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We argue that different Zy thermal vacua of hot pure Yang—Mills the-
oty distinguished in the standard approach by different values of Polyakov
loop average (P)r corresponds actually to one and the same physical state.
A critical discussion of the argument which are usually put forward in fa-
vor of the opposite conclusion (that, in pure continuum Yang—Mills theory,
distinct Zpn-phases may coexist in the physical space being separated by
the domain walls with finite surface energy) is given. In particular, we
note that the same arguments can be applied with an equal ease to abelian
theories and would lead to the existence of the walls in the high-T 4-dim
QED and to appearance of the queer high-T solitons with the mass oc T?/e
in the Schwinger model. We emphasize that these configurations may be
relevant for the Euclidean path integral but whether they correspond to
real Minkowski space objects is unclear.

PACS numbers: 11.15. Tk
1. Introduction
It was shown sometime ago that the pure Yang—Mills theory (with-
out fermions) undergoes a phase transition at some temperature T, [1, 2].
This phase transition exhibits itself in a radical change of behaviour of the

correlator
C(z) = (P(=)P*(0))r, (1)
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where P(z) is the thermal Wilson line:
1 B
P(z) = -N——Tr{Pexp [ig / ﬁo(z,'r)d*r}} (2)
‘ 0

(Ao = A3t®, 7 is the Euclidean time, and 8 = 1/T).

At small T, the correlator (1) falls down exponentially at large |z|
whereas, at large T, it tends to a constant. Physically, this phase transition
corresponds to deconfinement: at small T', the interaction part of free energy
of a test heavy quark-antiquark pair at distance R grows linearly with R
whereas, at large T, it tends to zero at large R.

It was argued later that, at high temperature, there are actually not one
but N, different phases distinguished by the expectation value (P(0))r =
C exp{2xik/N.}, k= 0,...,N. — 1. This has been interpreted as a spon-
taneous breaking of the Zx center subgroup of the SU(N.) gauge group
[2-5]. Recently, the surface tension on the boundary separating two differ-
ent phases has been calculated [6] (in the assumption that they exist, of
course). Coexistence of different phases at high temperature could lead to
nontrivial cosmological consequences [7].

However, the assertion that a symmetry which the system enjoys at
low temperature can be broken spontaneously at high temperature is very
radical and unusual. Much more natural and very common in physics is the
opposite situation where a spontaneously broken symmetry is restored at
high temperature.

Further, the statement of the spontaneous breaking of Z) looks suspi-
cious as the true symmetry of the pure Yang-Mills lagrangian in the con-
tinuum limit is SU(N)/Z N rather than SU(N) (gluon fields are not trans-
formed under the action of the elements of the center). There seems to be
nothing which can be broken.

The problem has many aspects and we are not able to discuss all of
them in this talk. We shall concentrate on the question whether narrow
domain walls separating the different Zp phases in hot Yang-Mills theory
exist and if so — in what sense?

2. Effective potential in constant Aj-background

Let us remind here one of the ways of reasoning which has led to the
conclusion of the existence of distinct Zp-bubbles [3]. Consider the partition
function of the SU(2) Yand-Mills system at high temperature presented as
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an Euclidean path integral:

2(0)= N [ [[{1 - coslap(@)}dg() [ dAu(z,7)

X exp{—% f dr / dz[(T4)? + (B0 A: + 963 X A;)? + B,-B;]} (3)
4]

where A is a normalization factor, 3 is the unit vector along the third
isotopic axis, the gauge Ag(z,7) = ¢(x)3 is chosen, and B; is the colour
magnetic field. The factor 1 — cos[gB8¢(=)] is the invariant measure on the
group.

In this approach, the dynamic fields A;(z, 7) satisfy the periodic bound-
ary conditions:

Ai(z,B) = Ai(=,0). (4)

The quantity of a particular interest for us is the constrained effective
potential defined as

Z“em{—ﬁV(”)V’“(¢°)}=<5[¢°——v;%—g; dw(z)]), (5)

where V(3) is the 3-dimensional volume of the system, and the averaging in
Eq. (5) is performed with the weight specified in Eq. (3). V*f(#°) can be
interpreted as the free energy with a constant background Ag = ¢°3.

A small 8 and small g (the effective coupling decreases with tempera-
ture), the integral can be done, and one gets

Vea(¢°) = '21? {1 - [(i‘ij)md.z - 1}2}2, (6)

The potential (6) has minima at ¢ = 2anT /g with integer n. It is easy
to see that half of them (with even n) correspond to (P)r = 1 while the
other half (with odd n) to (P) = —1.

Ay is the nondynamical variable canonically conjugated to the Gauss
law constraint. The latter is essentially the generator of the gauge transfor-
mations, and the matrix

2 = exp{iBg Apt®} (7)

can be interpreted as a matrix of a finite gauge transformation of the dy-
namic variables A;(z). Even and odd minima of the potential (6) corre-
spond to f2 = 1 and f2 = —1, respectively. Note, however, that both 2 =1
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and 2 = —1 correspond to one and the same trivial gauge transformation
of A%(x) and are physically undistinguishable.

3. Wall-like configurations

However, this argument alone does not yet exclude the existence of do-
main walls separating different phases in field theory. Really, one can imag-
ine a planar field configuration satisfying boundary conditions ¢(—o0,y, 2)
=0, ¢(00,y,2) = 2xT/g. It corresponds to the classical vacuum (one and
the same in the quantum mechanical sense) at z = oo but is nontrivial
in between presenting a noncontractable loop in the SU(N)/Zyn group (the
real symmetry group of the continuum Yang-Mills theory). Such loops exist
due to nontrivial #1(SU(N)/Zn) = Zn. It is even possible to determine
the profile of this wall-like configurations and to find their surface energy
[6]. T. Bhattacharaya et al. have written down the effective hamiltonian
depending on inhomogeneous ¢(z) as the sum of the tree-level kinetic term
and the periodic potential term (6) with z-dependent argument:

= [aa[ (22 1 vemyay). ®

This effective lagrangian resembles the Sine-Gordon hamiltonian and sup-
ports the wall-like classical solutions. These walls have the width ~ (¢g7)~!
and the surface energy

47('2 T3 3
°=3V6 3 0(gT") (9)
(for SU(2), or better to say for SU(2)/Z, =SO(3) gauge group).

One of our main observations is that the same arguments which have led
people to the conclusion on existence of the walls in pure YM theory can be
transferred without essential change also to high-temperature QED: if the
walls appear in the former, they appear also in the latter. The topological
reason for their existence in QED is nontrivial =; of the U(1) gauge group.

To understand better what happens, let us write down the effective
potential in constant Agy-background in high-T' QED. The one-loop result

is [3, 8]
Ve (4p) = —"2154 {1 _ [(5:4“ + 1) - 1} 2}2 (10a)

for spinor QED and

T o
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for scalar QED. The potentials (10a) and (10b) are periodic in Ag with the
period 2xT/e. As far as the quantum mechanical aspect of the problem is

= concerned, the fields Ag and A¢ + 277 /e are equivalent — the gauge trans-
formations 2 = exp{ieAo} acting on dynamic field variables are exactly
the same. But it does not resolve the question yet as, in the full analogy
with the Yang-Mills theory, one can consider a wall-like configuration of
the kind depicted in Fig. 1 (the field is assumed to be uniform in y and z).
This configuration carries topological charge (it presents a non-contractible
loop in U(1) group space) and cannot be trivialized.

Fig. 1. A wall-like configuration.

It is obvious that taking Eqs (10) at face value also for space-dependent
fields Aqo(z), adding the kinetic term o (8zA4o(z))?, and minimizing the
energy functional

2
eraon= [ o[A(25) rvrta] o
thus obtained, with boundary conditions
Ao(—oo,y,z) =0, AQ(OO,y, z)= 27"T/e’ (11b)

we would arrive at a wall-like configuration with the width of order of Debye
screening length Rp ~ (eT)~! and the surface energy oy.n ~ T*Rp ~
T3 /e. 1t is not difficult to work out the exact coefficients:
4x2 T3
OB = —m= — 12a
B=3 (12a)
for scalar QED (the calculation is just identical to that in pure YM theory
(6]) and
272(2v/2 - 1) T
op = — " —
3v6 e

for spinor QED. Thus, the same line of reasoning as that in Ref. [6] for
nonabelian gauge theories leads to the conclusion that the walls separating
different phases exist also in high temperature QED?!

(12b)



78 A.V. SMILGA

One could even give to these “phases” the same interpretation in terms
of Polyakov loop as the one usually given to Zx-phases of nonabelian the-
ories. Though, the standard Polyakov loop

(P1)T = (exp{iefAo(z)})T (13)

is equal to 1 at all classical minima of the potentials (10), one could consider
as well

(Prja)T = <eXP {%ﬂAo(t)}>T. (13a)

The loop (13a) describes the interaction of a static heavy source with the
charge e/2 with the electron and photon heat bath. P;/; = £1 at classical

potential minima Ag") = 27xnT /e depending on whether n is even or odd.
Likewise, one can consider

Py = <exp {%eﬁAo(m)}>T, (13b)

with any integer ¢, which describes the interaction of a heavy source with
the charge 1/¢, with the heat bath, and, classically, can acquire ¢ different
values. Introducing heavy sources with fractional charges to probe the sys-
tem involving only dynamic fields with unit charge is completely equivalent
to considering fundamental heavy color sources probing the pure Yang-Mills
system involving only adjoined dynamic fields.

Thus, if one takes seriously the existence of such walls in hot QED, the
global Z-symmetry of electrodynamics [where Z = x1[U(1)] is the factor in

the bundle R; LU(l) and plays the same role as the factor Z; = 7,[{SO(3)]

in the bundle SU(2)-—Z—"'->SO(3) and the factor Z for SU(N)] breaks spon-
taneously at high temperature ezactly in the same sense (if any) as the
global Zx-symmetry breaks spontaneously in high temperature Yang-Mills
theory.

For sure, that looks very strange and suspicious and the natural desire is
to look around in search for arguments which could disprove this conclusion.
To this end, let us simplify the problem still more and go to 2 dimensions.

4. Schwinger model

Consider Schwinger model — the 2-dimensional QED with one massless
charged fermion [9]. The action of the model reads

S= / [- i—Fi,, - Dy d%, (14)
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with ID = v,(8, — ieA,). The charge e has the dimension of mass. The
model is exactly soluble, and any reasonable physical question can, in prin-
ciple, be given the exact answer.

To begin with, let us find the effective potential on the constant back-
ground Ay at high temperature Schwinger model in the same way as it has
been done in [3, 8] for 4-dimensional theories. Thus, let us assume Aq(z, )
to be constant in space and time and impose the periodic (antiperiodic) b.c.
on the dynamic boson (fermion) fields:

Ai(z,B) = A4(2.0), (15a)
'»b(z’ﬂ) = _¢(z,0)‘ (15b)
v’"(Ao)
AO
T T

Fig. 2. Effective potential on constant Ay background in the Schwinger model.

On the one-loop level (and in the Schwinger model there is actually
nothing beyond), the background Ag is coupled only to the charged fermion
fields, and one has only to calculate the determinant of the Euclidean Dirac
operator ID(4y) = [7%(8p — ieAo) + 718;] in the constant Ay background.
Not dwelling on details, we give the result

2 2
T 40) = L _T
vV (Ao) = on [((Ao + . )mOd-M . ] . (16)

The profile of the potential is shown in Fig. 2. We see that, at small
Ay, the effective potential is just

Vef(4y) = #2—2 (40)?, (for small 4,) (17

where pu = e/,/x is the photon mass.
The potential (16) undergoes the change of regime at

xT(2n + 1)

Asing - =
0 €

(18)



80 A.V. SMILGA

and repeats itself going to zero at 49 = 27nT/el.

Now, we can play the same game as in four dimensions. After noting
that all minima of the effective potential (16) are physically equivalent (they
correspond to one and the same gauge transformation), we consider the field
configuration A¢(z) which interpolates between the equivalent vacua 49 = 0
and Ag = 2xT/e as shown in Fig. 1. It presents a topologically nontrivial
configuration (corresponding to a noncontractable loop in U(1) group) and
cannot be smoothly transformed to the trivial configuration Ag(z) = 0. One
may try to find the profile and the energy of this configuration by solving
the equations of motion with the effective hamiltonian

He = / {3(6:40) + V*T[4o(2)] }dz, (19)

with boundary conditions A¢(—00) = 0, A¢(o0) = 27T /e (¢f. Egs (8),
(11)). The result is

2) = %T—exp{p(z -z9)}, z < zg
Ao(2) = { 13'—[2 —exp{—u(z - :co)}] , T>2g (20)

for the profile and
3/2m2
M== eT (21)

for the mass. The width of the solution (20) is of order of correlation length
p‘l ~e 1,

An exact analysis shows that the assumption (19) was actually too
naive. Infrared singularities (which are much more malicious in 2 than
in 4 dimensions) destroy the local form of the effective hamiltonian com-
pletely. The true effective hamiltonian (which as everything can be found
in Schwinger model ezactly) is highly nonlocal and rather intricate. It is
remarkable, however, that the form and the energy of the solution to this
correct effective hamiltonian turn out to be exactly the same as in Eqs (20),
(21).

Thus, we are led to the conclusion that wall-like quasiclassical field
configurations appear universally in hot pure Yang-Mills theory, hot 4-dim
QED (both spinor and scalar), and hot Schwinger model. But what is their
physical meaning?

1 The reason for nonanaliticity of the effective potential at the points (18) are
severe infrared singularities occurring at these points. We refer the reader to
our paper [10] for the detailed discussion.
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5. Discussion

Consider first the simplest theory where this phenomenon occurs, i.e.
Schwinger model. Note that the configuration (20) carries nontrivial 2-dim
Euclidean topological charge

B L
v= %/d’r/dﬂ"m(z,r). (22)
o 0

(L > 1/e is the size of the spatial box introduced for infrared regulariza-
tion). Another name for it is the instanton number and the classical solution
(20) in the sector v = —1 should be called the thermal instanton.

Note that the high-T solution (20) has much nicer properties than its
counterpart at T' = 0. Zero-temperature instanton is a configuration de-
scribing the electric field which is constant in space and Euclidean time
and very small E = Fy; = +27/efL, so that the net flux (22) is equal to
+1. Thus, it is a highly delocalized configuration [11, 12]. Also, the quasi-
classical picture does not really work here — characteristic fields providing
main contribution to the path integral involve strong fluctuations of the
field density [13] and are similar to the homogeneous classical solution?.

But at high temperatures the situation is different. One can show that
at T > e, characteristic field fluctuations are Aflut ~ /T /e which is much
less than the amplitude of the classical solution (20) A§! ~ T/e. Thus,
the higher is the temperature, the better the quasiclassical picture works:
as temperature grows, the instantons cool down! Also, in contrast to the
zero-temperature case, they become localized — the solution (20) involves
nonvanishing flux density only in the region |z — zo[F*T ~ =1 ~ 1/e 3.

While interpreting the configuration (20) as an instanton, we think of
it as an Euclidean field configuration contributing to the path integral. It

? Quasiclassical picture is not adequate also in zero-temperature QCD. What is
specific for the Schwinger model, however, is that, though quasiclassical picture
does not work, quasiclassical calculations are still possible. The matter is that
the path integrals are ezactly Gaussian here and can be done irrespectively of
whether characteristic field configurations are far away in the Hilbert space
from the classical solutions or close to them.

The “cooling down” of instantons at high temperature occurs also in QCD —
the effective coupling constant a,(T) becomes small, and the instanton action
Sinst(T) = 2x/a,(T) (alias, the quasiclassical parameter) becomes large. That
allows one to perform some ezact instanton calculations in high-temperature
QCD [8, 14, 15].
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is seen, however, that it does not depend on Euclidean time 7, but only on
z.

The question we are not able to answer definitely by now is whether
this configuration can be interpreted also as a soliton configuration in the
Minkowski space, in other words — whether it can be treated as a real
physical object which can move, scatter on something, etc. We tend to
think that these objects do not exist in such sense. But in case they do,
they present a direct analog of the domain walls in 4-dimensional theories.

The latter appears due to nontrivial 7; (gauge group) and can be called
planar instantons (cf. the usual YM instantons which are localized and
appear due to nontrivial v3 (gauge group)). They exist (universally both
in nonabelian and abelian theories) as Euclidean field configurations but
probably can not be interpreted as real walls in Minkowski space, though,
to repeat it once more, a satisfactory answer to this question is not yet
obtained.

Finally, we want to emphasize that the question of whether or not do-
main walls really exist as physical object is equivalent to the question of
whether spontaneous breaking of Zp-symmetry really takes place. To illus-
trate this, we want to recall the discussion which had occurred some time
ago about whether U(1) singlet axial symmetry in QCD is broken explicitly
or spontaneously. The standard reasoning due to 't Hooft is that the singlet
axial current is not conserved due to anomaly

2
. g =
aui = 1on2 Tr{GuGuv} (23)

and hence U 4(1)-symmetry is broken explicitly. However, Crewther argued
that r.h.s. of Eq. (23) can be presented as a total derivative , K, and then
the current A

in=17s—Ku (24)

is conserved. The current (24) is not gauge invariant but the charge Q% =
J @3z is. Q° generates shift of the vacuum angle 6, and the latter can be
thought of as an order parameter corresponding to spontaneous breaking of
U 4(1) symmetry [16].

This is formally true but physically misleading as the “order parameter”
0 is fixed by superselection rule and cannot fluctuate — the states with
different 6 cannot coexist in one and the same physical space. Thus, there
is no massless Goldstone boson which always appear when a continuous
symmetry is broken spontaneously in the physical meaning of this word.

Likewise, spontaneous breaking of a discrete symmetry should be phys-
ically associated with appearance of domain walls. The breaking does not
really occur if the walls do not really appear.
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