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It is suggested that the Wick rotation angle is a genuine dynamical
degree of freedom, rather than just a technical device needed to improve
the convergence of functional integrals. The one-loop effective potential
V(8) of the Wick angle 0 is calculated, using heat-kernel regularization. It
is found that when the number of fermionic degrees of freedom exceeds the
number of bosonic degrees of freedom, the real part of V(#) is minimized,
and the imaginary part is stationary, uniquely in D = 4 dimensions, at
the value § = =, corresponding to Lorentzian signature.

PACS numbers: 03.65. Db

We usually take for granted the fact that spacetime is Lorentzian, i.e.
locally Minkowski rather than, say, Euclidean, in a suitable reference frame.
In this talk I will argue that there may be a dynamical reason why spacetime
signature is Lorentzian in D=4 dimensions. My discussion will be based on
work reported in Refs [1, 2]; the second reference written in collaboration
with Alberto Carlini.

The word “signature” refers to real, symmetric matrices G, which can
always be expressed in the form

G = EDET, (1)

where
D = diag[-1,-1,...,—-1,+1,+1,...,+1,0,0,...0]. (2)

* Presented at the XXXIII Cracow School of Theoretical Physics, Zakopane,
Poland, June 1-11, 1993.
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The (unique) diagonal entries of the matrix D are known as the signature of
the matrix G. In general relativity, the metric tensor g,, of a D-dimensional
manifold is a real symmetric matrix, and can therefore be written

Guv = €Snased
n = diag[-1,-1,...,-1,41,4+1,...,+1}], (3)

with zeros in the signature excluded if g,, is non-degenerate. Two impor-
tant special cases are

n = diag[+1, +1,...,+1], (4)
known as Euclidean signature, and
n = diag{-1,+1,...,+1], (5)

which is Lorentzian signature.
Classical relativity theory gives no clue as to why spacetime is Lorentzian,
rather than having some other signature. The Einstein field equations

.R [ 7 %gpyR = _NT‘LV 3 (6)

actually make no reference at all to the spacetime signature. There are
Euclidean solutions to these equations and there are Lorentzian solutions;
there are even solutions, found in Ref. [3], which are Euclidean on part of
the manifold, and Lorentzian on the rest. The simplest of these “mixed”
solutions is for pure gravity with a cosmological constant A = 3H?/x. Then
the Robertson-Walker metric

2
ds? = N(t)dt® + R%(t) ( icffrz +r?(d6? + sin’ 0d¢2)) ; (7

with
x _ _ cos(Ht) )
~5H <t<0: N=41 R(t)= i Euclidean,
t>0: N=-1 R(t)= E(-)—S—hz—(lifﬁ Lorentzian, (8)

is a solution of Einstein’s equations, which can be visualized as joining a
section of a Euclidean hypersphere to an expanding (Lorentzian) DeSitter
space.

If classical physics doesn’t provide an explanation for Lorentzian sig-
nature, then the explanation (if there is one) must be found in quantum
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phenomena. Let us consider, in the spirit of standard quantum field the-
ory and statistical mechanics, the possibility that Lorentzian signature is
somehow selected by the vacuum state of quantized fields. More precisely,
suppose we consider 7, as a dynamical variable. Then in principle, by
integrating out all other degrees of freedom, we could calculate an effec-
tive potential for the signature V,g(7), and look for the minima/stationary
points of this potential, which would dynamically determine the signature
of the vacuum state. To carry out this program in practice, we must first
decide on the range of the variables

7I=diag[0'1,02,---,0D]' (9)

These might be taken as Ising-like variables, i.e. 0, = £1, but that choice re-
stricts signature fluctuations, except in some special cases, to pathologically
discontinuous metrics. Nevertheless, one expects |o,| = 1, since any varia-
tion in the modulus of 7, can be absorbed in the vielbeins ej. The modulus
of o,, must therefore be fixed, for otherwise we are overcounting degrees of
freedom. Thus, if we wish to consider tangent-space metrics 7),; which in-
terpolate continuously between, e.g., Euclidean and Lorentzian signature,
it is necessary to consider complex entries of unit modulus ¢, = exp[ify,].
In fact, a special case of such a metric is a well established tool of quantum
field theory, where it goes under the name of Wick rotation.

The problem in relativistic quantum field theory is to calculate Feynman
path integrals in Minkowski space of the form

Zp = /d;z(e,gb, ¥, ) exp (-i/d%ﬁﬁ) , (10)

where du(e, ¢, 9, ¥) is the integration measure for the tetrads, and other
bosonic (¢) and fermionic (1, 9) fields. The restriction to Lorentzian space-
time is enforced by working with a fixed signature

Juv = e;nabeg )
Nab = dja'g[_l’ 1,"'11]9 (11)

and in the case of a flat background, one simply sets g,., = 7,,. To im-
prove the convergence of the functional integration, it is useful to make the
rotation ¢ — it to get the Euclidean path integral

zs= [dute,8, 0P e (- [ aPavic) (12)

where '
Nab = dxag[l, 11“"1]' (13)
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A path integral interpolating between the Minkowski and Euclidean forms
is simply

7= [aute.d . Bem (- [ aPevic) (14)

where )
Nap = diagle®?,1,...,1]. (15)

In the interpolating path-integral, the limit § — = from below gives the
correct Feynman prescription for propagators in Minkowski space, which
are ill-defined at § = = exactly. The value § = 0 gives the Euclidean theory,
and is a particularly useful choice for Monte Carlo enthusiasts. Finally, the
range § > 7 (or § < —) must be excluded, since the real part of the kinetic
term in scalar field theories goes like

Re[\/5L) = Re (e-""/z(aws)2 + eie/z(v¢)2)
= cos (g) [(Bod)? + (V) (16)

which is unbounded from below for |8| > =.

Wick rotation (§ = 7 — 6 = 0) is usually thought of as just a technical
trick to improve convergence of the Feynman path-integral, and recover
the correct propagator prescription. Instead, we propose to treat 6 in the
range [—7,n] as a genuine dynamical variable, and will compute the one-
loop contribution to the effective potential V(8) due to massless bosons and
fermions.

Allowing 8 to fluctuate calls for some generalization of ordinary quan-
tum mechanics. Begin from the usual path-integral definition of transition
amplitudes

N t
Glbs tsldirti] = /dp(¢) exp —/dt/dD"lzﬁL .
¢ 4
which leads to the generalized Schrddinger equation
0.¥(¢] = ~e**/*HE(g), (18)

where H is the standard (and hermitian) Hamiltonian. For any 6 # £= the
norm of ¥ can change. Therefore, to conserve probability, we must define

_ (#10/2)
@ =g (19)
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so that
. 6.
0:(Q) =sin E(z[II, Q)

— cos S{(HQ + QH) — 2(Q)(H)}. (20)

Thus for Q hermitian, (@) is real, and probability is conserved. On the
other hand

B(H) = ~2con o ((H — (H)), (21)

which means that conservation of energy (along with Lorentz invariance),
is violated for any non-stationary state, at § # xx. In general, for non-
Lorentzian spacetime, an arbitrary initial state will relax to the lowest en-
ergy eigenstate that has a non-vanishing overlap with the initial state. This
means that any theory of dynamical signature faces a very strong challenge:
not only must § = +x come out as the most probable signature, but also it
must be shown that fluctuations away from Lorentzian signature are enor-
mously suppressed.

In order to compute the most probable 8, we need to find the effective
potential V' (6) obtained after integrating out all other fields. The integration
measure, as well as the Lagrangian, may be 6-dependent. I will fix the 6-
dependence of the measure by assuming:

1. For free fields of mass m, the contributions to Z in Eq. (14) from each
(propagating) bosonic degree of freedom are equal, and inverse to the
contributions from each fermionic degree of freedom. Thus, e.g., Z =1
at any 0 for a supersymmetric combination of free fields.

2. The integration measure for scalar fields is given by the real-valued,
invariant volume measure (DeWitt measure) in superspace du(¢) =
D¢\/|—GT , where G is the determinant of the scalar field supermetric
G(z,y) = /96(z — v).

Under these assumptions, the one-loop contribution Vg(8) to the effec-
tive potential V_g(6), due to a massless scalar field propagating in a flat
(9uv = Muv) background is

exp (- / dDzVs(O)) = / D¢ exp (- / dDz\/ﬁn“baa¢Bb¢)

= det ™12 [— /%8, 8,). (22)
Heat kernel regulation of an operator M is given by

oo
det ™} (M) = exp /-i—s'l‘re_"M) , (23)
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so that

det™1/2[— /70, 8]

T ds dPp : ;
1 efa—i8/2,2 10/2 22
2 / s (27)D exp [ s(e po +e7'"p )]
1/A3

= exp (/ dDz—E(fK—-—?E—ﬁexp [—i(D - 2)2])
= exp (.. / dDzVs(o)) , (24)

or

D
Vs(0) = - Grarya7 P (-io-23). (25)

where A is a high-momentum cutoff which, given the non-renormalizability
of gravity, is taken to exist at the Planck scale.

Then, for a set of massless fields with ng bosonic and ny fermionic
physical degrees of freedom, the one-loop contribution is

AP _ 4
V(O) = (nF — nB)B(47()—D/2 exp (—‘l(D - 2)1‘) . (26)
This potential is complex. We therefore look for a value of 6 in the range
0 € [-=, ] such that Im[V] is stationary, and Re[V] is a minimum. This
requires simultaneously satisfying

cos -2)8) =
((D 2)4) ° } 6 €[-=,~x]. (27)
min [Re[V(0)]] = 0

It is easy to show that these conditions can only be solved, for massless
fields, in D=4 dimensions, at § = +x. There are five cases to consider:

(i) np < np. Then minRe[V] < 0 — no solution.

(#i)) np = ng or D = 2. Then V(0) is independent of #, and no 8 is

preferred.

(#) np > np and D—_1r < Z. Then minRe[V] > 0 — no solutjon.

(iv) np > np and 2 -————1r > 7. Then minRe[V] < 0 — no solution.

(v) ngp > ng and 2727 = Z. In this case, both conditions are satisfied
ag 02 = :i:1r, which corresponds to Lorentzian signature. The equality

=27 = § can, of course, only be achieved for a spacetime dimension-
ahty D=4,
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Case () is the unique solution; we have therefore found an interesting
connection between the Lorenztian signature of spacetime, and the D = 4
dimensionality of spacetime. The next question is how far 8 can fluctuate
away from |6| = x. Also, we would like to know if a more generalized form
of the signature ) ) )

Nab = diag[ewl ’ eioz’ ceey ewD] ’ (28)

should be considered. To answer this, we must first consider whether there
are any restrictions which should be imposed, for the sake of consistency,
on 6(z) in curved spacetime.
There are three requirements which I believe are reasonable:
1. For the metric g,, = 7., spacetime is flat in the sense that the Rie-
mann tensor vanishes;
2. The number of gravitational degrees of freedom (= inequivalent vielbein
degrees of freedom) is independent of the Wick angle;
3. Covariant derivatives of spinors have appropriate properties; e.g. Dirac
gamma matrices are covariantly constant.
It will be shown that all three of these requirements are satisfied by the
following conditions:

0 = 0(1(2)),
el = 0,T(z). (29)

Let us begin with the first requirement. In cartesian coordinates, the
Riemann tensor vanishes for g,, = 7,, if § = 6(t); i.e. § depends only on a
(preferred) time coordinate. A preferred time direction is, of course, quite a
violation of Lorentz invariance, but remember that this symmetry is violated
anyway, for any § # 0,+w (the goal is to show that the symmetry arises
dynamically, through a preferred value of ). The obvious generalization of
6 = 0(t) to curved space is to say that the gradient of # is parallel to ez,

t.e. 0,0 = f(z)ef,, but then consistency requires that

0=(8,8, — 8,8,)0 = 9,(fel) — 0u(fel), (30)

which is easily seen to be fulfilled by the conditions (29).

Turning next to the second requirement, we note that in ordinary
Lorentzian or Euclidean spacetimes, g,, is real and symmetric, which means
that the metric has D(D + 1)/2 independent components (of course we can
subtract 2D degrees of freedom, due to diffeomorphism invariance, to get
the actual number of physical degrees of freedom). On the other hand
Juv = eﬁnabe,b,, and the vielbeins e have D? independent components.
This mismatch in independent components between the metric and the
vielbeins is resolved by the fact that there is a local Lorentz invariance
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which is O(D — 1, 1) in Lorentzian spacetimes, or O(D) in Euclidean space-
times, and therefore we should subtract the dimension of the Lorentz group
(D(D - 1)/2) from the D? vielbein components to get the actual num-
ber of degrees of freedom, up to diffeomorphisms. This gives D(D + 1)/2
components, the same as for the metric.

However, for § # 0, +x, the local Lorentz invariance is only O(D — 1)
and therefore, without further restrictions on the vielbeins, there would
be more independent vielbein components in non-Lorentzian spacetimes
than in Lorentzian spacetime. It is easily seen that the conditions (29)
are just what is needed so that the number of independent components is 6-
independent. The counting is: one component (T(z)) for e),, D(D —1) com-
ponents for the other vielbein components, minus the dimension of O(D —1)
which is (D —1)(D —2)/2. The number of independent components (before
taking account of diffeomorphism invariance) again adds up to D(D +1)/2,
which is our second reason for imposing (29).

The third argument for conditions (29) concerns fermionic actions in
curved spacetime. For bosonic fields, the action in the generalized metric
at arbitrary @ is obtained by using g,, = eznabef’, in the standard action.
The corresponding construction, for Dirac fields, is to use

{r*7° = -29**, (31)
in the standard Dirac action
Sp = / dPa/GH(~ir*D, + m)p, (32)
with
7 =ef,
D, = Op + %a“bw#ab ,
o®® =il
Wyab = €5€bpp (33)

where the 4® satisfy (31). The local Lorentz invariance of Sp is only
O(D — 1) at general 6, rather than O(D) (6 = 0) or O(D - 1,1) (6] = =),
but we can still ask whether the derivative D, defined in (33) has the usual
property of commuting with the 4#, or whether the metric is covariantly
constant w.r.t. D,. Introducing the “ict” notation
Juv = éﬁéﬁ s
ew/zez (a=0)

s (a#0)
{15, 75} = —26%, (34)

~a __
6#—
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it is clear that the covariant derivative should have the property

0= ngaﬂ = D#(égé;) ’
= (D,,é:)ég + ég(D,‘é;) , (35)

which implies
D,ét =8, +o2e =0. (36)

So the spin-connection in “ict” notation must be
‘:’pab = égépb;p 3 (37)
with the corresponding covariant derivative for spinor fields

“jet” __ 1 _ab-~
D/ = Ou+ 308 @pab

ab

of = 30178l (38)

The question is whether D, defined in (33) and D:f“” are the same. These
two derivatives are identical if

b b~
a® Wyab = Ufi' Wyab s (39)

which is easily shown to be a consequence of (29). The requirement that
the derivative D, have the properties expected of a covariant derivative on
spinor fields is thus the third reason for imposing the conditions (29).

We may now ask whether there can be more than one Wick angle in
the generalized signature, i.e.

Nap = diagle'®,e?®2, .. D], (40)

The requirements that spacetime is flat for g,,, = 7,,,and D, = Dict” for
spinors, would lead to the condition that 8,0, « ef;. But then the number of
independent components of the vielbeins (modulo diffeomorphisms) would
be less than D(D +1)/2, in violation of the requirement that the number of
gravitational degrees of freedom is independent of Wick angle. We conclude
that only one Wick angle is allowable.

Given the conditions (29), it is now possible to estimate the magnitude
of quantum fluctuations §6 away from Lorentzian signature. Assuming a
high-frequency cutoff at the Planck scale, the action for one Planck time is
roughly

AS ~ AYVIipso ~ lgao, (41)

P
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where [p is the Planck-length, and V is the three-volume of the T = const.
hypersurface. Therefore
13
80y ~ £, 42
(86) ~ & (42)
For a closed Universe of length scale on the order of 10!? light years, this

gives an estimate
§6 ~ 10784 radians, (43)

which is surely unobservable. Of course, in the very early Universe, signa-
ture fluctuations could have been substantial.

Finally, we note that the calculation of V() was carried out in a flat
background e = §3. However, V(x) has the interpretation of an induced
cosmological constant, whose magnitude is Planck-scale. This raises the
question of how an expansion around flat-space can be justified, which is
essentially the cosmological constant question. Possibly the cosmological
constant is screened somehow at large distances [4], but here let us just
consider the conventional approach of simply adding a counterterm

S. = / dPz \/9)c, (44)
to remove the induced term. Then, writing
D
A=(nF- na)W , (45)
the total effective potential to one-loop is
Vr(8) = Acei0/2 + de~UD=2)6/4 ’ (46)

and it is impossible to set Vp(6) = 0 for all §. Instead, for dynamical
signature, the cancellation requirement is to choose A, such that Vp = 0 at
the minimum/stationary point.

Denoting

f=—"19 4
I (47)

the cancellation conditions at the minimum/stationary point are:

0 -
Re[Vy] =0: /\ccos-2—+)«cosg=0, (48)
. 6 .6
Im{Vy] =0: Acsm—2—-)\sm—2-=0, (49)
8Im[Vyp] 6 D-2 6
30 =0: Accosz—- 3 Acos2—0, (50)

minRe[Vr] = 0. (51)
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Conditions (48) and (50) give

0= (2n+1)r, 6=m, (52)
while (49) implies
e = A. (53)
Then condition (51) gives 3
6=mx. (54)

However, § = 6 = = means that D = 4. Cancellation of the induced
cosmological constant at the minimum/stationary point is only possible in
D = 4 dimensions, and only for Lorentzian signature. Once again, the
combination D = 4 and § = 7 has been singled out.

The one-loop calculation I have discussed here was carried out for mass-
less fields. Mass effects are discussed at length in Ref. [2]. They do not
change the qualitative conclusions, except in the special case of np = npg
and D = 6. It was noted above that, for np = ng or D = 2, the V()
computed for massless fields was #-independent. Mass effects lift this de-
generacy, and we find (providing the bosonic and fermionic masses satisfy
a certain inequality) that there is another Lorentzian solution at np = np
and D = 6, which might correspond to some broken supersymmetric theory
in six dimensions, in addition to the previous Lorentzian solution found for
ng >npgatD =4,

It is a pleasure to thank the organizers of the 1993 Zakopane meeting.
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