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I discuss a comprehensive approach to the space-like physics in high
temperature QCD in three dimensions. The approach makes use of di-
mensional reduction. I suggest that this approach is useful for high tem-
perature QCD in four dimensions.

PACS numbers: 12.38. Aw

1. Introduction

The physics of hot and dense hadronic matter has received a lot of at-
tention recently. Due to asymptotic freedom, one expects that at sufficiently
high temperatures and/or densities, hadronic matter in thermal and/or
chemical equilibrium will behave as a weakly interacting system of quarks
and gluons (quark-gluon plasma). As a result, the bulk thermodynamical
quantities such as the energy, the pressure, the entropy, ... should display
black-body behaviour. The plasma should screen for space-like momenta
and display collective behaviour (plasma waves, hydrodynamical waves, ...)
for time-like momenta.

The low temperature phase of QCD is dominated by the physics of
pions and the general role of the spontaneous breaking of chiral symmetry.
The high temperature phase is not. To what extent one expects a phase
transition because of the qualitative change in the ground state properties
is not clear. Lattice simulation results are not yet definitive on this issue. In
so far, they seem to suggest a first order phase transition for four flavours,
and a second order phase transition for two flavours. The real world with
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three flavours seems to lie somewhere in between. For pure Yang-Mills the
transition is believed to be first order.

In these notes I will not attempt to address the issue of the phase tran-
sition in QCD. Rather, I will focus on the some of the aspects of the lattice
results at high temperature and try to put forward a general framework
for their global understanding. In Section 1, I review some of the lattice
results at high temperature. In Section 2, I outline a general strategy for
understanding these results based on dimensional reduction. In Section 3,
this strategy is applied to three dimensional QCD at high temperature. My
conclusions are summarized in Section 4.

2. Lattice results

In the vacuum, chiral symmetry is believed to be spontaneously broken.
What this means is that vacuum fluctuations allow for mixing between left
and right handed fermions in the massless case. In the chiral limit, the order
parameter is (§g), its behaviour versus temperature is shown in Fig. 1 for
four flavours [1]. For temperatures of the order of 150 MeV a substantial
decrease in (gq) is noted.

')

Fig. 1. Chiral order parameter as a function of 3 = 6/g* for 4 flavours and quark
masses mga = .025 (triangles), .01 (circles) and 0 (squares) [1].
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In the vacuum, color is expected to be confined at zero temperature.
The order parameter for confinement is the Polyakov loop

(P) = (Tr exp P/ igAgdey),

where the average is a thermal average, A4 is the imaginary part of the
gauge field and the trace is over one period 8 = 1/T of the imaginary time.
In [(P)]| is usually assumed to be the free energy of an infinitely heavy quark.
A sharp rise in the expectation value of the Polyakov loop is usually seen
following the drop in the chiral condensate [2].

71,

Fig. 2. Energy density and pressure normalized to the black body limit on a
finite lattice versus T'/T. {3]. The dashed horizontal lines refer to the perturbative
corrections to the black body limit.

Lattice measurements of the thermodynamical quantities in QCD show
a rapid cross over in these quantities at about 150 MeV. Fig. 2 shows the
behaviour of the energy density and pressure versus T /T,, normalized to the
black-body result [3]. In the regime T. < T < (2-3)T, there are substantial
deviations from the free massless gas limit, @°® = £~3P # 0. The fermionic
susceptibilities (singlet and isotriplet) show also a rapid variation in the
same temperature range as shown in Fig. 3 [4]. At low temperature the
susceptibilities are exponentially suppressed by the mass of the hadronic
modes.

The Polyakov-anti-Polyakov (connected) correlation function

(P(z) P*(0))

has been measured both at low and high temperature in the pure Yang-
Mills theory. At low temperature, the correlation function displays an area
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Fig. 3. Singlet (xs) and triplet (xns) as a function of 3 = 6/¢? for two flavours
4).

law behaviour. Recent simulations at high temperature indicate a screening
behaviour [5]. The screening range is estimated to be of the order of the
inverse screening mass 1/g7T. The time-like Wilson loop shows an area law
behaviour at low temperature, and a perimeter law at high temperature.
This is to be contrasted with the space-like Wilson loop which displays an
area law behaviour both at low and high temperature. The space-like string
tension at high temperature has been found to scale with T2 [5].
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Fig. 4. (a) Screening masses u/T = mg /T as a function of 3 for four flavours and
mga = .01 [6]. B = 5.15 is the transition point. (b) the same as (a) but for the =
and o propagators in the spatial directions.
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Lattice measurements of static hadronic correlation functions show that
the screening lengths asymptote 2xT (mesons) and 3= T (baryons) as shown
in Fig. 4 [6]. The exception being the pion and the sigma (scalar-isoscalar).
The pattern displayed by the measured s¢reening lengths suggests that the
thermal state preserves chiral symmetry. The pion-sigma channel, however,
suggests the presence of still large fluctuations possibly related with a chiral
phase transition. The lattice measurements of the transverse correlations
in the hadronic channels are shown in Fig. 5, for the pion and the rho [7].
Almost no change is detected from the low to the high temperature regime.
The correlations are expected to be absent in the free gas limit.
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Fig. 5. The pion (PS) and p (VT) "wavefunctions” at T = 0 and T = 1.5 [7].

Recent lattice measurements of the fermionic distribution around the
Polyakov line (heavy quark) are shown in Fig. 6 [8]). At low temperature
the fermionic distribution is localized around the heavy source in a range of
the order of 1/A (QCD scale), and sums up to —1. At high temperature,
the distribution is considerably smeared.

The lattice measurements discussed so far are somewhat contradictory.
On one hand, they suggest that the bulk thermodynamical quantities such as
the energy density, the pressure, the entropy, the susceptibilities, etc. when
measured at high temperature are consistent with the black body limit. On
the other hand, the space-like correlators whether gluonic or hadronic, show
strong evidence of correlations and thus an a priori non-black body limit.
How come ?

Before answering this question, let me emphasize the following : all the
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Fig. 6. Quark number density induced by a fixed quark at the origin at three
temperatures [8].

lattice calculations performed up to date reflect on space-like physics. They
have no bearing on time-like physics. The latter is what matters for rate
calculations at high temperature.

3. Hot O(N)

I will now proceed to outline the strategy that I will follow to address the
issues raised by the lattice results. First, I will focus on space-like physics,
second I will work at T = oo and then expand in 1/T. The motto for this
approach is dimensional reduction (DR). To illustrate the approach, I will
first discuss it for the O(N) sigma model in two dimensions.

Consider the O(N) model at finite temperature. The field ¢ consists of
N bosonic components constrained by ¢-¢ = 1/¢g%. The Lagrangian density
is

L= %(3“$) ) (3;&‘;) . (1)

The free energy of the system reduces to the free energy of N —1 free bosons,
to order g°, F/V1 ~ (N —1)nT?/6. The correlation function can be worked
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out in powers of g. To leading order and large distances

- e 1 1 1 _1.2

<B) 80 >= 55 (1= 3PN = )lel 4 ) ~ e b NDTIe,
(2)

These results illustrate rather well the points to be emphasized below. In-

deed, while the free energy reflects on a free bosonic system to leading order,

the correlation function has an exponential fall off with a correlation length

of the order of 1/(N — 1)g2T. This correlation length is due to the long

wavelength modes in the O(N) model which are sensitive to the curvature

of the S manifold. Indeed, the Euclidean partition function reads
g 1 — 1/7' z 2
Z(T)= /d¢ 6(‘;‘ - ;2‘) e o' dr [dz §(8,9)
= [ axer(-v? 4 NN (3)

The second equality follows from the integration over the $ field after in-
troducing a Lagrange multiplier A. In the large N limit, the saddle point
approximation to (3) gives

A
T X dk 1
Sl = — 4
N27r Z / k2 + (27nT)2 + X~ g2’ (4)
)
which can be rearranged to give
NT 1
(5)

2/ 21+ Zg2n(L)) ~ ¢*(T)

the right hand side of (5) is the n = 0 contribution in (4). The nonzero
modes in (4) renormalize the coupling constant g2 — ¢(T).

To enhance the physics of the nonzero modes it is more efficient to
take the T' = oo limit first, in which case the high temperature problem for
the O(N) model reduces to a quantum mechanics problem (field theory in
0 + 1 dimensions). Indeed, on the strip [0,1/T] x R, the bosonic fields are
periodic,

$(r,2) = do(2) + D e T g(2). (6)
n#0

If we choose to redefine @o(z) — Z(t)T, then at high temperature only the
zero modes contribute to Z(T),

1/T .
Z(T - o0) = /d:i:' 5(5% - glez) e fo'T g (7)
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This is the partition function of a quantum mechanical particle of mass
T on a sphere of radius R = 1/¢gT. The Hamiltonian is H = [?/2TR?
where L is the angular momentum in N-dimensions. The eigenstates of the
Hamiltonian are hyperspherical harmonics and the spectrum is given by
E, = n(n+ N — 2)/2TR2. There is a gap in the spectrum. The constant
modes contribute zero to the free energy to leading order, but dominate the
correlation function

T? < 0|(t) - 7(0)[0 >~ e~ E1t w e~ H(N-1¢"Tt (8)

4. Hot QCDj

Inow proceed to discuss the high temperature limit of three dimensional
QCD. The dimensional reduction scheme in QCDj; is exact, as opposed
to QCD4 which has shortcomings beyond one-loop. Many of the results
derived in three dimensions are amenable to four dimensions. Also the
three dimensional theory has the advantage of being easier to track down
numerically.

Note that the pure Yang-Mills version of QCDj3 is also Zp symmetric.
If the deconfinement phase transition is indeed related to the spontaneous
breaking of Z) at high temperature, then the three dimensional theory
should display also a phase transition that could be mapped onto the Zp
Potts model. In this case for both N = 2,3 the transition could be second
order. In three dimensions parity could be spontaneously broken. If we
were to assume that a condensate forms at low temperature and disappears
at high temperature, then there is a possibility of a Z; transition related to
parity restoration. If confirmed, this transition is of the Ising type in two
dimensions.

At high temperature QCDj; dimensionally reduces to QCD3 plus a mas-
sive Higgs. To see this consider three dimensional QCD on the cylinder
[0,1/T) x R?

1
L= ZF‘E" + 9t (-ip+ g3 A (9)
In three dimensions QCD is superrenormalizable. g3 is a dimensionful cou-
pling constant. The gauge fields obey periodic boundary conditions modulo

periodic gauge transformations, and the fermions antiperiodic boundary
conditions. Explicitly

Au(r,z) = Ayo(z)+ > e T4, 1 (2)
n#0
1/)(1’,2) - Ze:i:i‘kTr,‘/}i + Z ei(2n+1)1rT1’ . (10)
+

n#0,—1
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At high temperature the theory truncates to R? with massless magnetic
gluons A;, massive electric gluons Ay and “heavy fermions” with mass m =
(2n+ 1)=T [9],

1 1 1
L =ZFi2j + 5100 ~ 9sVTA:)¢1* + §m§{¢2 + Vu(4)
+ 9T (—ip+ 93VTA+ 1’ m + 1393 VT o). (11)
We have rescaled the fields to their canonical dimensions in two dimensions,
A;s = VT¢, A; » VTA; and ¥ — VTy. The screening mass my is

infrared sensitive in perturbation theory. Its self consistent determination
will be discussed below.

] \ /
- ,
5 T
,’ \ss L’ \\

Fig. 7. Induced Higgs potential Vg by dimensional reduction. The wavy lines refer
to the magnetic gluons.

The effective potential Vi for the Higgs is induced by integrating over
the magnetic gluons as shown in Fig. 7. Dimensional arguments yield [9]

V@)= ¥ cally Il gn (12)

n<3

At high temperature and for a fixed screening mass (to be specified be-
low), the Higgs potential is subleading in 1/T. Thus to leading order the
Higgs field is massive and interacts solely with the magnetic gluons and the
“heavy” fermions. Note that the fermions carry an energy m. However
through a pertinent 43 rotation of the spinors, this energy can be turned to
a mass [9]. This will be assumed throughout.

& v v &3 qg;; b o

Fig. 8. Leading contribution to the Polyakov—anti-Polyakov correlator (connected)
in the dimensionally reduced theory.
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Fig. 9. One-loop contribution to the screening mass.

In the high temperature limit, the Polyakov line simplifies to

1/T
P(z) = Tr Pexp(igs f Ag(7,z)dr) ~ Tr exp(1—9-3—¢(:c)) (13)

To leading order in 1/T the connected part of the Polyakov-anti—Polyakov
correlator is given by

(P(z) PT(0))c ~ (¢2( ) %(0))e - (14)

This is the correlation function for two electric gluons. The correlator is
dominated by the diagrams shown in Fig. 8. The asymptotic form of the
correlator in Euclidean space is just the tail of the closest singularity to zero
in Minkowski space. This singularity corresponds to a bound statein 141
dimension. The bound state equation is given by

_;l_gw(z) + 36N Tlzld(2) = Ey() (15)

in the regime where mp /T < 1 (nonrelativistic limit). The linear potential
reflects on the Coulomb potential in 1 + 1 dimension. The solutions to (15)
are Airy functions. The spectrum follows from the zeros of the derivative of
the Airy function Ai'(—E,) = 0 (after proper rescaling). The lowest state

determines the slope of the correlation function (14). Indeed, at high tem-
perature we expect

(P(z) P¥(0)) ~ Ko((2mu + Eo)|z|) ~

exp(—(2mpy + Eo)|z|)
(@ + Bolelp 2 * 1

which is to be contrasted with the free screening correlator (free bubble of
Fig. 8)

e myle
(P(2) P*(0)) ~ K3 (mpla) ~ ZR2malz]), (18)
mpy|z|
Note that at high temperature the difference between (17) and (18) is in the
preexponent and not the exponent, since Eo/my — 0. For QCD in four
dimensions K¢ — K;.
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Fig. 10. Two-loop contributions to the Polyakov-anti-Polyakov correlator (con-
nected).
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Fig. 11. Magnetic polarisation in the dimensionally reduced theory, to leading
order.

In QC D3, the screening mass mgy ~ g7 is infrared sensitive and gauge
dependent in perturbation theory as indicated by the graph of Fig. 9. A
self-consistent and gauge independent analysis of the screening mass can be
performed from the loop-expansion of the Polyakov-Polyakov correlator at
high temperature. The two-loop contribution to (14) is shown in Fig. 10.
The cross refers to the —m%; insertion in the self-consistent (Hartree) def-
inition of the electric mass, where the electric propagators carry a mass
m%;. All the infrared and ultraviolet divergences cancel to two-loop. The
finite contributions from diagram 10a and 10b are scale (i) dependent :

9iNT(a+ bln(mpy/ y)) The finite contribution of diagram 10c is also scale
dependent 93NT(@ + s=In(my/p)). If we choose u = mpy then the con-
tribution from 10c can be made logarithmically large compared to the con-
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Fig. 12. Hadronic correlators in the dimensionally reduced theory.

tributions from 10a and 10b in the large temperature limit. This large
contribution can be reabsorbed in a self-consistent definition of the electric
mass in a Hartree-type approximation,

1 T
This result was first obtained by D’Hoker [10].

The fact that magnetic loops still obey an area law has a simple expla-
nation in high temperature QCD in three dimensions. Indeed, to leading
order the static part of the magnetic gluon correlator in static-axial (42 = 0)
gauge follows from the diagrams of Fig. 11 ,

Aj ~ 6:16516(21) (a!zzi-s- \/A_‘;;;e-"’”") , (20)

where a = g2NT/24rm%;, b = giNT/ 24ﬂwm‘},1, ¢ an arbitrary coefficient
and M? = (1 — a)/b. In (20) only the leading temperature dependent
part has been retained. The contribution of (20) to the space-like Wilson
loop is due to the unscreened part of the magnetic gluon propagator. The
result is Wy ~ e %2yA where A is the area in the xy-plane and o ~ a the
temperature dependent string tension to leading order. This result is gauge
invariant. On the other hand, note that the magnetic-magnetic correlator
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is exponentially screened. At large distances, it is dominated by the second
term of (20) in the static-axial gauge

~M|z|
MZQ )

[

(B(z) - B(0)) ~ (21)

The linear term drops by taking derivatives. This result is gauge dependent.
Note that an area law behavior of the space-like Wilson loops is still con-
sistent with an exponential fall-off in the correlation function of magnetlc
fields. I expect this to extend to four dimensions as well.

The static hadronic correlators can be analysed in the dimensionally re-
duced theory, by treating fermions as infinitely heavy (non-relativistically).
To leading order in 1/T

B B
Ca,az) =Bl7 </ df¢+1‘°‘¢(r,z)/dr'¢+I‘°‘¢(T',0)>
0 0

~ ($TTY(z)pTT9(0)) . (22)

The fermions of the second part of (22) are restricted to the lowest Matsub-
ara modes and carry a mass m = #T after a y3-rotation. The dominant con-
tribution to the hadronic correlator (22) follows from the diagram of Fig. 12.
The Higgs and fermion insertions are subleading in the temperature. The
large z-asymptotics of (22) is again given by the closest singularity to 0 in
Minkowski space. In Minkowski space the quark and antiquark are massive
(nonrelativistic) and interact via a Coulomb potential in 1 + 1 dimensions.
The bound state equation is

¢"+ I‘BITI” Eay, (23)

where 2 = Cpg2T and Cp the value of the Casimir in the fundamental
representation. The screening lengths are my = 2m + E,, and characterize
Coalz — 00) = e~™al=l, For QCD;3 [9],

_ 3 (CrgiT\/®
mq = 27T + 3 ( yps . (24)

The wavefunctions are Airy functions with a size of the order of 1/(g3T)?/3.
These wavefunctions are directly related to the transverse correlations. For
four dimensional QCD, the screening lengths can also be estimated [9].
The reduced wavefunctions directly relate to the correlations observed on
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the lattice as described above. The present discussion provides a simple
explanation to the fact that while the screening lengths asymptote “free”
quark values, they are in fact reflecting on strong correlations space-like.
The correlations are subleading in the screening masses.

The size of the fermionic distribution around a heavy source has a sim-
ple understanding in the dimensionally reduced theory. Indeed, at high
temperature

2
(P0)P¥(2)) ~ — 2 (& (0)F¥(2)). (25)

At large temperature the Polyakov line is a source for the Higgs field. The
correlation function (25) measures the fermionic distribution in the Higgs
cloud. The range of the correlation is of the order of the inverse of twice
the electric length 1/2mp.

While the above considerations have provided a large body of evidence
for why the space-like physics at high temperature reflects on correlations,
it remains puzzling why the bulk properties of the high temperature QCD
phase are consistent to some extent with the black-body description. I
will show now that this is in fact a consequence of the fact that the bulk
quantities reflect on all distance scales. For that consider the isoscalar
fermionic susceptibility

1/T
XD = [ ar [ @aurriuin2wtru0,0)
0
~T [ Pa(ut P uept WO, (26)
All fermionic modes contribute to x(T) to leading order. Indeed [11],
N.T It . 2, N G%H

The u’s are the invariant masses for bound quark-antiquark in 1+ 1 dimen-
sions with masses mp = (2F + 1)xT, and G, the form factors following
from the ’t Hooft equation. Asymptotically 2, — 7v27no /20,0 = giNT
and G,y — 7/v2. The density of states per unit energy in (27) grows lin-
early with the energy dn/dE ~ /E? — 4m%, /o, With this in mind, the
sums in (27) can be done exactly, leading to [11]

®

X -x~ T [ 2N (), (29)
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which is the free gas result to leading order. I believe this result to extend
to the bulk energy density, pressure and entropy.

5. Conclusions

A global understanding of the lattice calculations can be achieved within
the context of dimensional reduction at very high temperature. Even though
the analytical calculations were performed for high temperature QCD3, they
can be generalized in a straightforward way to QCD4. However, the argu-
ments are not rigorous in the latter.

We have seen that the high temperature QCD phase is characterized
by strong correlations space-like. These correlations are dominant in all
correlators. Bulk quantities, however, are sensitive to all correlated modes.
The latters sum up to the expected black body limits, a result familiar
from asymptotic freedom when hadronic wavefunctions are probed in deep
Euclidean region.

What does this imply for the high temperature phase time-like ? I
really do not know. However, since the correlators are not free space-like
why should they be time-like ?

Many of the ideas discussed here were developed in collaboration with
Hans Hansson. I thank the organizers of the Zakopane school for a very
pleasant meeting.
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