) =4, g(7) =1, ¢(8) =
1 for the ag, Ky, fo, fj-mesons.

Thus we are left with an effectively free field theory. The only remnant
of the interaction appears in the effective mass squared X % via the auxiliary
field s.

The choice of a self-consistent effective meson mass squared has been
pursued already in Refs [7, 8]. This is an essentially new ingredient com-
pared to earlier calculations of the chiral transition in the linear sigma model
[9]. The positive contribution of s to the effective mass extends the tempera-
ture region, where imaginary parts in the effective potential can be avoided.
In general, imaginary parts are encountered, when the effective mass argu-
ments of logarithmic terms become negative. They are an artifact of the
perturbative evaluation of the effective potential and of no physical signif-
icance, as long as the volume is infinite. In our application the optimized
choice for s will increase as function of temperature and lead to positive X 62?
over a wide range of parameters.

Gaussian integration over the fluctuating fields ¢’ in Eq. (19) gives

Z(Eﬂa £s, 3) = exp {":BV [Uclass + Usaddle

1 8
P [ & (i)} ey

where
wh =k + X}, (22)

Wl = (—2—%‘—)2 , (23)

denote the Matsubara frequencies. In contrast to our former approach [8]
we keep all Matsubara frequencies and evaluate ), in the standard way,
see e.g. [10]. The result is

and

Z (&0, &85 3) = exp (—BV Ueqr(£0, &s5 9)) (24)
eﬂ'(fO,EBa 3) class + Usaddle + Uth + UO ’ (25)

3
U= Z 9@ [ el (1-<P) )
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3
)= % - (@) / e (27)

Here we have indicated that Z and U.g still depend explicitly on the
auxiliary field s. The integral in Eq. (27) is regularized with a three-
momentum cut-off A. The thermal contribution U,y vanishes at zero tem-
perature and is finite for T > 0, while the zero point energy Uy diverges as
A — oo.

The linear sigma model is a renormalizable theory, and in principle the
cut-off could be removed after a suitable renormalization prescription. We
do not believe in this model as an effective description for QCD, when the
momenta exceed a certain scale, say A = 1 — 1.5 GeV. Therefore we use
a cut-off A. The necessity for renormalization arises, when we postulate
a matching between the physical masses and condensates with the T = 0-
values, and T approaches zero from above. Such a matching is guaranteed,
if we impose the following subtractions on the zero point energy part

U™ (X3 (€0, &s); A) := Up(X3) — {Uo(m2y,,)
aUvu, 2 , 02U, 2
B (X =)+ 35N (X i)
(28)

Here m;‘;hy’ is given by m% evaluated at £, = (&) and & = (£s), t.e.
for physical condensate values. The optimal choice s* for the auxiliary field
8 is then determined by

a ren
33 .

s
where Ulg" equals U.g of Eq. (25) with Uy replaced by U™ of Eq. (28).
Upon using Eq. (29) it is easily verified that the meson condensates
(€0) and (£s) are free of extra contributions from the zero point energies at
T=0iflnZ = —BVUIg"(fo,s; 5*). Thus a matching with (¢;)r = 0 is
ensured. Similarly we ﬁnd for the effective masses

=0, (29)

X3lr=0 = ml + s+ pg = mip,,, (30)

for &0 = (o), &8 = (€s), since s = —p at T = 0.

Note that the sensitivity to the cut-off in Eq. (28) is reduced from a
A*-dependence to a 1/A42%-dependence. This is a desirable feature in view
of the uncertainties in a suitable choice for A. We have taken 4 = 1.5 GeV
and kept the cut-off finite throughout the calculations.
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Now we are prepared to determine the temperature dependence of
the order parameters (£o)(T), (£s)(T') from the minima of UIE(£o, £s; 8*).
Thermodynamic quantities like energy densities, entropy densities and pres-
sure can be derived from Z in the standard way, if Z is approximated as

Z7en = exp (—BVUER (€0, €5 5*)) - (31)

For the parameters of Table I we vary the temperature and determine
for each T the extremum of U.g as a function of §g, {g and s. The extremum
is a minimum with respect to £ and £s and a maximum with respect to s.
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Fig. 2. Normalized light quark condensate (§q)/(dq)p—o Vs temperature.
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Fig. 3. Normalized strange quark condensate (3s)/ (38)p—o vs temperature.

In Figs 2 and 3 we show the variations of (gg¢)(T)/(d¢)T=0 and
(38)(T)/(3s)T=0 as a function of temperature obtained from (£o)(7) and



46 D. METZGER ET AL.

(€8)(T) with the help of Eq. (14). We observe a gradual decrease of the
light quark condensate, whereas the strange quark condensate stays almost
constant. A first order transition occurs at T. = 164 MeV for A = 1.5 GeV.

At T, only the SU(2)xSU(2) part of the chiral symmetry is restored,
the strange quark condensate does not drop to zero.
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Fig. 5. Normalized energy density ¢/T* and pressure p/T* vs temperature. The
decrease of these quantities above T =~ 200 MeV as a function of T indicates the
breakdown of our approximation scheme.

In our lowest order calculation the temperature dependence of these
masses is determined by the temperature dependence of the condensates
(cf. Fig. 4). The masses m% and m?, become degenerate at T., m2 ~
m2, ~ (147MeV)?. Below T. the meson masses stay remarkably constant.
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Above T,, the * — K-splitting is increased rather than reduced. Accordingly
the strange meson contribution to the energy density in this temperature
region is reduced compared to the low-temperature hadron gas.

In Fig. 5 we give the energy density ¢/T* and pressure p/T* as function
of temperature for a cut-off A = 1.5 GeV. The gap in the energy densities at
T., which is a measure for the latent heat, is obviously rather small, about
10% of ¢ at T,. Sizeable contributions to ¢ come mainly from 8 degrees of
freedom, the pions, the kaons and the f; meson.

4. Discussion of the results

For low temperatures the physics of the nonlinear SU(2)xSU(2) and
linear SU(3)xSU(3) o-model are identical. In Fig. 1 we show the light
quark condensates calculated in both models. Above T = 120 MeV the
extra degrees of freedom in the SU(3)xSU(3) calculation become important.
At higher temperatures T > T, also the linear sigma model will certainly
fail as an effective model for QCD due to the lack of quark—gluon degrees of
freedom. Nevertheless it would be interesting to study, at what temperature
the full SU(3)xSU(3) symmetry is restored. At very high temperatures the
effective potential becomes proportional to 355 X 2(Q)T?, the linear terms

proportional to ¢ and og in the masses of OF and O~ mesons cancel and
temperature tries to fully restore the broken symmetry.

Finally we remark that our value for T, is rather close to the lower
limit of the Hagedorn temperature Ty(Ty ~ 160 MeV). This may not be
entirely accidental. In our model the 1/N-expansion means a large number
of flavours, since N = 2. sz,. In order to keep QCD an asymptotically
free theory also the number of colours N, has to increase. Correspondingly
our approximation is similar to Hagedorn’s description of the hadron gas
as a resonance gas. We expect that corrections from subleading terms in
our 1/Ns-expansion will implicitly amount to corrections also to the large
N -limit. The chiral transition for unphysical values of strange quark and
light quark masses will be investigated in a future publication.
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