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THERMODYNAMICS OF A QUARK PLASMA
IN THE MEAN FIELD*

J. HOFNER, S.P. KLEVANSKY AND P. ZHUANG®

Institut fur Theoretische Physik, Universitat Heidelberg
Philosophenweg 19, 69120 Heidelberg, Germany.

The thermodynamics of a quark plasma is studied within the two-
flavour Nambu-Jona-Lasinio model. We review the results that have been
obtained in the mean-field (Hartree) approximation, including chiral and
quark number susceptibilities, in which we treat contributions to the ther-
modynamic potential which arise to order 1 in the number of colours N..

PACS numbers: 12.38. Mh

1. Introduction

An understanding of the behavior of quantum chromodynamics at finite
temperature and density is of fundamental importance. In particular, it
is needed for a description of the development of the early universe and
for the interpretation of results from ultra-relativistic heavy-ion collisions,
where high temperatures and densities are reached, and a transition from
a hadronic phase of matter to one containing quarks and gluons is thought
to occur.

Numerical simulations of quantum chromodynamics have long since in-
dicated a chiral symmetry restoration phase transition that should occur
in the temperature range T = 100 — 200 MeV [1]. In addition, measure-
ments of the Polyakov loop [2] indicate a deconfinement transition in which
the composition of a system moves from one containing hadronic degrees of
freedom to one having solely a quark and gluonic content. For systems with
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net baryon number zero, the numerical simulations seem to indicate that
the two transition temperatures coincide [2].

As a step on the way to gaining an understanding of finite temperature
and density QCD, we investigate here the thermodynamics of a system
of interacting quarks within an effective model for QCD. As other authors
have done, we use the SU(2) Nambu—-Jona-Lasinio (NJL) model [3}, in which
the gluonic degrees of freedom are reduced to an effective local interaction
between quarks, in a manner that respects chiral symmetry. This model
has been successfully used to quantitatively describe the meson spectrum
at low excitation energies and other static properties [4]. In this paper,
we shall restrict ourselves to a description of the mean field approximation
(5-10]. In particular, we will keep the Hartree term only, in anticipation of
the fact that this is the leading term in an expansion in the inverse number
of colors, 1/N,. As far as this goes, some of the results that we will derive
are already known, while others are specific to this manuscript. We will
in general develop the formalism in a broad fashion that will more easily
permit us to formally incorporate fluctuations about the mean field, or
terms that are of higher order in an expansion in 1/N,. This is important,
since while mean field dynamics enable us to understand the mechanism
of chiral symmetry breaking, it describes the thermodynamics of quarks
in a temperature bath. Fluctuations however are necessary to include the
essential hadronic components into the general formalism. For details of
this, we refer the reader to the preprint [11].

Our procedure commences with a subdivision of the Lagrangian into
mean field and fluctuating parts. Since we have a contact four-fermion in-
teraction, we can simply construct the self-energy, and the thermodynamic
potential for the mean field part of the Lagrangian. Then, in dealing with
thermodynamical aspects of the quark system, the usual bulk thermody-
namic quantities such as pressure, energy and entropy densities and the
specific heat may be obtained directly from the thermodynamic potential.
In addition, we introduce a measure for the deviation of the order parameter
(¥¥), or effectively the quark mass, from its value in the chiral limit. We
call this the chiral susceptibility, x5. In the same way that the presence
of magnetic fields destroys the superconducting state in Ginzburg-Landau
theory, so the current quark mass is responsible for destroying the chirally
symmetric ordered phase in QCD. Thus x, is an indicator for the stability
of the phase transition with respect to variations in the current quark mass.

In regarding the meson spectrum, one may query whether a Goldstone
mode should be expected at finite temperature. Within the NJL model at
the Hartree or mean field level, this can be explicitly demonstrated to be
the case.

This paper is organized as follows. In Section 2, we present a general
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theoretical framework for the thermodynamic approach and we discuss the
mean field theory. In Section 3, we present detailed numerical calculations,
and we summarize and conclude in Section 4.

2. General framework for the mean field approximation.
2.1. The thermodynamic potential 2

The standard approach for dealing with the thermodynamics of a vari-
able number of particles is via the grand canonical ensemble. The grand
thermodynamic potential is related to the Hamiltonian of the system through
the defining equation,

e Pl = Ty AH-uN) (2.1)

where § = 1/T is the inverse temperature and p the chemical potential.
Here N is the number operator. In Eq. (2.1), the trace Tr is to be taken over
all states. In general, one ignores the colour fluctuations that are implicit in
such a sum. These are thought not to play a major role because of their large
excitation energy, and technically, they can be removed by projecting onto
color neutral states [12]. Once 2 is known, the thermodynamic functions
that measure the bulk properties of matter can be obtained. For an infinite
system, these are the pressure density p, the entropy density s, the quark

number density n, the energy density ¢ and the specific heat ¢, that are
defined as

P:-'"‘-Q,
__o2
=TT’
€= —-p+Ts+pun, n=—-§£,
7
Oe
C-a—T. (22)

If the system in question undergoes a phase transition and has associated
with it an order parameter m say, then it is expected that f2 be minimal
with respect to this parameter, i.e.

on %N

a—’n'(T, i, m) = 0, W(T, H, m) Z 0. (23)
This equation is the so-called “gap equation” of the system. In effect, (2.3)
is nothing other than the generalization of the analogous zero temperature



88 J. HUFNER, S.P. KLEVANSKY AND P. ZHUANG

BCS approach to finite temperatures, in which a variational ansatz for the
ground state wave function is made, and the total ground state energy is
minimized with respect to the variational parameter to give the gap equa-
tion.

In what follows, we make a particular choice of the Lagrange density,
and evaluate 2 in the mean field approximation.

2.2. The Lagrange density.

The two flavor version of the NJL model is defined through the La-
grangian [4]

L =9(i P - mo)d + G[($¥)* + (PirsT9)?]
= Lfree + Lint - (2-4)
Here G is a constant of dimension [GeV]~2, and 4, ¥ are Dirac spinors with
flavor, color and spinor indices suppressed. The model is non-renormalizable,

and is only fully specified with the inclusion of a regulator A for divergent
quantities. One can separate the scalar ¢ into its mean field and fluctu-

ating parts, _ _
v = (Y9) + 4, (2.5)

with §, = ¢ — (¢). The thermal average (¥¢) is assumed real but is
otherwise as yet unspecified. Then the Lagrangian can be written as

L::[:mf-{-ﬂﬂ, (2.6)

where _ _ _
Lomg =9 P~ (mo - 2G(P¥)) ¥ — G(¥v)?, (2.7)
Ly =G(85+82,). (2.8)

Here 6,5 = ($i757%) represents the pseudoscalar fluctuations.
Keeping only the mean field part of the Lagrangian, one identifies the
mass term as

m = mg — 2G(Y) (2.9)

which is the usual result obtained in the Hartree approximation when (%)
satisfies the gap equation. Here we will go another way, namely by deter-
mining (¢y) from thermodynamic considerations [8], using the equations
of Section 2.1. The thermodynamic potential associated with the NJL La-
grangian (2.6) may also be subdivided into a mean field and a fluctuating
contribution,

m—-m 2
2T, p,m) = (L‘Egl— + 'Qq(Ta Hy m)) + nfl(Ta Bym), (2.10)
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where the two terms in the bracket relate to the mean field. The first
expression in the bracket originates from the last term in Eq. (2.7) and re-
flects the contribution to the total energy that is required in the Hartree
approximation over and above that which arises from summing single par-
ticle states (see, for example [5]). Physically, this term delivers a contri-
bution to (T, u, m) from the vacuum. 2,4(T, u, m) is the thermodynamic
potential that is associated with free constituent quarks and antiquarks of
mass m given by (2.9). £24(T, u, m) represents the contribution due to the
fluctuations from the mean field and has both pseudoscalar-isovector and
scalar-isoscalar components. In what follows, we briefly review and then
expand on the thermodynamics associated with the mean field approxima-
tion, and refer the reader to Ref. [11] for the calculation that includes the
fluctuating components.

2.3. Mean field thermodynamics.

2.3.1. Thermal properties of particle masses

The thermodynamic potential associated with the mean field approxi-
mation [5] is

2
m—-—m
05,¢(T,p,m) = g——_4—G_o—)— + 24(T, p,m), (2.11)
with
'Oq(T’ B,m) =
d’p . 2NNy [ d&°p —B(Ep+1) —B(Ep—1)
NN [ By (27r)31n[1+e p+i)] [1 4 &P E=)] .

(2.12)

Here E: = p? + m?, B is the inverse temperature, and N., N ¢ are the
number of colors and flavors respectively. Equation (2.11) holds for any
value of the scalar quark condensate (Jn,b), which is the order parameter
of the chiral phase transition. Since this quantity and the effective quark
mass m are related in a simple equation, Eq. (2.9), we may also call m the
order parameter. In the spirit of thermodynamics, the physical system is
described by that value of m for which 2,,¢(T, #,m) is a minimum,

anmf(Ta H,y m) _
om B

Since £24(T, u, m) depends only on m?, we have
(_1_ + 6‘QG(T,F’ m)) _ M (2.14)

0. (2.13)

4G Om? T 4G
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This equation is identical to the usual thermal gap equation in the Hartree
limit, which we write as

m = 8mGNN¢l; + my (2.15)
defining

dp 1

L= ] Gyis,

(tanh §(Ep + p) + tanh §(Ep, — p)) (2.16)

Equation (2.15) gives the quark mass m as a function of the temperature T
and the chemical potential u. For a vanishing current quark mass mg, 2.,
exhibits a chiral phase transition. The phase transition line in the T — pu
plane separates the regions with m # 0 (chiral symmetry broken) from the
one with m = 0 (chiral symmetry restored).

In the self-consistent Hartree approximation, it is well-known that the
masses of the 7 and o mesons satisfy the dispersion relations [4]

1—2GHp(k =0, iv, =mp) =0, (2.17)

where mps is the mass of the respective meson, and Ilps the associated
retarded polarization function, analytically continued to real frequencies
iv, — mpg + in. For completeness, we list these functions. One has in the
pseudoscalar and scalar channels respectively,

dp 1 B [tanh &(E,+ k) + tanh &(E, — )]
@ Ep gz 3 P PR

I.(0,ms) = NcNf

(2.18)
and
d’p 1 Ef, —m?

@V B, g1 %a“a“h%wﬁﬂ)ﬂarm 8(Ep—p))-

(2.19)
The divergent integrals here and in what follows are understood to be reg-
ulated by a cutoff A on the three momentum.
In the phase in which chiral symmetry is broken, the quark mass is a
solution of the equation

1- BGNcNfIl (T, o, m) =0. (2.20)

One observes from Eq. (2.18) that the pion polarization function for zero
pion mass and all temperatures and chemical potentials, IT.(0,0) exactly
equals I; /8N.N;, which implies that the mass of the pion is zero in the
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chirally broken phase. Thus the pion is the Goldstone mode of this tran-
sition. At the same time, one sees by inspection that m, = 2m whenever
my = 0. The explicit expressions for the gap equation and the pion polar-
ization functions show that the Hartree approximation to the gap equation
plus the RPA approximation to the polarization functions conserves the
properties associated with chiral symmetry. This fact makes the mean field
approximation to the self-energy attractive for a study of the chiral phase
transition in the NJL model.

One can also determine the critical exponents for the chiral phase tran-
sition. For instance, if we denote the transition temperature by T,, we find
for the quark and meson masses m(T) and mps(T),

m(T) ~ |T — Ty|/?,
mp(T) ~ T - Ty|'/2, (2.21)

in the neighbourhood of T,. The critical exponents 1/, are simply a conse-
quence of the fact that I (T, 4, m) in Eq. (2.16) and the polarization func-
tions ITp(T, pu, mpr,m) depend quadratically on the masses m and myy.
One has a simple zero for m%(m?,) as a function of T and hence Egs (2.21)
follow.

2.3.2. Thermodynamic functions

The first two terms that occur in §2,,¢(T, ) in Eqs (2.11) and (2.12),
t.e.
(m — my)? d3p
~————— - 2N.N ——=F 2.22
4G ] ey (2.22)
represent energy contributions from the vacuum, since they do not vanish
with T — 0 and g — 0. Physically, the quantity (T, u, m) corresponds to
the pressure density (except for a sign) and only the pressure of a system
relative to the vacuum can be measured. We therefore introduce the rescaled

thermodynamic potential
AT, p,m) = (T, p,m) — £2(0,0,m), (2.23)
which from now on, we denote by 2(7, u, m) for simplicity. From 2(T, u, m),

we can obtain the thermodynamical functions that measure the bulk prop-
erties of matter, as given by Eq. (2.3).

-Qvac =

2.3.3. Chiral and quark number susceptibilities

In order to discuss the stability of the chiral phase transition with re-
spect to the current quark mass mg, we introduce the concept of chiral
susceptibility,

om

Xx = o (2.24)

mo=0
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where my is the current mass. This quantity indicates how the order param-
eter m changes, when we introduce a small current quark mass mgy. We can
derive an explicit expression for this from the gap equation (2.15). Letting
m — m + dm, we find that §m satisfies the equation

: oI (m?
ém [1 - SGNcNfI] (mz) - 16GNcme2 ———31%1—2——)] = 6mo ) (2.25)
so that
2 200(m?)] ™
From the gap equation, this may be simplified to read
2,71
~ [16GN N ;m?2h(m7) CSB

XX(Ta I‘) = [ f om ] (2.27)

+[1 - SGNcNfIl(O)]'_l, CSR

where CSB and CSR refer to the phases in which chiral symmetry is broken
or restored, respectively.

For completeness, we also examine the quark number susceptibility x,
[13, 14]. This quantity measures the susceptibility of the quark number
density with respect to changes in the chemical potential, and is defined as

on

Xq(T) = |, (2.28)
=

Lattice simulations of QCD [1, 15, 16] have indicated that a sharp rise occurs
in xg at T = T, and for T > T, xq — 2TZ%. There is some speculation
that at such temperatures, QCD may be treated approximately as an ideal
gas of weakly interacting quarks.

It is interesting to note that the isothermal compressibility kr=1/n(8n/0p)r
is closely connected to x4, since k7 can be rewritten as

1 8n

Kp = n—zgﬁ . (229)

The isothermal compressibility is a measure of the density fluctuations,
which can be directly seen through the relationship

= g%)_(fv_)i (2.30)



Thermodynamics of a Quark Plasma in the Mean Field 93

that can be derived from the connection of n with the partition function Z
and the relation P = —{2, see Ref. [17].

3. Numerical results.

In this section, we present the numerical calculations of the quark and
meson masses, and the bulk quantities specific to the thermodynamics of
the problem.

As was pointed out in Section 2, the quark mass m can be calculated
as a function of the temperature T and chemical potential u via the gap
equation, Eq. (2.15). For a vanishing quark mass mg, 2,5 exhibits a chiral
phase transition. The phase transition line is determined from the equation

1 on, ]
[4G’ om?

in the chiral limit, and separates the regions with m # 0 (chiral symmetry
broken) from the one with m = 0 (chiral symmetry restored). This is shown
in Fig. 1(a) in the T — u plane, and in Fig. 1(b) in the density-T plane. The
baryon density used in this figure is denoted as n;. The behavior of the
quark and meson masses with temperature (4 = 0) is sketched in Fig. 2,
for the parameter set A = 0.65 GeV and G = 5.01(GeV)~2, for which
the quark condensate density (#u) = (dd) = (—0.250GeV)?® and the pion
decay constant fr = 0.093GeV. For u = 0, the critical temperature T,
for the phase transition is found to be 190 MeV, and the standard results
my(T) = 2m(T) and m«(T) = 0 hold for T < T,.. The 7 and & mesons meet
after the critical temperature for chiral symmetry restoration is reached, and
thereafter their thermal energy dominates. Above the critical temperature,
the situation is more complicated, since the quark mass is zero, and the 7 as

=0 (3.1)

m=0

05 ML M IR A B [ o o ML o e i
ta) ] T T ‘ ' T (o) ]

CHIRAL PHASE TRANSITION LINE sk CHIRAL PHASE TRANSITION LINE -

T

] 2 I
] £ 3 E
- & r ]
; ] E
01 - ;
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% " oos oi 0B 02 025 03 T T T T R T
T {Gev) T(GeV)

Fig. 1. The chiral phase transition line is given (a) in the g — T plane, and (b) in
the density-T plane. Here the baryon density has been normalized to the value for
normal nuclear matter, ngo = 0.17fm=3.



94 J. HUOFNER, S.P. KLEVANSKY AND P. ZHUANG

well as the o can decay into ¢ pairs. They are thus not stable bound states,
but rather resonances. One is therefore required to find complez solutions
of Eq. (2.17) of the form mps — mpr — iI'/2. In Fig. 2, the dashed lines
indicate the spreading mps £ I'/2 for the quark mass due to the presence
of this width.

In Fig. 2(b), the same calculation is indicated for the case of a non-
vanishing current quark mass of my = 5.0 MeV. For all values of T, the
o-meson is a resonance state, which can be seen from the dashed lines
indicating the magnitude of the width.

10 s 10 e —

(o) i 1
MASS SPECTRUM MASS SPECTRUM
o8- m, «0 b 081 me = SMeV =
me u =0 - ] my u 20 . bl

M {Gev)

T B T T a— T R T T ST
T(Gev) T (Gev)

Fig. 2. The mass spectrum is indicated as a function of temperature for (a) the

chiral limit, mo = 0, and (b) the case mo = 5 MeV. Shown are the dynamically

generated quark mass m, and the meson masses m, and m,. The dashed lines

indicate mps + I'/2, where myr, M = o, x is the mass of the state and I its width.

The thermodynamics functions for mg = 0 given in Eq. (2.2) are shown
in Figs 3(a)-3(d). One observes that the curve for the pressure is continu-
ously differentiable at T = T,, while the entropy and energy densities are
continuous, but display a kink. The specific heat, on the other hand, is
discontinuous. These findings are in agreement with a second order phase
transition. Above T,, we expect the thermodynamic functions to corre-
spond with those of an ideal quark gas with mass zero. In that case; the
ratios p/T4, and s/T3 should be independent of temperature, and are de-
termined by the number of degrees of freedom. The expected behavior is
indicated in all four graphs by the dot-dashed line. The calculated curves
undershoot this value significantly, and furthermore decrease with temper-
ature for T > T,. This last feature is a consequence of the use of a finite
cut-off in the expression (2.12) for {2,.

In analogy to the bag constant in bag models, in the chiral limit, a
chiral bag constant at T = 0 and p = 0 may be defined as the pressure (or
energy) difference between the physical vacuum and the chiral perturbative
vacuum,

By = 60(0’ O)lmzo - 60(0’ 0)'m¢0 H (32)
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Fig. 3. The thermodynamic functions (a) pressure, (b) energy and (c) entropy
densities, and (d) the specific heat, are plotted as a function of temperature for the
case mg = 0 and p = 0. In each case, the ideal quark gas limit has been indicated
by the horizontal dot-dashed line. The vertical line indicates the position of the
critical temeprature T, .

where €, = f2yac. In the NJL model, €,(0,0)|m=0 = —NNsA*/4x%. At
finite temperature and density, we may define the chiral bag constant to be

B(T, p) = €u(T, #)lm=0 = €u(T; p)lmo - (3:3)

One sees that
B(T,p) =0, (3.4)

in the region of the phase diagram (Fig. 1) where chiral symmetry is re-
stored. We indicate, for example in Fig. 4 the variation of the bag constant

B(T,0) with temperature for 4 = 0. The value at T = 0, B!/ = 157 MeV
is comparable with the MIT bafg model value (B%‘;T = 145 MeV). The bag
constant goes to zero at T = T,. This is not a result, but is an immediate
consequence of the definition, Eq. (3.3) for B.

We now discuss the calculations of the chiral and quark number sus-

ceptibilities, which are shown in Figs 5(a) and 5(b) respectively. The chiral
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Fig. 4. The bag constant is shown as a function of temperature for the case mg =0
and p = 0.

susceptibility probes the relationship between the current quark mass and
the order parameter, and it is seen to display the expected singularity at
the phase transition point. One sees that small variations in the current
quark mass (the symmetry breaking term) lead to large effects on the order
parameter in the phase transition region. Outside of this region, the value
of x is of order one.

200+ e T

T AR ARAGE 180 prrrr T T A

tal {5
80 CHIRAL SUSCEPTIBILITY = 125)- QUARK NUMBER SUSCEPTIBILITY -
[ »eo 100k oeet guark gos ]
o 7] ' |
x | 4 . r X
x I w078 , —
‘o P % s
; * osof-
20 = b
r 025F
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0 005 01 015 02 02 03 00 e e 02625 03
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Fig. 5. (a) The chiral susceptibility x, and (b) the quark number susceptibility are
shown as a function of temperature for the case mg = 0 and po = 0. In (b}, the
horizontal dot-dashed line indicates the expected ideal quark gas limit, while the
vertical dashed line gives the critical temperature T, .

Since the quark number susceptibility (Fig. 5(b)) is not related to an
order parameter, it is a continuous function. Once again, one would expect
that this function should attain its ideal quark gas limit, that is also indi-
cated on the figure. One sees that it undershoots this value significantly, and
once again, the decrease in its value for T > T, may be attributed to the
finite cut-off used to evaluate this quantity. The values of x, below T, also
requires some explanation. The phase transition should separate a region
containing only hadrons (T < T,) from the region containing quarks and
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gluons (T > T,). Therefore, one would expect that x /2T should be small
below the critical temperature, but this does not appear to be the case.
In this model, however, free quarks can exist below the phase transition
temperature, and it is this artifact that produces a non-zero contribution in
this region. We refer the reader also to the results from lattice gauge theory
[1, 15, 16]. These have not been incorporated into our figure, since they
are scaled results, corresponding to fixed values of m¢/T. Finally, we com-
ment that a similar calculation of the chiral susceptibility has been made in
Ref. [14].

4. Conclusions

In this manuscript, we have discussed the thermodynamics of a quark
plasma, using the NJL model to lowest order. This corresponds to the mean
field, or Hartree approximation, and represents the lowest order term in an
expansion in the inverse number of colours. The theoretical derivation starts
from the thermodynamic potential, since all quantities of interest may be
derived form it. Further, a formal extension of this calculation to include
fluctuations can be made by noting the the thermodynamic potential for
a four-fermion interaction can be expressed in general in terms of the self-
energy and the associated Green function of a system via the method of
coupling constant integration. This, in turn, leads to a Beth-Uhlenbeck
like expression for the fluctuations, in which their contribution to the ther-
modynamic potential is related to the phase shifts of the scattering states.
The details of this calculation can be found in Ref. [11].

To conclude, we comment on the limitations of the mean field calcula-
tion. While it has been useful in enabling one to understand the mechanism
of chiral symmetry breaking, it is obviously lacking at finite temperature,
since the physics that it describes contains no hadronic degrees of freedom.
This can be seen directly from Eq. (2.12). However, this is not the physical
scenario that we would expect. Fluctuations, on the other hand, introduce
the mesonic degrees of freedom in a natural way, and thus indicates the
importance of examining their inclusion and effects on the thermodynamic
properties of the system.
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the organizers of the Zakopane School for Theoretical Physics for the kind
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