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This work presents a shnple way of incorporating quark degrees of
freedom (spin, charge and colour) into the classical string model. We
introduce the model and derive from it the classical equations of motion.
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1. Introduction

In our previous paper (1] we have proposed the way one can take into
account quark degrees of freedom (spin and colour) when constructing string
description of a meson. We have rewritten the action describing propagation
of a classical particle with spin and colour degrees of freedom in terms of
fields living on the “worldsheet” bounded by particle’s trajectory.

Although from technical point of view presented ideas were almost triv-
ial (we have just used Stokes’ theorem to convert line integral into the sur-
face integral) let us stress, that the possibility of describing the whole meson
dynamics in the string language does not seem to be trivial at all.

The present paper is organized as follows. First we extend the results
of our previous work [1] to the case of the charged particles with colour
in the external non-Abelian as well as electromagnetic fields. Then we
check the consistency of our model by deriving the equations of motion
from obtained action. We end our paper with the remark concerning the
possibility of taking into account the non-zero quark mass by adding to
the action the term depending on the internal (Gaussian) curvature of the
string worldsheet.
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2. String in the external fields

Let us start with the action describing propagation of a classical parti-
cle in the external, non-Abelian gauge field A§ [2-4]. We choose to work in
Minkowski space-time because it allows to interpret closed particle trajec-
tory as a process consisting of creation of particle and antiparticle (quark
and aniquark), their propagation through space-time and finally their an-
nihilation. The action reads:

5= /dt(Ll + L), (1)
where
Ly = - 1(e712? + em?),
Ly =(¥ 9, + e xpP,) 5 (dsvhs + mxibs)
+ 30000 — gI°(A7EH — feyHFL¥"). 2)

Here, correspondingly, # and e are bosonic (commuting) variables, the
position four-vector of particle’s trajectory and the square root of one-
dimensional metric on the worldline and %,,%s,x and §* are fermionic
(anticommuting) ones, introduced to describe intrinsic degrees of freedom
(spin and colour). For definiteness we have chosen % to be real Grass-
mann variables (the other alternatives are equivalent, see [2]) and defined
the isospin of a particle by the following formula:

_ 1 b
I = 36°T..6°,
where T are generators of gauge group under consideration.
The action above is invariant under group of reparametrizations
t — f(t) with f(t) > 0, accompanied by the transformations:
e—e =ef,
x—x'=xf, (3)
with z#, ¥#, ¥s and §* unchanged.
The action is also invariant under supersymmetry transformations whose
infinitesimal form generated by the anticommuting variable a(t) reads:
§z# = iayt,
§p¥ = —a(2* — 3xy#)/e,

be = —iax,
0x = 24,
65 = ma,
§6° = gay* ASTSH®, (4)
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and finally it does not change under the action of the local gauge group:
A, = AT — u.JA“c.«v_l + éa,,ww_l ,
0=(6%) - wl, (5)

where w is an arbitrary group element.
It is straightforward to add an interaction with an external electromag-
netic field in the form:

Ly = —q(Cud* - 3ep*G L ¥"), (6)
where ¢ is the electromagne:ic charge of the particle, C, is the external

electromagnetic field and G, = §,C, — 8, C,. The complete action is thus
of the form:

S:/dt(L1+L2+L3). (1)

The action above is invariant under (3), (4) and (5) as well as under Abelian
gauge transformation:

Cp— Cu+0un, (8)
where n(z) is an arbitrary function.

Let us make a comment on the appearance of the second, non-minimal
term in the Lagrangian (6). It has to be present in the action integral
in order to insure the closure of Poisson bracket (or rather — because of
presence of constraints — Dirac brackets) algebra. It also appears naturally
in the superspace formulation of presented theory.

Let us now take a compact surface ¥ in the space-time and consider
its boundary 8% as a trajectory of the QQ pair (to have such an interpre-
tation we have to restrict ourselves to surfaces, such that vectors tangent to
their boundaries are always time-like). Next we parametrize 3% with t and
continue the fields z, e, 9,, ¥s, x, and 6% that appear in the action (7) in a
smooth way over the whole surface ¥.

To simplify our notation we define:

k
ng) := 8,50k + 2gak2:“A“Tab,
f(t) := mxys + Y*(gI°F, + ¢G L )¥Y. (9)
Let us now parametrize ¥ by £* k = 0,1. Points that belong to 8%
are thus parametrized by £¥(t) and £5(t) where the lower index serves to
distinguish between the quark and the aniquark trajectory.

It is now straightforward to use Stokes’ theorem and rewrite (7) in the
form:

5= / 2E[EeH D Oy + OesOuds + Oh(e™Ix,)Biz# + B (62D Hgb)}
x
+ 0 Cudiz* + idivh) - 1 [, dt(e™1i? + em?), (10)
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where A(£) is an arbitrary function which has only to satisfy the condition
R-#i = f for £ that belong to 8%, @ being the unit vector tangent to ¥
and normal to ¥ (in the embedding space metric). For n to be defined on
the whole boundary @Y, we have to smooth 8% in the points of creation
and annihilation of the quark-antiquark pair. It results in the failing of the
time-likeness of 8¥ in the neighbourhood of those points and spoils there
our QQ interpretation of 3. Nevertheless, it doesn’t cause any serious
problems, because quarks creation and annihilation are of pure quantum
nature and we cannot insist on having the correct classical description of
the creation and annihilation processes within the region of the size of the
quarks Compton wavelength.

We have separated the mass term from the above expression, as it is
rather unnatural to rewrite it in the proposed way and, moreover, as we dis-
cuss in the last section of this paper, seems to exist another, more convenient
way of generating the mass term in the string description of mesons.

It is clear from the construction that the above action is invariant under
gauge transformations (5), (8); it is also invariant under reparametrizations
of the “worldsheet” ¥ and SUSY transformations generated by the infinites-
imal Grassmann variable that now depends on £ [1].

We can thus say that we have managed to describe quark’s degrees of
freedom in the language of string variables.

3. Equations of motion

Before presenting equations of motion derived from (10) let us pause for
a moment and remind some facts connected with the variational principle
in the presence of Grassmann variables [5]. As the action describing them is
of the first degree in time derivatives, we are not allowed to fix their values
both in the initial and final times. On the other hand, if we fix only their
initial value and consider the final one to be arbitrary, we will exclude some
“physical” solutions of equations of motion.

Let us illustrate this point on the simplest possible example, namely
on the case of the free evolution of a Grassmann variable described by the
action:

S = /dté)“é“. (11)
If we compute the equation of motion following from the action above under
assumption §6%(t;) = 0, §8%(t2) — arbitrary, we arrive at the equation:
6*(t) =0,
together with the boundary condition 8%(¢z) = 0. Thus the only possible

solution is 6%(t) = 0, and we loose all the solutions of the form 6%(t) = 6§
for 6§ being constant, non-zero Grassmann number.
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To remedy this we have to change our variational principle. If we add
to the action the “boundary” term in the form:

0%(1)8°%(t2)
and impose on variations of @ in the initial and final times the conditions:
56%(t1) + 66%(t2) =0,

we are left only with the differential equation %(t) = 0 without any further
conditions.

In the same way one can proceed also in the case of surface integrals
involving Grassmann numbers. By the appropriate modification of the ac-
tion principle we can get rid of unwanted boundary terms with support
on initial and final times, and then we are left only with the “bulk” equa-
tions of motion and boundary conditions from the integrals over time-like
boundaries.

Let us now add the action (10) to the action describing the simplest
bosonic string, i.e. the Nambu-Goto string:

SNG = / 6/77, (12)

x

where g stands for determinant of the induced metric g;; = 8;z#0;2,.
In the conformal gauge (9pz* £ 01z#)? = 0 one obtains for the interior
of the string the d’Alembert equation:

(95 - 01)z*(€) =0, (13)

together with a set of boundary conditions. To simplify their form let us
denote £° by 7 and £? by ¢ and choose them in such a way, that the string
ends are described by 0 = 0 and o = 7 respectively.

First, upon variation of e, ¥ and %5 one gets the equations:

(2% —ixi¥ e,) /e — m? + W (gIFg, + ¢Gu )Y =0,
(2#¢u + myps)/e =0,
2'¢"5 -mx =0, (14)

where dot means differentiation with respect to 7 for ¢ = 0, 7.
Using the reparametrization invariance (3) we can put e to be equal to
L1, Next we use SUSY transformation (4) to set x = 0. Then we get from

(14) ¥s = 0 and we can eliminate ¥ by constant SUSY transformation. The
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two remaining equations of (14) and the rest of our boundary conditions now
take the form:

mi? — m? + WH(gIF7, + ¢Guu )y =0,
é”d’p =0,
Yo — (92, +9Gu)¥¥ =0,
6% + ig(ASE* — sLyrFS ¥V TS0 = 0,
mi, — vz, — gI%(8, AT — 8,A%)" + gASI® — ¢G,,2”
—epP(gI%0,F3 + q8,G,on )9 = 0. (15)

Here prime denotes differentiation with respect to o.

We see that the last equation in (15) has the form of the Newton equa-
tions for the string ends. Various components of the acting force can be
interpreted as coming from the string tension (the first one), from interac-
tion of colour and electric charges with external fields (the second a and the
third ones) and from the interaction of the particle’s spin (let us remind
that the Pauli-Lubaiiski four-vector is constructed in the pseudoclassical
description from the fields v,) with their gradients (the last two terms).

The equations of motion for the string in the external electromagnetic
field alone (which is the special case of the one above) were obtained and
analysed in details in [6].

4. Concluding remarks

To conclude, we have finally managed to describe classical (or rather
— because of the inclusion of a Grassmann numbers — pseudoclassical)
dynamics of a meson (QQ pair) in the language of “string” variables. This
description not only preserves all the symmetries of the classical particle’s
action, but also indicates the possibility of some extended symmetry of
the system, that can be helpful for instance in the quantization procedure
[1]. The coincidence of the equations (15) with the ones obtained from
the standard particle’s action [2] indicates self-consistency of the presented
procedure.

Let us end this paper with the remark concerning the mass term in
the string action. It was shown in [7], that the only boundary terms one
can construct from the fields z#(£) and their derivatives up to second or-
der, and which fulfill the requirement of being both reparametrization and
Poincaré invariant, are — in four space-time dimensions — the term pro-
portional to the curvature scalar R and the term that gives the number
of self-intersections of the worldsheet. Their addition to the Nambu-Goto
action forces the string ends to move with the speed less then the speed of
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light. So they effectively act as the mass term for the string ends, though
in rather unusual way, because the equations one obtains in this way do not
have the form of the Newton’s equations. So the next task one should take
would be to investigate the dynamics of a system described by the action
(10) with the mass term replaced by the term with the curvature scalar.
Work in this direction is in progress.

I would like to thank Professor Henryk Arodz for reading the manuscript
and numerous helpful discussions. I am also indebted to my colleagues
from the Department of Field Theory for many stimulating discussions and
valuable remarks.
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