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1. Introduction

Recently, much effort has been put into the investigations of the hadronic
correlation functions. As it was pointed out by Shuryak [1], the importance
of these functions relies on the fact that they can be calculated in several
ways: (i) one can express them in terms of the fundamental QCD fields,
quarks and gluons; (i) one can evaluate a part of them using hadron phe-
nomenology; or (i) they can be calculated in the framework of effective
models. Consequently, these correlation functions can be used for making
comparisons between various approaches. In particular, the results of the
lattice simulations of QCD can be compared with the results of approximate
models. In this way we can observe how good the latter are in reproducing
the features of the fundamental theory.

In this paper we study the temperature dependence of the meson cor-
relation functions in the pseudoscalar (pion) and scalar (sigma) channel.
Our calculations are based on the Nambu-Jona-Lasinio (NJL) model. This
model was constructed already in the sixties [2] as the theory of nucleons
interacting via an effective two-body interaction. Now it has been reinter-
preted as a theory with quark degrees of freedom (for an overview see {3] or
[4]).

An essential feature of this model is that it respects several important
symmetries of QCD, the most prominent one being the chiral symmetry.
The NJL model also exhibits spontaneous symmetry breaking. The rela-
tive simplicity of the model makes it useful in studying this phenomenon.
Effects, like dynamical mass generation and the appearance of Goldstone
bosons, are exhibited by the model. Another interesting feature is the phase
transition; at high temperature the chiral symmetry, which is spontaneously
broken in the vacuum, is restored. In this respect the model resembles QCD
where we expect that an analogous phase transition takes place.

There are two basic shortcomings of the NJL model. The first one is
connected with the pointlike character of the quark-antiquark interaction
which makes the theory non-renormalizable. The second one is that in this
model the quarks are not confined. Because of these two disadvantages the
model has been strongly criticized. Nevertheless, the NJL model is, in spite
of its deficiencies, an interesting tool for studying phenomena related to the
chiral symmetry and the chiral phase transition.

The properties of the NJL model at finite temperature (and/or density)
have been studied already by many authors [5-12]. One of the main aims of
these investigations was to calculate the dynamic meson masses determined
by the poles of the correlation functions. In the present paper we consider
a different, in some respect complementary problem. We study the spatial
dependence of the static correlation functions. In particular, we calculate
the meson screening masses which characterize their asymptotic behaviour.
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The difference between the dynamic and screening mass will be discussed
in more detail below. At this point we note only that both masses are
determined by the singularities of the correlation functions. Therefore, the
analytic structure of the latter should be studied in detail.

We compare the qualitative behaviour of our results obtained in the
NJL model with those produced in the lattice simulations of QCD. The
lattice measurements of the hadronic correlation functions were initiated
by DeTar and Kogut [13] and continued by other groups [14-17]. The
results of these calculations show that at high temperatures, T > T, the
hadronic screening masses of chiral partners are equal, but non-vanishing.
This is consistent with the restoration of chiral symmetry. Moreover, Eletski
and Ioffe [18] pointed out that the meson screening masses approached the
value 2xT, whereas those of baryons were close to 37T. They argued that
such a behaviour is typical for a gas of non-interacting massless quarks.
Nevertheless, in the (pseudo)scalar channel, in contrast to the (axial)vector
one, the screening masses are still considerably below 27T. This result
indicates that also well above the phase transition, the residual interaction
between quarks and antiquarks in these channels is non-negligible.

Our attempt to interpret the lattice results in terms of a simple model is
not the first one. So far, several models have been discussed in this context.
Gocksch [19] argues that the hadronic screening masses as well as the quark
number susceptibility can be qualitatively understood in the linear sigma
model. Hansson and Zahed [20] show that the static correlation functions
in high-temperature QCD can be calculated from an equivalent problem of
non-relativistic quarks in a dimensionally reduced theory. Similarly, Koch
et al. [21] find that the propagation of a light fermion in a spatial direc-
tion at high temperatures can be described effectively by a two-dimensional
Schrédinger equation with a heavy effective mass m.g = #T. They then
introduce an effective potential for propagation of the quark-antiquark pair.
The results reproduce the lattice data [16] in the p and = channels.

In the end of the introduction let us present the organization of our
paper. In the next Section we define the model. In Section 3 we give the
details of our calculations. The temperature dependence of the constituent
quark mass and of the dynamic meson masses are discussed in Section 4.
Our main results concerning the screening meson masses are presented in
Section 5. Conclusions and the list of references close the paper.
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2. Definition of the model

We consider the following lagrangian of the NJL type

L = P(i7,0* —m)p + Z [($oa¥)? + (Pivsoay)?] , (1)

a==0

where 7 is the Dirac field carrying additional flavour (Ny=2) and colour
(N.=3) degrees of freedom, o, are the flavour Pauli matrices (with og=1),
G s is the coupling constant, and m is the current quark mass. We take into
account the isospin symmetric case m, = myg = m.

The interaction term in (1) has the chiral symmetries U 4(1) and SU 4(2).
If m is small then, in approximation, the whole lagrangian is chirally invari-
ant. The symmetries U 4(1) and SU 4(2) are characteristic for QCD where,
however, the first is broken due to the instanton effects [22] and the second
is spontaneously broken. In the NJL model the SU4(2) symmetry is also
spontaneously broken and this fact is one of the most attractive features
of the model, showing its closeness to QCD. The breaking of the U4(1)
symmetry can be achieved by adding an extra term to the lagrangian (1).
For sake of simplicity we do not take this term into account. Consequently,
besides the pseudoscalar isovector (I=1) almost massless mesons, i.e. pions,
we have a pseudoscalar isoscalar (I=0) meson having the same mass.

The Schwinger-Dyson equation for the self-energy of quarks in the
Hartree-Fock approximation has the following form

o~ [ dip
Y= Gsl;/ WaaTr [O'aS(p)], (2)

where Tr is the trace over flavour, colour and spinor indices. The quantity
S(p) is the quark propagator §(p)~! =p— X —m+iec. The quark condensate
is defined by equation

Z+m
pPP—(Z+m)+ic’

(10) =~ 31 S = 0) = ~anei [ 22, (3)

The effective mass £ + m can be regarded as the constituent quark mass
M, whose origin is the quark-antiquark interaction. Egs (2) and (3) lead to
the following relation connecting M directly to the condensate

M =m - 2Gs(qq) . (4)

This is so-called gap or self-consistency equation.
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The zeroth-order correlation function (called also a generator) is repre-
sented by the following expression

X4(Q) = 2iN. Sp / (%’;[PAS(M Q)TBS()].

Here Q* = (w,{) is the external momentum. The indices A and B take
on the values P or S and I'p,I's are the Dirac tensors: ['p = iy5 and
I's = 1. Calculation of the trace over the spinor indices, denoted here by

Sp, shows that the crossing terms (A4 # B) vanish. Therefore, we are left

with two non-vanishing generators: xgg, and xg)_;. Using the random phase

approximation, we find that the full correlation function in the pseudoscalar
channel (A = P) and in the scalar channel (4 = §) has the form

$a@
1- GSXS:,?Q(Q)

In the medium, the correlation function y 4 4(Q) depends on Q through the
variables w? and g2. Therefore, in the following we shall use the notation
x44(w?,¢?) rather than x44(Q). The dynamic mass is defined by the
position of the pole of the function x 4 4(w?,0) closest to the origin. In the
NJL model it can be easily found by solving the equation

(6)

x44(Q) =

1 - Gsx'Ph(md,n, 0) = 0. (1)

This follows directly from Eq. (6). On the other hand, the screening mass
is defined by the asymptotic behavior of the correlation function in space,
namely

. dln r
Myeyr = — rlin;o _%‘A'(_)' ’ (8)
where
d3 1 + o0
— 7 2y g7 _ 2\ _igr
xaa(r) = / 2n) x44(0,9%) e P / dgq xa4(0,9°) 7.
—o0

(9)

Let us now consider an arbitrary correlation function x 4 4(w?, ¢?), not
necessarily obtained from the NJL model. One can ask the question when
the dynamic mass is equal to the screening one. At T' = 0 the system is ex-
plicitly Lorentz invariant and x4 4(w?,0) = x4.4(0, ~w?). Therefore, if the
function x 4 4(w?,0) has a pole for w = Mmgyn then the function x 44(0, 7?)
has a pole for ¢ = imgy,. The latter gives the contribution to the integral
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(9), which has the form ~ exp(—mgynr). For very large r this contribution
is the dominant one because imqy, is the nearest pole. Consequently, we
find that mgy, = mser. Of course one has to be careful because the analytic
structure of the correlation function can be complicated and there may be
other important contributions to the integral (9). Nevertheless, at T = 0
we expect that mgy, = mger. A different situation takes place when T > 0.
In this case the Lorentz invariance is implicitly broken by the existence
of the preferable reference frame defined by the heat bath. The fact that
x44(w?,0) has a pole for w = Myyn does not imply that x 44(0,¢*) has
a pole for ¢ = imgy,. It is also well known that at T > 0 the contribu-
tion to Eq. (9) from the cuts of the correlation function is important and
it can substantially change the space asymptotics of the function x44(7).
Consequently, at T > 0, the dynamic and screening masses are different.

3. Calculation of the physical quantities
at zero and finite temperature

(i) Imaginary time formalism

The calculation of all quantities that interest us, like the condensate or
the correlation functions, can be done in the imaginary time formalism [23,
24]. Schematically, this is achieved by the following substitution

dp . &’p

Here T is the temperature and the integration over the energy is replaced
by the sum over discrete complex energies p® = iw,,. In the case of fermions
wp = (2n 4 1)7T and in the case of bosons w, = 2nxT. Such sums can be
converted to the contour integral in the complex energy plane. Moreover,
a deformation of this contour allows us to write the final result as a sum of
two terms [24]. In the case of interest, i.e., for fermions, one finds

4100
T flion) =3 [ 416"
ico+e
1 1
-3 [ # )+ ) o ()
—ico+e

This decomposition is useful, since it separates the explicitly tempera-
ture dependent part ( “matter part”) from the “vacuum part”. The former
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contains the Fermi~Dirac distribution and vanishes in the limit T — 0. Us-
ing, e.g., Eqs (3), (10) and (11) we can decompose the condensate into two
parts

(T9) = (F9)vac + (T9)mat - (12)
In the similar way, using Eqs (5), (10) and (11) we find (for A = B)
XS)A)ﬂ(wz’ q2) - Xfrzl,vac(oz) + xf:.zl,mot(wz’ q2) * (13)

(i) Zero temperature expressions and their regularizations

Let us now concentrate on the vacuum parts of the physical quantities
defined in the end of the last subsection. Introducing the variables p4 and
g4, such that p® = ips and w = iqq, we obtain

M
(§Q>vac = "E‘Il,vac(Mz) , (14)
XQI):’ vac( q%‘) = Il.vac(Mz) + 9%}[2,vac(M2, qf;) (15)
X(Sos)' vac( q?z') = Il,vac(Mz) + (qf? + 4M2)12,vaC(M2’ 9%;) . (16)

Here qE =¢* + qf and the functions Ij yac(M?) and Ig,v,c(Mz,qu) are
defined as follows

4
I],vac(M ) =8N, / Elzfli 2 -:M2 ’ (17)
2 2\ _ d*pg 1
IZ,Vac(M ’qE)-—4Nc/(27r)4 [(PE+QE/2)2+M2] [(PE"QE/2)2+M2(] )
18

The integration measure in these integrals is d*pp = d3pdpy.

Two points have to be emphasized here. Firstly, all the scalar products
of vectors have now the Euclidean metric, for example (pg + qg/2)? =
(P+§/2)% + (ps +94/2)%. Secondly, the integrals (17) and (18) are diverging,
so that the quantities (14), (15) and (16) are not well defined. In order to
get finite results one has to apply a regularization procedure. In our case
we adopt a subtraction scheme which is close to the Pauli-Villars method,
namely, we replace functions Iy vac and I3 yac by the series

N
IlsVBC(Mz) - vaac(Mz) - Z AiIlsVGC(A‘?) (19)
i=0
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and
N

I vac(M?, q%) = Izl?vac(Mz’ a) = Z Ailz vac(47, 4F) - (20)
1=0
It is not the proper Pauli-Villars regularization scheme because we do not
subtract the expressions corresponding to the appropriate diagrams. We
only make subtractions at the level of the functions Ij vac and I3 vac. This
allows us, however, to take into account the chiral symmetry of the system
in the right way.
In Eqs (19) and (20) N is the number of subtractions, A4 = 1 and
Ao = M. If N = 0 then the series in Eqs (19) and (20) simplify to the
expressions (17) and (18). The coefficients A;, for ¢ > 0, have to be chosen
in such a way as to provide the finite result for Iﬁ"c and If"c. At the
same time the correlation functions should have a good asymptotics, such
that the Fourier transform used to calculate the screening masses exists.
These requirements lead to the set of the equations of the form

N N N
Yodi=0, Y=o, .. Y 44N V=0, (21)
=0 1=0

1=0

A straightforward calculation, using Eqs (21), yields

N N
Iiﬁvac(Mz) = 27rc2 A; AZ lnAf (22)
1=0
and
vaac(Mz’ qu) =
NCNA.}QH 9E 21n 14 (2B 2+QE +1n A,
2‘n‘2 izo : ('35 2/1,' 2/11, 2111, :
(23)

Substituting Eqgs (22) and (23) into (14), (15) and (16) gives us finite expres-
sions for the condensate and for the generators. We can use them directly
for the calculation of the screening masses. Nevertheless, if we want to cal-
culate the dynamic masses we have to know the function If,, (M?, -w?).
This can be obtained by performing the analytic continuation of the function
defined on the right hand side of Eq. (23). The substitution ¢ — iw ¢
leads to the following formula

IR (M?, —w? Lie) =
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N 2
Nc 2/11_ w . w
52 i=EoA, {0(211, - w) [ ” 1- (2Ai) arcsin (2Ai)

2
+ 1nA,~]+@(w 24;) | 24 (2A) (Arch(2A):tm)+1nA

(24)

From Eq. (24) we can see that the function Izlfnc(M 2, —w?) has a cut start-

ing at w = 2M. In the NJL model this cut corresponds to the (unphysical)
possibility of the decay of a meson into a quark-antiquark pair.

(i1i) Finite temperature contributions
Let us now consider the matter parts of the physical quantities of in-

terest. In the case of the condensate, using Eqs (3), (10) and (11), we
find

_ M
(T¢)mat = "'E“Il,mat(M2) , (25)
where
too+e
p® [ d3p 1 1
I mat(M?) = ~16iN, / AR T
—t00+e
(26)

To calculate the function I3 mat(M?) we deform the contour of the integra-
tion in the complex p° plane. Picking up the pole in the right half plane,

which is placed at p® = w, = /M? + 52, we find that

o0
4N, dp p? 1
2\ c
Lmat(M) = =3 / wp ewr/T 4+1° (27)

From now on we use the notation p = |7|.

The matter parts of the generators depend separately on w? and ¢Z.
Nevertheless, the following decompositions, analogous to those obtained in
vacuum, are possible

X b mae (@2 6%) = T1 mat(M?) = Q%L mat(M?,0%,¢%)  (28)
and

stog‘ mat(w2’ 92) = Il,mat(Mz) - (Q2 - 4M2)I2,mat(M2,w2, %), (29)
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where

Iz,mat(Mzawz,q = —8tN, /

—~ico+e
« 1 1
[(p+Q/2)2 - M?][(p - Q/2)2 — M?] exp(p® - w/2)/T +1°

The calculation of the function Iz mat(M?2,w?, ¢*) proceeds in the same
way as the calculation of the function Iy mat(M?2). To calculate it we deform
the contour of the integration in the complex p°® plane. The modified contour
surrounds the poles of the integrand, lying on the right hand side of the
imaginary axis. The position of these poles is now given by the equation

P’ = Fw/2+ \/M2 + (F+ §/2)°. Calculating the residues we find

(27r)3

(30)

1 1

. oo
N. [ dpp?
2 2 = =t
Iz,mat(M hd ’0) T x2 / w ewp/T+ ]_w}z’ —w2/4 (31)
0
and
N, oodpp 1 2p—-g¢
It (M%,0,0%) = - % L e R G
Z2,m t( )qu ) qWZ wp ewp/T+1 2p+q ( )

In order to calculate the screening mass, we need to know the analytic
structure of the function I mat(M?,0,¢?) in the whole complex ¢ plane.
To find it we represent I mat(M?,0, ¢%) as a sum of two functions, namely

I mat(M2,0,¢%) = ISH) (9) + I£2). (0) (33)

where

oo
N, /dpp 1 In 2p—gqtic

. 34
2qw? wp ewp/T 41 —2p—gqtice (34)
0

+
IZ’(,n\)at(q) = -

The calculation should be done for an infinitesimal value of ¢ and then
the limit ¢ — 0 has to be taken. The function I’z(ma (¢) has a cut at

Imgq = +ie, and stretching from minus to plus mﬁmty parallel to the real
axis. The cut is due to the discontinuity of the imaginary part of the function

Iz( mat(q) In the regions just above and below the cut the imaginary part
has opposite sign. However, for ¢ on the real axis, the imaginary part of

Iz( m)“(q) cancels exactly the imaginary part of I. (-) (¢)- Thus, the final

2,mat
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result for Iz mat(M?,0,¢?) is real as it should be. These properties can be
summarized by the following equations

IS (0= qr +ie £i8) = I{ ) \(q = qr — ic  i6) (35)
and
o N.T VME+aR/4
Im I.A,(;‘),t(q =gqr +ietif) = :Fﬁln 1+ exp -
(36)

Here gr denotes the real part of ¢ The numbers ¢g + i determine the
position of the cut of the function I. (%) (¢) and +:6 is the small shift up or

2,mat
down from the cut. Using Egs (33) and (34) we can find the analytic con-
tinuation of I3 mat(M 2,0, ¢%) to purely imaginary values of g. Substituting

g = tk we obtain the following expression

o0
N, dpp 1 k
2 9 _p2y_ _ Ve _ =z
Iy mat(M*“, 0, —k%) in? | wy en T4 1 [7:' 2arctg (2p)] . (37)
0

The functions Iy mat and Iz ma¢ defined by Eqs (26) and (30) are finite
and do not have to be regularized. We note, however, that in the limit T’ —
oo they are diverging. Moreover, in this limit, we recover expressions (17)
and (18) but with the minus sign. This means that in the limit ' — oo the
non-regularized expressions for the condensate and the generators formally
vanish. This fact follows also directly from Eq. (11). This property is
destroyed in a procedure, where only the vacuum part is regularized. Can we
recover this property by modifying the regularization scheme? The answer
is yes; if we regularize also the matter parts analogously to the vacuum
part the regularized condensate as well as the generators vanish as T — oo.
The proper regularization of the matter parts guarantees that for arbitrary
temperature M > m. It also leads to the cancellations which ensure the
expected from QCD asymptotics of the correlation functions.

In view of the arguments above we regularize the matter parts of the
condensate and the generators, in the same way as in the case of the vacuum

parts:
N

Il,mat(Mz) - Ilffmat(Mz) = z AiIl,mat(Azz) (38)
=0
and

N
Iz,mat(Mz,wz, qz) - Izlfmat(Mz’wza qz) = Z AiI?,mat(Azz’wz, q2) - (39)

=0
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We note that this regularization procedure does not change the analytic
structure of the function Iz mat.

The structure of Eqs (14)-(16), (25), (28) and (29) suggests that it is
convenient to use the functions

Il(Mz) =1’1}?vac(M2)+I113mat(M2) (40)
and

I2(M27w2a q2) = Izﬁvac(sz 92 - “’2) + I'fmat(Mz’ “"2’ q2) . (41)

4. Gap equation and dynamic masses

Using Eqs (4), (12), (14), (25) and (40) one finds the following form of
the gap equation
M =m+ MGsI(M?). (42)

If the current quark mass is zero Eq. (42) has always a trivial solution
(M = 0). The existence of the non-trivial solution (M > 0) depends on
the choice of the parameters Gg and A; (i = 1,..,N), and also on the
temperature. At T = 0 one usually fits G5 and A; in such a way as to ensure
the existence of a solution with M > 0, which minimizes the free energy.
Nevertheless, when the temperature exceeds some critical value T, the trivial
solution to the gap equation is stable. This means that the system passes
the phase transition as the temperature is increased above T.. If m > 0 and
T > 0 we can always find the solution of the gap equation satisfying the
condition m < M < A;. However with increasing temperature M — m.
This property of the solution can be seen from equation (42) because for
T — oo we have I;(M?) — 0.

The dynamical masses of the pion and the sigma are obtained from Eq.
(7). Assuming that the gap equation has a non-trivial solution, we find

m
M + m?lyn,wlz(Mz’m?lyn,w’O) =0 (43)
and
m
E + (m?lyn,a - 4M2)I2(M2?m?lyn,a’ 0) =0. (44)

For vanishing current quark mass, the pion is massless (it is the true Gold-
stone boson) and the mass of sigma is simply 2M. Eqs (43) and (44) are
correct not only in vacuum but also at finite temperature, as long as a
non-trivial solution to the gap equation exists.

If the current quark mass does not vanish, the pion becomes a massive
particle. Nevertheless, for small current masses it is still a light particle. In



Meson Screening Masses... 61

the case of the sigma meson we expect that a non-zero current quark mass
will cause an increase of its mass to the value larger than 2M. However,
as it was discussed in the previous Section, the correlation functions have
cuts for arguments larger than 2M. In consequence there is no isolated pole
which can be identified with the mass of the sigma. One way of avoiding
this difficulty is to define the mass by taking the real part of Eq. (7), t.e.,

1 - Gs Re X4 4(myn,0) = 0. (45)

At finite temperature, we have to use Eq. (45) also in the pseudoscalar
channel. With the increasing temperature the constituent quark mass drops
down and the pion mass increases. Consequently, at some stage the well
isolated pion pole is shifted into the cut.

400 ———————————
_. 300} .
% L ]
= 200} i
z o 4
100 - i
1 ] i 1 1 1 L |
0 100 200 300
T [MeV]
800 _‘“___l_-__ T T T T T T
L T .- 4
= 600} o i
p I
g 400 |
©
E L
200 - x
1 1 L 1 i i 1
0 100 200 300
T [MeV]

Fig. 1. The temperature dependence of (a) the constituent quark mass M and (b)
of the dynamic meson masses: mgyn,x (solid line) and myyn,, (dashed line). The
calculation is done with N = 3 subtractions. The regulating masses are: A, = 680
MeV, A; = 2.14; and A3 = 2.14;. The coupling constant Gg = 0.75 fm? and the
current quark mass m = 8.56 MeV.

Our results concerning the temperature dependence of the constituent
quark mass and the dynamic masses of mesons are shown in Figs 1la, 1b.
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In our calculations we made three subtractions with the regulating masses:
Ay = 680 MeV, A; = 2.14; and A3 = 2.1A4;. Using three subtractions im-
proves the convergence of the correlation functions in infinity. This is, from
the numerical point of view, convenient in the calculations of the screen-
ing masses. The coupling constant G5 = 0.75fm® and the current quark
mass m = 8.56 MeV. Using these values of the parameters we find that at
zero temperature the constituent quark mass M = 376 MeV, the pion mass
Myyn,» = 138 MeV and the sigma mass mgy, , = 760 MeV. We note that
the pion and sigma masses are connected by the relation

~ 2
m?iyn,a ~ 4M2 + mdyn,-x . (46)

With the increasing temperature the constituent quark mass remains almost
constant, for 0 < T' < 100 MeV, and later drops smoothly down. The pion
mass remains constant as long as the temperature is smaller than 250 MeV.
Afterwards it increases suddenly. The temperature dependence of the sigma
mass is rather complicated. In the interval 0§ < T < 250 MeV it behaves
in the similar way as the constituent quark mass. Moreover, in this region
the relation (46) is still fulfilled. When the temperature reaches 300 MeV
then the sigma mass stops decreasing, remains for a while constant and later
increases. At very high temperature the sigma mass and the pion mass are
with a good approximation the same. This fact signals the restoration of
the chiral symmetry.

One of the attractive features of the NJL model is that it yields the
Gell-Mann—-Qakes—Renner relation

1 —
famiyn - = _§(mu + mg)(Tu + dd) = -2m(gy), (47)

where fy is the pion decay constant. This relation is practically independent
of the regularization scheme. It can be used to find the value of fx provided
the values of m, m, and (ggq) are known. In our case we find that fr = 94
MeV.

5. Screening masses

In this Section we shall discuss our main results concerning the tem-
perature dependence of the screening masses. The Fourier transform (9)
used to calculate the screening mass can be represented as a sum of dif-
ferent contributions related to the singularities of the correlation function.
Let us therefore summarize our knowledge of the analytic structure of this
function.

In Section 3 we found that x$32 (—¢?) has cuts (in the following we shall
call them vacuum cuts) along the imaginary axis starting at ¢ = £2¢M up to
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tico. On the other hand the function x,‘,f}t(o, ¢%) has cuts (in the following
thermal cuts ) which run parallel to the real axis. Consequently, the full
correlation function defined by Eq. (6) has all these cuts and, moreover,
it can have poles for imaginary arguments in between the cuts. The pole
exists only in the pseudoscalar channel. In the scalar channel it is shifted
into the vacuum cut. This situation is shown in Fig. 2. Deforming the
contour of integration in the upper half plane we can see that there will
be, in general, three contributions to the Fourier integral: from the vacuum

cut, the thermal cut and from the pole.

upper vacuum cut

thermal cuts

N\

lower vacuum cut —

Fig. 2. A general analytic structure of the correlation function in the complex
three-momentum plane ¢ = |7’].

The position of the pole is given by an equation of a form analogous to
that of Eq. (7), namely

1-Gsx$(0,-m?) = 0. (48)

One should consider only the interval 0 < m, < 2M because for m, =
2M the cut starts. At zero temperature we have m, = mgy, but when
T > 0 then m, # mgy, because the functions Iz,mat(Mz, k%, 0) and
Iz, mat(M2, 0, —k?) are different; see Eqs (31) and (32). The contribution
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to the Fourier transform from such a pole is, of course, of the form ~
exp(—m.,r). The integral around the vacuum cut can be written as follows

1
4rZir

oo
xhq(r) = /2M dk k [xa4(0, -k + ie) — x.44(0, —k? — ic)] e™*"

(49)
It is easily seen [27] that for large distances this function behaves like
~ exp(—2Mr). This means that the contribution of the vacuum cut con-
tribution is similar in character as that of the pole. We shall now discuss
separately three different cases. The first two concern analytic results for
T = 0 and T — oo. The third one concerns intermediate temperatures for
which we have numerical calculations.

(i) The case T =0

At zero temperature the thermal cut vanishes so we are left only with
one or two contributions. In the case of the pseudoscalar channel we have
an isolated pole and a cut. This pole, because of the Lorentz invariance,
coincides with that determining the dynamic mass. For large values of r
the contribution from the pole, ~ exp(—mgyn ), is larger than that from
the vacuum cut, ~ exp(—2Mr), since mgyn,» < 2M. Therefore the pion
screening mass at T' = 0 is equal to the dynamic one: mgcr,x = mayn,» =138
MeV. In the case of the scalar channel we do not have an isolated pole and
the only contribution to the Fourier transform is due to the vacuum cut.
Consequently, the sigma screening mass equals 2M and is smaller than the
dynamic one; mser,o = 752 MeV and mgyq , = 760 MeV.

(ii) The case of extremely high temperature

In the limit T — oo the generators of the correlation functions x( )
vanish. It means that at sufficiently high temperature the generators are
very small and, at the same time, they are a good approximation for the
full correlation functlons In this case, the second term in the denominator

of Eq. (6), Gs x (0 ¢?) can be neglected compared to unity.
Using this fa.ct we define the high temperature correlation function in
space by equation

xff,)l() yPorm / dqqxﬂ(ﬂ,qz)ei"- (50)
e OO

(We hope that the notation used here is not very much misleading and that
the reader will connect the index (0) with the “free theory” rather than with
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the case T = 0.) In Eq. (50) integration of the vacuum part Xf‘?}t vac(— qz')

and the matter part xffl)‘,m“((}, ¢?) defines the functions x A A vac(™) and

xf:}l mat(7), Tespectively. Of course the simple relation holds

XE:A(T) Xf:.zl vac( ) + xg’zi,mat 1') * (51)

The Fourier transform (50) can be calculated analytically. Using the
same method as that developed by us in [26], we find that

N

N,

XPPac(r) = oo O Aid? [BK2(24ir) + 24K (24m)] . (52)
i=0

where K; and K3 are the modified Bessel functions [28]. On the other hand
the matter piece has the form

2
hma) = iz (5 - G+ 15) 1)+ G, (89)

3
where
N
Gi(r) = =) Ai AiK1(24;r) (54)
i=0
and
N + oo
Gar)=7TY A S exp(~2ry/(2l + 1)222T2 4+ A2).  (55)
i=0 l=—o00

Using the properties of the modified Bessel functions [29] we can check
that in expression (51) the vacuum part (52) is exactly canceled by the first
term of the matter part (53), i.e. by the term coming from differentiation
of the function G;(r). We want to emphasize that this cancellation is inde-
pendent of the number of subtractions N and of the values of the regulating
masses A;.

The function G2(r) has a simple asymptotic behaviour. For r — oo it
is enough to consider only the leading terms in the series, ti.e. these cor-
responding to ! = 0,—1 and 7 = 0. The terms for ¢ > 0 are suppressed
because, in this case, A; > A9 = M. Additionally we can neglect M with
respect to T. Consequently, we obtain the following asymptotic expressions
for the correlation function

273N, _
XPP(T) ~ -—;—-Z—E-e 2WT1’. (56)
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From Eq. (56) we can easily read off the screening mass in the pseudoscalar
channel to be 2#T. The calculation for the scalar channel is completely
analogous, with the same result for the screening mass. At very high tem-
perature the constituent quark mass drops down and is equal to the current
one. The latter, however, is very small, so that the difference between the
pseudoscalar and scalar channel, practically, disappears.

These considerations show how important the regularization of the mat-
ter part is. It leads to cancellations between the vacuum and matter parts
and, finally, to the asymptotic behaviour of the form exp(—2zTr). If the
matter part were not regularized then the asymptotic behaviour of the cor-
relation function would be governed by the lowest regulating mass, i.e. by
A;. Such a case could not be accepted from the physical point of view.

(ii1) Intermediate temperatures

For the temperature range 0 < T < 400 MeV we did numerical calcu-
lations and read off the values of the screening masses from the logarithmic
plots representing the correlation functions in space. We did the calculations
in two ways checking whether the results were the same. The first method
was to calculate the Fourier transform directly from Eq. (9). The second
one was to calculate the contributions from the singularities separately and
later to sum them up. Both methods encounter numerical difficulties. The
direct calculation of the Fourier transform requires an integration of a slowly
converging and oscillating function. On the other hand, the contributions
from the cuts show large cancellations. Therefore, each contribution should
be evaluated with very high accuracy. By the way, the appearance of these
cancellations are expected, since from our analytic considerations we have
learnt that such cancellations should really take place. Let us also note here
that the parameters used to calculate the screening masses were the same
as those used in the case of the dynamic ones.

We had to restrict ourselves to rather small values of r because the
correlation functions decrease very rapidly and for large r their numerical
evaluation becomes more and more difficult. The fact that they decrease
exponentially suggests that the screening masses can be read off already for
small r’s. The exponential behaviour is shown in Figs. 3a and 3b, where
we plotted the functions rxsg}),(r) and rxg)g(r).

At zero temperature our numerical procedure gives the results which are
in rather good agreement with what one expects from the analytic consider-
ations; the numerically calculated pion screening mass agrees exactly with
the analytic result whereas in the sigma channel we find a small discrepancy.
This may be caused by the fact that we consider only small distances.

The temperature dependence of the screening and dynamic masses is
shown in Fig. 4. For 0 < T < 200 MeV we observe that the screening
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ryep(r) [fm™]

rYss(r) [fm™]

1.0 15 20
r [fml

Fig. 3.  The spatial dependence of the static correlation functions in the (a)
pion and (b) sigma channels. The solid, dashed, pointed-dashed, and pointed lines
correspond to the temperatures T' =0, 200, 300 and 400 MeV, respectively. The
numbers at the lines are the values (in MeV) of the screening masses.

masses are close to the dynamic ones. This is what one could expect be-
cause for small temperatures the Lorentz invariance is only slightly broken.
Interesting things can be observed for larger temperatures. Both screening
and dynamic masses exhibit the restoration of chiral symmetry although
they substantially differ from each other. In the full interval, 0 < T < 400
MeV, the qualitative behaviour of the screening masses and of the dynamic
ones is similar and resembles the results of the lattice simulations of QCD.

Our observation that the dynamic masses are different from the screen-
ing ones contradicts the results of Ref. [10], where it was argued that they
are the same even at finite T. In Ref. [10] the chiral limit, m = 0, is con-
sidered. Afterwards, the gap equation is used to find that the two masses
are equal. The point is, however, that in Ref. [10] the non-trivial solution
to the gap equation is used. It exists only if T < T, (in the chiral limit T,
is well defined) and for T > T, we have to take into account just the trivial
solution M = m = 0. The trivial solution does not allow us to simplify the
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Mgyns Meer [MeV]

0 100 200 300
T MeV]

Fig. 4. The temperature dependence of the screening (dashed lines) and dynamic
(solid lines) masses. The parameters as in Fig. 1.

denominator of the correlation function, what is essential for the proof of
the equality of two masses in [10]. Consequently, the arguments of Ref. [10]
are for T > T. not convincing and we cannot expect that mser = Mmgyn.
The problem remains what happens at T' < T.. The structure of the poles
suggests that meer = mgyy, but there exists a thermal cut whose contri-
bution might be not negligible. We are, therefore, of the opinion that this
situation deserves a separate study.

T T T
—_
\L

g 5 .
£

0 n 1 A 1 A 1 1 1 1

100 200 300 400

T [MeV]

Fig. 5. The ratio mycr /T plotted as a function of the temperature. The pointed
line corresponds to the Eletskii-loffe limit: my., = 2#T.

Another interesting point is to check whether the screening masses ap-
proach the Eletskii-Ioffe limit, i.e. if they are equal to 2= T for large T'. Our
numerical results for the pseudoscalar channel are shown in Fig. 5. One
can see that the ratio mycr /T grows with the temperature for T > T, but
even at T = 400 MeV it is still smaller than 27. (In the scalar channel the
high temperature behaviour is the same as in the pseudoscalar one.) As
we have already mentioned this type of behaviour is observed in the lattice
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simulations. In the (pseudo)scalar channel the screening masses are smaller
than 27T what is in contrast to the (axial)vector channel where they are
equal to 2xT already for the temperatures slightly exceeding T..

Our result suggests that the NJL model can explain the existence of the
non-negligible (residual) interaction in the (pseudo)scalar channel. Never-
theless, before drawing any definite conclusions the calculations in the (ax-
ial)vector channel should be done. If the difference between the behaviour
of the screening masses in the (pseudo)scalar channel and the (axial)vector
one were found then it would act much more in favour of the model. Work
in this direction is in progress.

6. Summary and conclusions

In this paper we studied static meson correlation functions in the NJL
model. We did numerical calculations and, in the special cases, found ap-
proximate analytic results. We were mainly concentrated on the calculation
of the meson screening masses, i.e. quantities which characterize the range
of the correlation functions. Our general conclusion is that the results ob-
tained in this model are in overall good agreement with those coming from
lattice simulations of QCD.

We introduced a regularization scheme which is a modification of the
Pauli-Villars method. It protects chiral symmetry, guaranties the appro-
priate convergence of the correlation functions and allows us to do analytic
calculations. The possibility of doing analytic calculations is very important
because the asymptotics of the correlation function is connected directly
with its analytic structure.

In the upper half-plane of the complex three-momentum the static cor-
relation function has two cuts (scalar channel) or two cuts and a pole (pseu-
doscalar channel). The Fourier transform defining the spatial static correla-
tion function can be represented as a sum of different contributions related
to these cuts and the pole.

At zero temperature one of the discussed cuts is absent. The pion
screening mass is equal to the dynamic one. They are both determined
by the position of the pole because the contribution from the second cut
is, at large distances, negligible. On the other hand, the sigma screening
mass is slightly different from the dynamic one. This difference is caused
by the unphysical possibility of the decay of the sigma meson into a quark-
antiquark pair. Mathematically, this fact is reflected by the absence of the
isolated pole in this channel. The sigma screening mass is determined by
the position of the cut whereas the dynamic mass is defined by the zero of
the real part of the denominator of the correlation function.

At sufficiently high temperature the pion pole disappears and we have
to deal, in both channels, with two cuts. The contributions from these
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cuts show large cancellations which lead to the exponential decay of the
correlation functions. In the limit T — oo we find that the screening masses
are equal to 27T independently of the channel. This result is characteristic
of a gas of non-interacting quarks. At large but finite temperatures we
observe, however, differences between the actual values of the screening
masses and the limiting case 2xT. These facts are in general agreement
with the lattice simulations of QCD.

We thank Prof. W. Weise for his critical remarks, in particular, those
concerning the regularization of the matter parts of the correlation func-
tions. W. F. wishes to acknowledge the very warm hospitality of the Theory
Group at GSI.
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