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A new description of unconstrained degrees of freedom for the grav-
itational field introduced in [6] has been applied to the description of
perturbed initial data from the Reissner—Nordstrém solution. When this
solution describes a black hole (m > ¢q) we can perform a generic fully
nonlinear perturbation of initial data outside an apparent horizon in such
a way that this horizon is an extremal two-surface in four-dimensional
spacetime. A simple consequence of the considerations in: J. Jezierski,
Classical Quantum Gravity 11, 1055 {1994) leads to the following theo-
rem: Let X be an asymptotically flat spacelike surface which is nonsingu-
lar outside an extremal two-surface Sy,;, {which is extremal as two-surface
imbedded in spacetime) then 16mm% )y > A, where mapy denotes the
A.D.M. mass of perturbed data (around Reissner-Nordstrém solution) on
Y and A4 is an area of the apparent horizon Sy;p,.

PACS numbers: 04.20. Cv, 04.20. Fy, 04.30. +x

1. Introduction

We have shown in [6] that small (but fully nonlinear) perturbation (in
the asymptotic region) of initial data (Einstein + Maxwell) from Reissner—
Nordstrém solution leads to the growth of the A.D.M. mass. It is worth to
notice that the result allows to formulate a theorem related with Penrose
conjecture and cosmic censorship hypothesis (see for example [3]). The
theorem says that a generic perturbation of the initial data (outside the
horizon) leads to the inequality between the mass of the perturbed black
hole and the area of the apparent horizon which in this case coincides with
a minimal surface. The methods used for the proof have been initiated in
[4], the first application to black hole situation has been published in [5]
and this result is an important improvement of the previous one.
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Let V be a compact, smooth tree-dimensional manifold with boundary
V. Take as an example the volume V diffeomorphic to K (0, rg,71) (a piece
of IR? between the two spheres of radius 7o and 7, respectively). Limiting
case r; — oo will be considered.

Let T = 0V x R'. The space M = V x IR! will be the interior of our
spacetime “tube” and the boundary T = M will be a one-time-like and
two-space-like surface in our spacetime.

Let us fix a coordinate chart (z#) on M such that (2!, z2) is a coordinate
chart on 8V (e.g. spherical angle  and ¢), 23 = r is any third coordinate
on V which is constant on V. Moreover, z° denotes the time coordinate.
So we have

Vii={zeM:2" =t} = U S(r) where S(r):={z € V:2* =7},
r€[rg,m]

T:{:cEM::c3=ro}U{zEM:z3=r1}.

We use the following convention for indices: greek indices y,»,... run
from 0 to 3; k,1,... are coordinates on V and run from 1 to 3; A, B,... are
coordinates on 3V and run from 1 to 2.

Let (g, P*') be the Cauchy data for Einstein equations in a three-
dimensional bounded volume V with boundary dV. This means that gi; is
a Riemanian metric on V and P*! is a symmetric tensor density which we
identify with the A.D.M. momentum {1}, i.e.

P* = \/det gmn (g™ Tr K - K*Y,
where K is the second fundamental form (external curvature) of the imbed-

ding of V into the spacetime M.
The 12 functions (g, P*') must fulfill four Gauss—Codazzi constraints:

P}, = 87 /et g Tiyn# = —2(det gmn) " Ye;;1E7B", (1)
(det gmn)R — P¥ Py + 1(PHg1)? = 167(det gmn)Tyyn¥n?
= 2(&*¢ + B*BY gy, (2)

where £F, B! are vector densities:

£k = ,/detgijEk B' = /det gijBl,
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E* and B' are electric and magnetic field, respectively, fulfilling
Maxwell equations. By R we denote the (three-dimensional) scalar cur-
vature of gi;, n* is a future time-like four-vector normal to hypersurface
V, T, is an energy-momentum tensor of Maxwell field, ¢;;; is a completely
antisymmetric tensor and the calculations have been made with respect to
the three-metric g (“|” denotes covariant derivative, indices are raised and
lowered etc.).

Einstein equations and the definition of the metric connection imply
the first order (in time) differential equations for gi; and P*! (see Ref. [2],
p- 525). The equations contain the lapse function N and the shift vector
N* as parameters.

To describe effectively the reduced phase space (the space of classes of
gauge equivalent pairs (gx;, P*')) we can impose four gauge conditions which
enable us to pick up a single representative within each gauge-equivalence
class. The conditions are the following:

33 k

P o =2, (3)
g33 g33 3

9dAB OAB

e =R, (4)

where o 4p is the standard metric on a unit sphere §2, (s 4pdz4 ® dzB=
d8®dd +sin? 8dp ® dp), 0 = \/det 7 4 g(= sinf) is a volume element on the
unit sphere, A = \/det g4 is a two-dimensional volume element on S(r)
and k is an extrinsic curvature of §(r) with respect to the three-metric gy;.

Conditions (3) are describing the two-dimensional surface of prescribed
extrinsic curvature as a surface embedded in four-dimensional Einstein man-
ifold (two-dimensional space of normal directions). They correspond to the
choice of two-parameter family of surfaces (topologically spheres) described
by the conditions t = 2% = const., » = z3 = const. and in general they lead
to the nonlinear parabolic problems for functions ¢, ». The second part of
gauge condition (3) is very similar to the one used in {7] (but not the same).

Let us notice that the condition for an apparent horizon in terms of the
initial data simply says:

P33
Vi

and because of the first gauge condition both components of the above sum
has to vanish and this simply means that the apparent horizon is an ex-
tremal surface (“saddle point”) as two-surface imbedded in four-dimensional
spacetime.

+ Ak =0,



1416 J. JEZIERSKI
2. Basic inequality
Theorem:

Let ¥ be an asymptotically flat spacelike surface which is nonsingular
outside an extremal two-surface Smin (extremal as two-surface imbedded in
spacetime M ). Let (g, P*', E*, B') be the perturbed initial data around
the Reissner—Nordstrom solution such that:

1. gauge conditions (3) and (4) hold,

2. for r < 7o the tnitial data coincide with the background (Reissner-
Nordstrém) (gr1 = k1, P =0, B' =0, E4 =0, /detngE® = aq),

3. for r > ro we assume that perturbed data are sufficiently small and ful-
fill appropriate asymptotic conditions at spatial infinity such that con-
straints (1) and (2) possess appropriate solutions (see [6] for details)
then

16rmipm > 4,

where mgppr denotes the A.D.M. mass of perturbed data and A is an
area of the apparent horizon.

Let us now integrate over V' the scalar constraint in the same way as in
[6]. We obtain the following inequality:

. A 33 q° A 33 '
—2r1LII;1° ra’[mg —-1—;—5]4-2 / ra’[r—2; —1—;—2-]
S(r) S(rg)
2
= 16rmapm + 2 / ru(nss —-1- :—2) >0. (5)
S(ro)

If we take S(rg) = Smin We get:

1 q* 1
MADM = — ra(1+——n33) > — ro
=~ 8r 2 = 8r ’

Smin Smin

and the last inequality holds because 733|s . = 0 and ¢* > 0. It is easy to

rewrite the result in a final form:

min

1 2
167m3 ppp > E( / ra) =4nri = A.

Stin
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