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Null initial data techniques are used to describe the dynamics of clas-
sical Maxwell-Dirac fields in real Minkowski space. On the basis of the
structure of the field equations a graphical device is constructed which
enables one to unambiguously label elements of the corresponding infinite
invariant exact set in terms of colored trees. The complete specification
of the trees arises naturally from the procedures involved in the actual
evaluation of the elementary contributions. Each tree turns out to be as-
sociated with a manifestly finite scaling invariant integral which is taken
over a compact space of appropriate null configurations. In particular the
integrals describing the processes of electromagnetic scattering of Dirac
fields appear to be taken over spaces of forked null zigzags that start at
the origin and terminate at a fixed point lying in the interior of the future
cone of the origin.

PACS numbers: 03.65. Pm

1. Introduction

Null initial data (NID) techniques [1-3] constitute a general framework
for describing the dynamics of sets of interacting spinor fields in both flat
and curved space-times. This null approach was designed to treat a form of
initial value problem in which the initial data for all fields are specified at
non-singular points of null hypersurfaces. Loosely speaking, the elements
of an NID set for some system are defined as those field components which
are associated with the directions of generators of a null hypersurface. In
general, each such initial datum carries twice as much information per space-
time point as does each of the data involved in the corresponding space-like
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hypersurface initial value problem, insofar as an arbitrary null datum is
locally specified by a pair of real numbers. Hence, a set of null hypersurface
initial data generally provides one-half the number of real-valued scalar
functions that is required in the ordinary space-like approach. One of the
key concepts upon which these techniques are based is that of an invariant
exact set (IES). The striking feature of such a field set is that the (local)
algebraic relations defining its exactness do not involve gauge-dependent
quantities explicitly. All interactions thus appear to be controlled by the
field equations or else by Lorentz-invariant commutation relations which
involve covariant derivatives of the fields along with the fields themselves.
Once we are given an IES, we can state that the field equations propagate the
fields in a non-redundant way throughout the relevant space-time domain.
Likewise, all the constraints which would occur in the space-like treatment
are at the outset automatically eliminated from the basis of the theories.

According to the conventional methods, the evaluation of the fields
is carried out by using either power series expansions or integral devices.
In the former case, one usually requires the fields to be analytic on their
domain of definition. In the event that the fields constitute an IES, the
knowledge of initial data at some point of a null hypersurface thus enables
one to evaluate the fields at any other relevant point. In the latter case, the
analyticity requirement is not strictly necessary, but the fields have to form
an IES on real Minkowski space IRIM, in addition to being well behaved on
two-real-dimensional space-like regions provided by intersections between
NID hypersurfaces and appropriate light cones.

Actually, there are two types of integral expressions for the elements
of an IES. One is the spinning generalization of the Kirchoff-D’Adhemar
integrals for massless scalar fields proposed by Penrose {3, 4]. The Kirchoff—
D’Adhemar-Penrose (KAP) field integrals can be thought of as being lin-
early composed of proper Lorentz invariant distributional pieces whenever
the initial data for the fields are specified on a null cone. Their integrands
are scaling invariant (SI) two-forms on two-spheres which play a very impor-
tant role in the null description of scattering processes. The field integrals
of the other type arise in situations which involve also integrations along
null geodesics of IRIM. These latter field expressions carry SI three-volume
forms, and appear as explicit convolutions taken over NID hypersurfaces.
Such features afford us an invariant method for treating IES’s of interact-
ing fields in a systematic way. The main procedure consists in splitting the
fields into an infinite number of elementary distributional contributions that
satisfy symbolic field density equations (FDE) on the interior of the closure
of the data cone, which are essentially of the same form as those controlling
the propagation of the system of interest. Towards achieving the recovery
of the entire fields, we have first to set up general prescriptions whereby an
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elementary field of arbitrary order may be explicitly calculated, and then
to add appropriately all the pieces together. When scattering processes are
effectively allowed for, the outgoing fields appear as SI expressions which
generally involve both types of field integrals. Under these circumstances,
the elementary pieces propagate for a while as massless free fields, but scat-
ter off each other at interior points. Each of the scattering integrals of any
order involves a KAP-differential form defined at the point at which the
process giving rise to the respective outgoing field happens along with SI
volume-forms which take into account the NID contributions coming from
all the other relevant points. The NID hypersurfaces for higher-order pro-
cesses are thus defined as portions of light cones of adequate interior points.
Both the charge and the helicity of the incoming fields are preserved when
electromagnetic scattering processes are considered alone. Hence, in the
case of either integral pattern, the normal and tangential derivatives which
are usually required in the space-like framework are combined and made
into directional ones defined along generators of NID hypersurfaces. It can,
therefore, be said that the geodesics forming NID hypersurfaces appear to
play a double role. In effect, they first pick up the components of the
fields which partake of the definition of NID sets. Then they single out
those space-time directions in which the derivatives carried by the integral
expressions are taken.

The explicit expression for any distributional field can always be looked
upon as an integral which is taken over an abstract space of suitably con-
nected null graphs that start at the vertex of the data cone and terminate
at a fixed interior point. These graphs are normally equipped with forward
spin-basis sets whose elements enter particularly into the definition of the
null data producing the field, their end-vertices being taken to coincide with
the point at which the contribution in question is to be evaluated. The null
data are thus specified at those vertices of graphs at which the differen-
tial forms occurring in the field integral are set up. It appears that the
expression for the null datum for any scattering process explicitly carries
only the internal edges of the relevant graphs. Furthermore, the spin-inner-
product structures arising from carrying through the corresponding calcu-
lations lead automatically to an unambiguous vertex configuration for each
graph whence all the processes turn out to be specified by the edge-vertex
structures of the scattering diagrams. The information about the null data
for the processes appear to be totally carried by suitably contracted first
derivatives of the elements of the spin bases.

These null methods were used earlier [5-7] for describing completely
the process of mass scattering of classical Dirac fields in IRIM. The imple-
mentation of standard techniques was based upon the fact that the Van der
Waarden form of the Dirac equation [8-11] allows one to treat the Dirac pair
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as an IES of massive interacting fields, with the rest-mass playing effectively
the role of a coupling constant. Each of the entire fields was given as the
sum of two infinite series of terms [7] which were expressed as manifestly fi-
nite SI integrals taken over (compact) spaces of null zigzags in RIMcarrying
adequate edge-vertex structures. The formal simplicity of the resulting scat-
tering formulae was due to the choice of the future null cone g of an origin
O of RIM as the NID hypersurface for the elementary fields. Owing to the
possibility of labelling the distributional contributions in a linear way, all
the stages of the calculations yielding the null data for the processes were
carried out straightforwardly. Nevertheless, for an arbitrary IES it is not
generally possible to label the elements of its associated infinite set in this
way. For such a system, we have to build up a colored-graph label device
which enables us to actually work out the basic prescriptions in a consistent
manner. Indeed, this procedure not only makes the whole description more
transparent even in cases where the distributional pieces may be labelled
linearly, but can also be regarded as a characteristic part of the techniques.
In any case, the structure of the colored-vertex configurations seems to be
deeply connected with the structure of the pertinent FDE.

This paper is primarily concerned with the presentation of a null de-
scription of the dynamics of classical Maxwell-Dirac fields in RIM. It can be
considered as another non-trivial generalization of the methods introduced
by Penrose in connection with the application of NID techniques to IES’s
(see Ref. [3]). A somewhat important property of this system is that, in
order to recover the complete set it suffices to construct the prescriptions
for evaluating a finite number of basic null structures. Such configurations
are clearly suggested by the pattern of the field equations along with the
properties of the proper Lorentz invariant distributional splitting of KAP-
integrals [3, 4, 7]. Any element of the entire set can then be recovered by
adding together an infinite number of contributions which are obtained by
adequately combing these basic blocks together. The FDE are set upon
the interior V: of the closure of C&*’ whereupon the NID generating all the
elementary field contributions are specified. Each distributional piece is rep-
resented as a colored tree which is completely specified by the solution of
the corresponding density equation. In the case of the potential contribu-
tions, the prescriptions for building up the colored graphs lead to patterns
which are somewhat different from those of the trees labelling the fields.
To any order, this result appears to be directly related to the structure of
the solutions of the potential density equations which really give rise to the
presence of null loops in the associated Minkowskian configurations. These
solutions do not entail any "reduction” of the graphical calculational devices
used for evaluating the relevant null structures. The colored graphs turn
out to be associated with SI finite integrals which are taken over spaces of
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forked and crossed null zigzags that start at O and terminate at a fixed point
lying in W. Our work is organized as follows: Section 2 deals with some of
the concepts involved in the two-spinor formulation of the theory [11], and
introduces the relevant density equations along with a set of colored-graph
rules. Section 3 is concerned with the evaluation of the basic electromag-
netic null graphs. In Section 4 the diagrams that describe the processes of
electromagnetic scattering of Dirac fields are explicitly calculated. There,
the description of pure mass-scattering processes does not play any crucial
role, and will therefore be omitted. Some remarks on the structure of the
field formulae are made in Section 5. The Lorentz gauge has to be chosen
to ensure the exactness of the entire set [3], and is thus taken up from the
beginning. At this stage, the actual derivation of the exactness relations
for the system [12] will not be presented. The detailed outline of Section 2
through 4 will be given in due course. Throughout the work, use is made
of the two-spinor conventions given in Ref. [3]. The natural system of units
wherein ¢ = A = 1 will also be utilized. Unprimed and primed fields will
be referred to as left-handed and right-handed fields, respectively. It must
be emphasized, however, that the elementary contributions recovering the
complete IES are generally non-analytic. Whence there will be no attempt
herein to attribute any specific positive-negative frequency character to the
fields. The usual definition of the charge-helicity conjugation operator is
adopted, but with the handedness of each of the Dirac fields being reversed
under the action of the conjugation. In addition to facilitating the con-
struction of the calculational devices, this requirement enhances some of
the features of the diagrams of Section 4. Thus, the fields will be assumed
to propagate to the future. The behaviour of null data at the vertex of
C:’ is discussed extensively by Penrose and Rindler [3]. Here no analycity
assumption will be explicitly made, but the elements of the basic NID set
are required to be smooth functions at 0. The relevance of the work lies in
the fact that it affords a concrete background to the construction of a man-
ifestly null quantum electrodynamics. In particular, we believe that such a
reformulation would enable one to set up a divergence-free framework for
calculating scattering amplitudes. It is upon this belief that the original
motivation for elaborating the work rests.

2. Maxwell-Dirac sets

The main aim of this section is to set up a framework which shall be
used later to obtain the prescriptions for evaluating the basic Minkowskian
structures. In subsection 2.1, we present a review of some facts concerning
the two-spinor formulation of the Maxwell-Dirac theory without working
out the pertinent variational principle explicitly {11]. The choice of C[,*'
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as the NID hypersurface for all the distributional contributions yields a
particularly simple set of elementary NID for the systern. We utilize the
same data set as that suggested in Ref. {3] to define the relevant #-NID
(subsection 2.2). These latter data involve certain spin operators which
appear to be closely related to the conformally invariant form of the Penrose
p-operators [2—4]. Their relevance stems from the fact that they are the
data which enter into any SI volume- and KAP-integral expressions. The
symbolic density equations associated with the basic null configurations
are introduced in subsection 2.3. In subsection 2.4, the rules for building
up a set of colored graphs that label the elementary pieces are explained.
Nevertheless, the complete specification of the graphs will be achieved in
Sections 3 and 4.

Here, as elsewhere, we make use of the convention according to which
the unprimed (primed) basis spinor that “enters” a vertex of some null con-
figuration carries an over-script (under-script) which appears as the kernel
letter denoting the vertex. The labels for spinors whose flag poles are de-
fined along crossing edges are taken to be the ones for the end-vertices of
the relevant subgraphs.

2.1. Mazwell-Dirac theory

A Maxwell-Dirac system in IRM is defined by the set
MDS = {¢AB(3), ‘;A’B'(z), Q.QA’(‘C): ¢A(z)7 XA'(z)} . (2'1)

In this set, the conjugate quantities ¢ 4p(z), ¢4'p:(z) are the so-called
Maxwell spinors. They are both symmetric and normally taken to be de-
pendent opposite-helicity massless uncharged fields of spint1. Either of
them describes completely [3] the six electromagnetic degrees of freedom at
every z44' € IRM. The vector &, a/(z) is the electromagnetic potential. It
is real and usually enters into the definition of the Maxwell bivector F,;(z)
as

Fpaapp!(z) =2V 44 ®pE(2), (2.2)

where V 4 4 is the ordinary partial derivative operator 9/ 8zA44’, The quan-
tities ¥ 4(z), xa/(z) define the Dirac-field pair 3, 8, 9], and carry locally
the information about eight real degrees of freedom. These latter objects
are opposite-helicity massive charged spin+1/2 fields of the same rest-mass
and charge. It is useful to define the conjugate pair {t 4:(z), x4(z)} whose
elements carry reversed helicities and a charge which is opposite to that
carried by the former pair. The conjugation operator, ¥, is an antilinear
involutory mapping which leaves the rest-mass invariant, but it is not here
taken to reverse the order of the factors involved in any field expression. It
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should be noticed that this assumption appears to agree with the classical
character of the fields.

There are twelve (real) gauge-invariant relationships between the
Maxwell fields and potential which can be obtained by first splitting the
right-hand side of (2.2) into symmetric and skew-symmetric parts involving
the index pairs AB and A'B’', and then identifying

Fanpp(z)=eapdap(z)+enpdan(z). (2:3)

This procedure yields, in effect,

¢AB(33) B VA:(Aﬁg')(z), 6‘413:(2:) = VA(AIQg,)(Z) N (2.4)

which actually bring out the electromagnetic symmetry property. Clearly,
using the Lorentz gauge condition

Vaia®h)(z) = 06 Vad®(z) = 0 & Vaudhy(z) =0,  (25)

we can drop the symmetrization brackets from the right-hand sides of (2.4)
whence Eqgs. (2.5) turn out to be re-expressed as

$A(z) = 0= $4i(2). (2.6)

This simplification is easily accomplished by recalling (2.4) and using the
splitting relation

! !
Vaa®h () = Va(a®h)(2) + JeapVcF(2), (2.7)

along with its complex conjugate. We should stress that the symmetry
of the Maxwell fields makes the ordering of the relevant upper and lower
indices immaterial. This is the reason why the indices occurring in (2.6)
have not been staggered. The structure of the defining expression (2.2)
together with the (local) commutativity of the V-operators give rise to a
set of eight real gauge-invariant identities which constitute the first “half” of
Maxwell’s equations [3]. These statements can be thought of as constituting
the Bianchi identities of the entire theory, and emerge from the simple
computation

¢
ViaFoq(2) = V(o Vis8g(2) = 0 = VA" Fy 0ppi(2) = 0, (2.8)
where *F,;(z) is the dual electromagnetic bivector which is given by

‘FAA'BB’(Z) = i[EAB(;;AIBI(z) - €AIBI¢AB(-'B)] . (2.9)
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Explicitly, we have
VA $4B(z) = VA 34'B'(2), (2.10)

which are the identities referred to above.

The part of the complete theory that consists of the second “half” of
Maxwell’s equations together with the (covariant) Dirac equations arises as
the equations of motion involving the following Lagrangian density [11]

Lvp = Lm + Lp + Line (2.11)

where Ly, L£p and L;,, stand, respectively, for the Maxwell, Dirac and
interacting pieces of Lyp which are written out explicitly as

Ly == [04B(2)¢4B(2) + $ 41 pi(2) 34 B (2)], (2.12a)
Lp =i{% [XA(*’)VAA'XA'("‘) + '/_’A'(fB)VAA"'l'A(’»‘)]

- (VA 24@) xa@) + (VA4 D 0(2)) (o)

— 2 [Ra(@)¥A(2) + ba (X (2)] } , (2.12b)
and )
Line =jaa(z)844 (2), (2.12¢)

with m denoting the rest-mass of the Dirac fields, and j4 4:(z) being a real
vector which plays the role of the source for the Maxwell fields and potential.
This vector is called the Dirac current density, its explicit expression being
written here as

jaar(z) = e[Ya(@)da(z) + xar(z)xa(2)] (2.13)

where e denotes the charge borne by the elements of the former ¥ x-pair. It
should be emphasized that the full Lagrangian density as expressed by (2.11)
is a real SL(2, C)-scalar function on IRM. The corresponding equations of
motion read

t OLm A OLm O0Lint

va =M L va + =0, 2.14a
B 39as(2) T B 03pp(a) T 08 ap() (2-142)

. oL 8(Lp + Line)

AA D D int
? - D =0, 2.14b
8 (VAB'Ppi(z)) 0P () ( )
VAAI aED 3([:[) + £int) — (2.14c)

8 (VBA'xp(z))  0xalz)
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Equation (2.14a) gives rise to the second “half” of Maxwell’s equations
which, when combined with (2.10) and (2.13), yield the gauge-invariant field
equations

VE ¢ap(z) = 2me[a(z)P ar(2) + x4 (2)% A(2)]
= VﬁIq_SA:B:(z) . (2.15)

These statements constitute the Maxwell part of the theory. Equations
(2.14b) and (2.14c) yield, in turn, the Dirac equations

DAY Y a(2) = ux* (), Daax® (z) = —ppale), (2.16)
where u = m/v/2, and
DAAI =VAAI —ie@AA:(z). (2.17)

The above operator is the covariant derivative operator for the entire theory.
!

For any relevant quantity 7¢% (z), with £ and F being arbitrary clumped

spinor indices, we thus have the commutation relation

[Da, DT (2) = ~2ie [V(, (#4(2)T°7 (2) + #a(2) V5T (2)]
= —ieF,y(2)T7 (z), (2.18)

whence (2.3) can be looked upon as the “curvature” of the theory. It is of
some interest to observe that the Bianchi identities (2.8) arise directly from
the straightforward computation

2D, Dy DT % ()
= 2'D[QD[5'DC]]T£:F’(2:)
= —ieD|, [Fbc](z)TEF'(z)]

. 1 !
= e [(V[anc] (V{anc}(z))) e (m) + F[ab(z)‘pc]:re}- (z)]
4
= 2D((, Dy Dy T¢% (2)
= —ieFiy(2)Dg T (2). (2.19)
One important result emerging from this theory is the conservation
of charge. There are several methods of establishing the corresponding
statement as an identity [11], but only the one which involves the skew-
symmetric operators (3, 11]
1
", =DA;[A’D§} =1c, M, (2.20a)
.AIBI = DA[A’Dg'] = ‘%CAIBI. N (220b)
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with @ = D D¢, is mentioned here. The basic procedure consists in let-
ting these operators act upon the electromagnetic fields in such a way that
the indices carried by the resulting structure are exhausted. After some
calculations involving particularly (2.15) and (2.17), we thus obtain

. F - al it
W,5615(2) = —22V 44744 (z) = W ¢4 B (z) = 0. (2.21)

2.2. Null Initial Data sets

The simplest NID set on CJ’ that generates all the fields entering into
(2.1) is defined by

w - oA v _ A
MDNID = {¢10(0 #; W), $po(3 45 W), ¥~ (04 V), xr - (3% U)}.
(2.22)

Its elements are explicitly expressed as

w w w - [] ' 7 -
pro(04; W)=10408B¢,5W), ¢RO({2,A s W)= gA 313 dap (W),
’ (2.23a)

14 v _al '
Yr- (04 V)=0494(V), xr - (3% U) =34 xa(U), (2.23b)
with WAA’, VA4 and A4 belonging all to C’&" . The spinors carried by
the arguments of the elements of (2.22) enter into the definition of the (real)
flag poles that specify the (null) directions of generators of Ca" . Each such
spinor is chosen to be covariantly constant along the respective generator,

the conjugate expressions associated with this choice being (see Eq. (2.26)
below)

0
U

SB 63'
sa-a 007 s, o5
o’3g asAA,—O,o 4 aSAA'-O’ (2.24)

where the letter § stands for either W, V or U. The data ¢L0(vg 4. W)
and @ po( 9 A’ W) are, respectively, the (uncharged) left-handed and right-

handed electromagnetic null data, whereas ¥y, — (g 4; V) and xgp—( g A'; U)

are similarly the left-handed and right-handed Dirac null data. These data
are spread over the whole of C;’ , and appear to be formally the same as
those for spinning massless free fields [2, 3]. Each of them is a complex-
valued scalar function of eight real variables. All the elementary potentials
are also generated by them whence there will be no distributional poten-
tial contribution arising from potential data on CJ' . This fact agrees with
Penrose’s procedure whereby, upon treating the system (2.1), one chooses
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a potential-data set whose elements are all taken to vanish on C('," (see Ref.
{3]). A further point concerning this procedure will be made in Section 5.

To define the #-NID set, it is convenient to think of 64 and 2‘4' as

elements of conjugate spin bases {f,A’ IgA}, {g) A', EA'} set up at A4,
The other spinors making up the bases are also taken to be covariantly
constant along the generator of the future null cone C; of SA4’ that passes
through some point K A4’ These latter spinors are chosen in such a way
that the flag pole associated with them points in a future null direction
through § AA', with the conjugate spin inner products at S A4

SpaAK
AO

'
zg =0 Ay 25=¢S3A 0 Al (2.25)

being held fixed. Let vs denote the generator of C('," through AA', and rog
be a positive affine parameter on g such that

d

AA
S 554 oA

"‘1‘035 o ]I)(S,7s)_o gA (2.26)

The quantity ID(S; vs) is the directional derivative operator b—g)—s at §44'

in the direction of vs. Upon acting on the elements of (2.22), the relevant
#-operators are defined as follows

i = (W 7W)—3?’(W)},

w1~ ( )2

# ="V ADW; ) - 26(V)},
vi v

# = '°U{n)(U yv) - 20(U)}, (2.28)
v}

0
where () is the (real) convergence of the generators of Cj at § A4 whose
defining expression is written as [2, 3, 5, 7]

15 K4 A' 80

0 SoK _
P(S)=(2%0c) opo et T, (2.29)
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0
whence p(5) = ,,OS . We thus have the NID set
R “ ’
—NID = {Wﬂ;_ ¢Lo(o i W), 7r ¢R0(WA;W)

#_Yp-(64 V), & xp-(3*5U)}.  (230)
vyt

It is worth remarking that, when read from left to right, the data en-
tering into (2.30) appear to be of the types {0, —2; 0, 0}, {0, 0; —2, 0},
{0, —1; 0, 0} and {0, 0; —1, 0}. At this point, we have made use of the
terminology of the compacted spin coefficient formalism of Geroch, Penrose
and Held [13], but our complex-conjugation convention involves “reflecting”
the number pair occurring on either side of a curly-bracket piece in the ver-
tical that “passes” through the respective semicolon. In fact, the above
#-NID constitute a particular version of those used earlier [4, 14] to build
up the universal twistorial KAP-integral expressions for massless free fields
of arbitrary spin. It is worthwhile to introduce the conjugate Dirac #-data.
We have, in effect,

PO v . = _at
# & Yp-(04V)= & 9pe(a*; V), (2.31a)
V%— V%'l’ v
T & xa—(ﬁ“'; U)= # ;ZL+('5"; U). (2.31b)
Ui-+ U Ul-

2

The definition of the elements of (2.30) is illustrated in Fig. 1. The
left-handed and right-handed data have been, respectively, denoted by hol-
low and filled spots bearing suitable charge labels. In what follows, this
notation will be also utilized for representing the right-hand sides of Eqs
(2.31) diagramatically. In particular, the work of subsection 2.3 involves
the specification of Dirac data at points lying on generators of (future) null

cones of appropriate points of V;,*.
2.8. Symbolic density equations

The construction of the formal density equations associated with the
elementary field-potential contributions is based only upon the structure of
the theory. All the null configurations built up here will be actually used
in Sections 3 and 4 as calculational devices for working out the explicit
distributional statements. We will see that the reality of the Maxwell fields
and potential is lost when the solutions for “higher-order” contributions are
obtained. For this reason, another kernel letter will henceforth be used in
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0, W<

{c) {d)

Fig. 1. Diagrams illustrating the definition of the #-data on the future null cone
of the origin for the elements of the Maxwell-Dirac set. The left-handed (resp.
right-handed) data are shown in (a) and (c) (resp. (b) and (d)) and represented by
hollow (resp. filled) spots. The sign carried by the spots refer to the charge borne
by the fields involved in the datum expressions.

place of ¢ to indicate that the left-handed and right-handed electromagnetic
fields are generally independent of one another.

For the electromagnetic fields, one has to build up six basic FDE.
Two of these involve the (SI) massless free densities (L%(M); ¢4p(z)) and
(R°(M); 04rp:(z)) which are produced by electromagnetic data centered
at some M44' ¢ C(',*' . Such massless free FDE are written at some z44’

lying in the interior of C;,I as

VAL (LO(M); pap(2)) = 0, VAY(RO(M); 04pi(2)) =0.  (2.32)

It must be observed that the statements (2.32) are associated with the
standard splitting of the KAP-integrals {3, 4, 7] for fields of spin £1. This

KAP-splitting involves shifting the origin to M A4 in such a way that zA4
appears as a future time-like vector given by the sum of two future null vec-

K

tors, MR bA g A and » rx o4 }? A' The IRM-configurations involved can
. M4 _

be readily constructed by adequately transporting the flag poles o 4 8 Al

and 04 16("' (see Fig. 2). Hence, 244" is future-null separated from both

KAA" and R44’ which are, in turn, future-null separated from M AAI, the
point RAA lying on C{," . It should be pointed out that the viability of this
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construction rests essentially upon the fact that the field densities entering
into (2.32) involve a distributional field [3, 5] whose (non-compact) support
is identified with C}&. The associated potential densities (LO(M); & 4 4/(2))
and (R°(M); & 4 4/(z)) thus satisfy the equations

Va4 {L°(M); 84 (2)) = (L°(M); $45(2))

= Vau (R (M); 5 (2)),  (2.332)
V aar(R°(M); 85:(2)) = (R*(M); 8 5o (2))

= V44 (L (M); $5:(2)) - (2.33Db)

It will be shown in Section 3 that the solutions of the above equations are
the only real electromagnetic densities, whence we have the relationship

8 = ¢ along with (L°(M); $ 4 41(2)) = (R*(M); &4 41(2))-

Fig. 2. Planar configuration involved in the standard distributional splitting of
the KAP-integrals. The configuration appears as the device for calculating the
real electromagnetic densities. In particular the construction entails the affine-
parameter equality rprx = rrx.

The densities involved in the other electromagnetic FDE are produced
by elementary Dirac current pieces of the types (L~ R1) and (R~L*). The

#-data generating such Dirac pieces are centered at points {N AA', PAAI}
which lie in either CJ or V{. In this latter case, the Dirac datum spots
are actually produced by scattering data. The patterns of the structures
involved in the formation of these data are the same as the ones to be
constructed in Sections 3 and 4, and will, therefore, be specified later. For
simplicity, and without any loss of generality, assume that the data carrying
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the same charge are set up at the same point whence the current pieces
really appear as (L~ (N)R*(P)) and (R~ (N)L""(P)). The procedure for
constructing the relevant null configurations is essentially the same as that
giving rise to Fig. 2 since the fields emanating from N AA" and PA4’ have
once agam to be split into their KAP-distributional components. Let Z A4l
and TA4' be points lying on ct n and c3 p» with the corresponding null poles
being 3 A g A and o A g Al Tespectively. The generators vz and yr are
taken to intersect each other at a “middle” point M A4" yhile 244 is now
a point lying in the two-plane of N AA', PAA" and MAA' which is future-null
separated from both ZAA" and TA4', Thus zAA' belongs to the interior
045

of both C and CP, the inner products zyy = o 043 04, zp = 040 4 being

held fixed together with their complex conjugates, and zps = 24% Ay ZIM =

g gA: (see Fig. 3). Invoking (2.15), we then write the symbolic FDE

VE(L™(N)RT(P); $aB(2)) = 2xe(L™(N); $a(z)(RT(P); Par(=))
= VE(L™(N)RY(P); 0api(2)), (2:34)
where (L™(N); $a(z)) and (R*(P); ¢a:(z)) denote the conjugate -
distributional densities coming from N A4 and PAA', respectively. In a
similar way, the FDE for the densities produced by the (R™(N)L*(P))-
piece are written as
VE(R™(N)L*(P); $ap(2)) = 2me(R™(N); x4 (2)XLF(P); Xa(2))
'
= VE (R~ (N)L*(P); urmi(z)). (235)

The potential densities associated with the solutions of Eqs. (2.34) and
(2.35) are subject to the equations

Vaa{L~(N)R*(P); 84 (2)) = (L™(N)R*(P); d4p(z)), (2.36a)
V aa{L~(N)R*(P); $5,(2)) = (L™ (N)R*(P); 8 a1p:(2)) , (2.36b)

and

Vaa(R™(N)LY(P); 84 () = (R™(N)L¥(P); dan(z)), (2.37a)
Vaa(R™(N)LF(P); $5.(2)) = (R™(N)L¥(P); 64rp:(2)) . (2.3Tb)

A block diagram illustrating the production of the electromagnetic densities
is shown in Fig. 4.
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{a) {b)

Fig. 3. Null planar configurations associated with the equations for the distri-
butional electromagnetic densities produced by elementary current pieces. The
generators of i, and C} through ZAA" and TA4' meet at a “middle” point M44',

The point z44’ hes in the plane of N44 P"“ and M A4' and is defined by trans-
porting parallelly the flag poles o454 and o4 o A" along the generators v and
5

4z, respectively. The edges “incoming” at N44' and P44’ appear in the structures
that give rise to the formation of the #-data involved and are not required to lie in
the planes of the configurations: (a) (L~ R*)-structure; (b) (R~ L*)structure.

When combined with the electromagnetic structures constructed above,
the field equations (2.16) give rise to six basic FDE for the Dirac fields. As
the entire theory stands, the corresponding statements appear to control the
interaction between elementary Dirac fields and electromagnetic potentials.
The configurations associated with such FDE can be built up by suitably
coupling those of Figs 2 and 3 with the ones corresponding to incoming
distributional Dirac fields. It will be seen in Section 4 that this “suitabil-
ity” is intimately related to the fact that the scattering structures have
to carry electromagnetic-field branches which bear the same handedness as
that of the incoming and outgoing fields. The procedure leading to this fea-
ture amounts to modifying the potential vector kernels associated with the
former configurations without violating the relevant FDE, but the former
potential poles are indeed recovered when the latter configurations “col-
lapse” so as to restore the former structures. In particular, the handedness
feature implies that there are only two appropriate “dual” configurations
for each current piece.

The structures under consideration are shown in Figs 5 and 6. In Fig. 5,
the i mcormng fields emanate from %-data set up at a point DA4" which does
not, in general, lie on Co , but is taken to belong to the plane spanned by
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M AA’, KAA" and 244, One of the generators of C}S lying in this plane
contains a point S A4’ which is past-null separated from a:AA’, and thus
1 [ !
intersects the geodesic passing through M44" and K44 at mA4'. At this
stage, the affine parameter rops is not required to lie in the main plane

of the configurations. The inner products at mA4’ and D44 are set as

S A2 K _ _ a4l _ D 48 - - —
zm=0A0A, Zm =gA ’%Ar,and zZp = OAOA, ZD =gA’gA:.

L° R°
1 !

(L°; ¢45(=)) (R°;04:p0(2))
! 1

(L°;Ban(z)) = (R% ® 4a(2))

L™R* ; R Lt

1 4 ! 1

(L~ R*;6a8(z)) | | (L-R*00m(2)) | | (R L*:648(z)) | | (R-L*:64'B'(2))

!

! 1 !
I‘ (L_R+;§AAI(3)) —1 {‘ (R"L*‘;QAA:(z)) —]

Fig. 4. Block diagram showing the production of the basic electromagnetic densi-
ties. For the sake of simplicity some of the vertex arguments have been deleted.

The corresponding FDE are written as follows

VAA (L= (D)LY (M); $a(z)) = ie(LO(M); 44 (z))(L™(D); ¢A(w()2> »

VA4 (R=(D)R*(M); x41(2)) = ie(R*(M); 844’ (2))(R™(D); xA:((zzns.g

Operating on these equations with Vﬁ, and Vﬁl and using the Lorentz
gauge condition for the potential densities, after some elementary manipu-
lations we obtain the wave equations (with 00 = V,V?)
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O(L™(D)LO(M); pA()) = — ie[(LO(M); $2B(z))(L™(D); ¥5(=))
—(L°(M); 88 (=) VUL (D); 9P (2))]
(2.40)

C{R™(D)RY(M); x* (2)) = — ie[(RY(M); 64B' (2))(R™(D); xp(2))

— (R°(M); $4:(=)) VL (R™(D); xB(=))] -
(2.41)

Fig. 5. Planar configurations for the FDE describing the interaction between ele-
mentary Dirac densities and “zeroth-order” potential pieces: (a) left-handed struec-
ture; (b) right-handed structure.

The construction of Fig. 6 is carried out in a similar way. Now, the
scatterer branches involve the current pieces of Fig. 3. The incoming fields

are produced by data specified at two points D44’ and BAA’, the relevant

generators of Cg and Cg intersecting the branches at FAA" and GAA’,
respectively. In the case of either pair of “dual” structures, the intersection
takes place in such a way that these latter points appear to be past-null

separated from two points RA4' ¢ ¢} and K44 € C} which lie, therefore,
] ! IN ] e 1
in the planes of N44'| FAA' DAA" a5 pAA' GAA BAA respectively.
!
Furthermore, 244" lies in both of these planes, and is future-null separated
[ 1
not only from RAA" ang KAA , but also from the two other points 044 ¢
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C'I’; and 244" ¢ Cg which are, respectively, taken to be future-null separated
from FA4' and GA4'. The generators of CX, and C; passing through RAA
and K44’ now meet at mAA', which accordingly belongs to both planes.
Evidently, as the configurations stand, the intersection between the two

planes is the line passing through mA4’ and z44'. The relevant inner
products will be defined later (see Eqs (4.21)). For the corresponding FDE,
we have

VAA(L=(D)RF(P)L™(N); $a(z))
= ie(L~(N)RT(P); 44 (2))(L™(D); $a(z)), (2.42)

VAA(R™(B)L™ (N)R*(P); xa(2))
= ie(L™(N)R(P); 44 (2))(R™(B); xa/(2)), (2.43)

VA4 (R™(D)L*(P)R™(N); x ar(z))
= ie(R™(N)L*(P); #44'(2))(R™(D); x'(2)) » (2.44)

VAA(L=(B)R™(N)L*(P); $a(z))
= ie(R™(N)L+(P); 44 (2))(L™(B); ba(z))- (2.45)

The procedure yielding (2.40) and (2.41) leads also to wave equations asso-
ciated with Eqs (2.42)-(2.45) which can be immediately obtained from the
former statements by replacing L° and R® by adequate current pieces. For
(2.42), for instance, we have

(L~ (D)RY(P)L™(N); ¥*(2)) = —ie[(L™(N)R(P); $*B(2))

x (L™(D); ¥8(z)) — (L™ (N)R*(P); ¥4 (2)) VL~ (D) vB(2))] .
(2.46)

It should be emphasized that each of the differentiated Dirac densities
appearing on the left-hand sides of the equations with which we have been
dealing corresponds to an elementary contribution which arises as the result
of the interaction between an incoming field and a potential density. Indeed,
the solutions of the FDE associated with Eqs (2.16) are to be regarded as
densities for new contributions arising in this way. Some block diagrams
illustrating these processes are given in Fig. 7. The formation of Dirac
datum spots involves appropriately combining configurations that arise from
the actual evaluation of the above structures. In accordance with this fact,
each contribution will appear as an IRIM-integral whose integrand involves
the wedge-product of differential forms set up at spotted points.
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Fig. 6. “Dual” configurations describing the interaction between elementary Dirac
and higher-order potential densities. In (a) and (b) (resp. (c) and (d) two Dirac
densities propagate in a region with potential produced by a ¥4- (resp. xx-)
current piece.

2.4. Colored graphs

The distributional pieces which recover each of the elements of (2.1)
cannot be labelled in any trivial way. It becomes necessary to design a
graphical label device whereby each elementary contribution may be clearly
identified. Accordingly, each graph must carry the information about the
explicit integral expression associated with a distributional field or a poten-
tial. In addition, such a set of graphs must facilitate the construction of the
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L L~ R R-
1 ! ! !
(L% Panr) (L73%4) (R°; @ aar) (R 5xar)
1 1 1 l
INTERACTING FDE INTERACTING FDE
1 !
(L7L% %) (R™R%ixar)
(a) (b)
L- L-R* R- L~ R-L* R~
1 i i ! i I
(L75%a) | | (LTRY a0} UR sxar) | | (L73%a) | [(BTL¥;80u)| (R 5xar)
i 1 1 i i 1
INTERACTING FDE INTERACTING FDE
! 1 1 1
(L™R*L759a) (R"L™R*;x4) (L=R™L*;94) (R™L*R™ix4r)
(<) (@)

Fig. 7. Block diagram showing how new Dirac fields arise from the interaction
between potential and incoming Dirac densities. In (a) and (b) the incoming Dirac
densities interact with the “geroth-order” potential density. In either case the
relevant potential piece is produced by the electromagnetic datum that carries the
same handedness as the incoming and outgoing fields involved. In (c) and (d) the
interaction processes described by the pairs of “dual” configurations are controlled
by the FDE of the first order.

integrand of any higher-order contribution. The graphical representation to
be built up now also enables one to re-express the mass-scattering zigzag
patterns in a simpler manner. This point will be touched upon again in
Section 5.

The device used here consists of planar trees which generally carry un-
colored and colored vertices connected by solid straight, dashed and wavy
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lines. Uncolored vertices bear no meaning at all, but merely appear as end-
points of external lines. Any one of the colored vertices denotes a datum
spot. Each of them bears the white color or the black color depending upon
whether the corresponding spot is left-handed or right-handed. They al-
ways contribute specific differential forms to the integrals, likewise carrying
charge labels which effectively remove the charge-helicity ambiguity. Wavy
lines appear as external lines starting at colored vertices. Any such line rep-
resents a proper Lorentz invariant distributional field [3, 5, 15}, and carries
a number referring to the “degree” of the distribution. Moreover, all the
vertices from which they emanate contribute volume differential forms to
the integrands. Each distribution is thus defined with the origin displaced
to the RIM-point that corresponds to the vertex bearing the respective line.
Colored vertices which do not involve wavy lines contribute KAP-like two-
forms, and are always carried by graphs representing explicit outgoing fields.
For an arbitrary scattering graph, there is only one vertex of this latter type
while all the colored vertices occurring in graphs which do not represent
scattering processes are of the former type. Solid straight and dashed lines
can be both internal and external. Each of these lines really starts at a
colored vertex. Internal dashed lines just play the role of connecting pieces,
not contributing anything to the integrands. External dashed lines always
start at colored vertices which do not correspond to datum spots lying on
Cy. In this case, each line represents the whole #-datum involved in the
formation of the respective IRIM-spot. In the other case, the color vertex
does not bear such a line, but carries also the contribution due to datum
centered at a point of C;' unless it is connected with another colored ver-
tex without bearing a wavy line. Of course, this rule has to be adequately
extended when the external dashed lines are replaced by the corresponding
subgraphs. In the first instance, if a vertex carries an external dashed line
it also carries a wavy line, but the converse is not true in any case. We can,
in effect, have vertices carrying wavy lines without bearing external dashed
lines and also vertices carrying neither type of line. Thus, a colored vertex
which does not carry both external dashed and wavy lines appears as the
KAP-vertex of a scattering graph. Notice that this latter rule appears to be
particularly relevant when we allow for the “zeroth-order” massless-free-field
contributions. Internal solid straight lines connect colored vertices which do
not bear necessarily the same color. Each of these lines represents a typi-
cal inner-product affine-parameter structure carried by the integrand of an
integral expression. In passing, we observe that affine parameters are al-
ways carried by denominators of integrands, but inner products are allowed
to enter also into numerators. External solid straight lines denote “out-
going” spinors carried by explicit integrands, each spinor being unprimed
or primed according to whether the vertex from which the respective line
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comes is white or black.

Two vertices of different colors can be “stuck” together to form a double-
color vertex. Each such composite vertex bears a wavy line and carries the
information associated with a “shrunk” internal solid straight line. It actu-
ally appears as one of the colored elements of the vertex-set of a graph, but
corresponds to two datum spots of opposite handednesses centered at a com-
mon point of C:‘ . Thus, the associated integral contribution involves only
the datum whose handedness is the same as that of the spot corresponding
to the colored part of the vertex from which the wavy line emanates. As
far as our immediate purposes are concerned, such patterns will be used for
labelling only the pieces carried by the real potential. For these elementary
pieces, it is convenient to attribute an upper-lower end-point character to
the external solid straight lines which enables us to decide upon whether
the explicitly involved spinors leave or enter the datum spots representing
the colored parts. It should be observed that this end-point rule breaks
the invariance of the individual pieces when the graphs undergo arbitrary
reflections and rotations.

The order of the colored vertices of any graph is irrelevant because the
conjugation ambiguity has been eliminated from the beginning. Neverthe-
less, it seems to be worthwhile to place them in such a way that they bring
out the structure of the symbolic expression for the corresponding integral.
It appears that, when taken along any edge the sum of the charges equals
either zero, e or +2e. The values —e and —2e occur in subgraphs which
represent conjugate Dirac branches. Explicit colored graphs will be exhib-
ited later in Sections 3 and 4.

3. Evaluation of electromagnetic graphs

In this Section, the explicit evaluation of the basic null diagrams asso-
ciated with the elementary electromagnetic contributions is carried out. It
will be seen that, in the case of the fields, the configurations shown in Figs 2
and 3 turn out to be “reduced” because of the presence of A;-functions in
the solutions of the FDE (2.32), (2.34) and (2.35). For the corresponding
potential densities, however, the null-loop pattern of the underlying config-
urations is retained since the solutions of (2.33), (2.36) and (2.37) all involve
step functions for the relevant spotted vertices. One important feature of
the solutions of the electromagnetic FDE is the correspondence between the
handedness of the field densities and that of the datum spots with respect to
which the A;-functions are defined. This feature appears to be intimately
connected with the structure of the flag poles entering into the solutions
for the potential densities. In the particular case of the null configurations
of Fig. 3, these latter densities appear essentially as sums of suitably con-
tracted first derivatives of appropriate spinors, which are identified with the
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gradient of certain (scalar) functions whose definition comes directly from
the structure of the IRIM-patterns. Such facts entail a remarkably simple
form of the colored trees associated with the integral expressions. The ba-
sic procedure for solving the density equations was indeed used earlier for
treating pure Dirac fields [5~7]. In essence, it is equivalent to working out
the geometric relations for each basic configuration. Subsection 3.1 deals
with the construction of the integrals for the fields. In Subsection 3.2 the
integral expressions for the potentials are exhibited. Hereafter, a distribu-
tion of “degree” k defined with the origin displaced to some point RAA will
be denoted by Ag(z; R).

3.1. Field integrals

As was pointed out previously, the distributional solutions of the free
FDE (2.32) constitute the standard SI splitting of the KAP-integrals for
fields of spin +1. Explicitly, we have [3-6]

(L°(M); an(@) = 5= 6 a5 pls(ai M) & 610(8% M), (3.)

1 _ _ _ o
(R (M); 641 pi(2)) = or 24 2pda(z M) T bro(3 5 M). (32)

To see how the above solutions actually arise, one has necessarily to de-
rive the expressions for the derivatives of the spinors and affine parameters
involved in Fig. 2. We have, in effect

:BAA’=MAA’+TMRA¢§A3AI+?RXI(§A2A', (3.3)
with the point M A4’ and the flag pole ba f{ Al being both held fixed. Thus,

differentiating (3.3) and making suitable contractions, we obtain the simple
relations

K 1 K M
Vapar0g = =————————040 410 34
ANOB= = 040 4 0B, (3.4)
1 «k 1 M
V447 = 040 a1, Vaurr = 0 40 g 3.5
AATMR= o 0 A Q4 VANTRX = o O A Bl (3.5)

together with the conjugate of (3.4). Hence, using the above relations along
with the SI distributional expression

1 M
o

K
VAA:Al(z; M):rRongA:Az(:c; M)-— A:Al(z; M),

(3.6)

= A 0
ZMZMTRX M
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we immediately arrive at Eqs (2.32). The electromagnetic free-field contri-
butions are then written as the conjugate KAP integrals

1 X X . M 1
< L°(M); ¢aB(z) >= %‘/OAOBM‘!;_¢LO(OC; MK, (3.7
1
K

1 _ - .= e 1
<R0(M); OAIBI(:B) >= 5;— gAI§BIM72+ ¢Ro(f{c;M)’E, (3.8)
1

K

1 1
where K is an SI two-form on the space K & $? of null zigzags that start

at O and terminate at z44’ (see Ref. [4]). It should be stressed that the
A;-function occurring in (3.1) and (3.2) really implies a “reduction” of
Fig. 2 so as to make 244’ coincide with K44', The corresponding graphical
representations are depicted as follows

< L°(M); $aB(2) >=\ , <« RU(M); 0 a1i(z) =\ . (3.9)

There is an important geometric property of Fig. 3 which arises imme-

diately from the fact that the points N44’ and P44’ are held fixed as 244’
varies suitably. This property amounts to stating that the (real) SI vector

! z U T !
KAA =1‘NMOA2A —rpMOATﬁA, (310)

. . e N _ .
remains constant. Upon transvection with o 4 g a1y we obtain the scalar

= (TaAN ~ A -
K = zP(OA 0 4)TPM — ZN(gA gA')rNM: (3.11)

which is referred to as the K-scalar for the configurations involved. This
scalar quantity will play a significant role in Subsection 3.2 (see also Section
4). The derivatives of the relevant spinors and affine parameters are given

by

V4 -Tr 4 - N
VBBI0A= — PM OBOBIOA, (3.12)
sNZMm(rmzrMT —TNZTPT) T
1 T TNZTPM
Veprnz =—— {OB op + ——
ZMEIM T ZNEIN(TMzZTMT — *NZTPT)

X [EN(%,A%A) ngB' + C.C.]} ’ (3.13)
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1 T TMZTPM
Veprmz =

— ogpopg + —
IMEIM B T INEIN(rMzTMT ~ TNZTPT)
NaT .2
X [EN(OAOA)OBgBI+C.C.]} ’ (3.14)

1 { PNMTPM
zmZm \aNEN(rMzZTMT — TNZTPT)

x [Zn(040 4) ngB' + C-c-]} ; (3.15)

VBBITNM =

along with the conjugate of (3.12) and the relations which are obtained
from those given above by interchanging N « P and Z « T, the symbol
“c.c.” standing for “complex conjugate”. Notice that the piece involving a
d.lﬁ'erence between products of parameters in the denominators is invariant
under these interchanges, which actually include changing the overall sign
of (3.12) (see Eqs (3.22) and (3.27)). The entire set of expressions can be
derived by differentiating the relations

1 I} z T '
LA _ pAA +7‘N20Ag S O P
! T Z
= pAA4 +1‘pT0Ag +rTXoAgA R (3.16)

and making appropriate contractions. When deriving these expressions, it
is convenient to utilize the trivial affine-parameter identities

TNZTPM + TNMTMT = "NMTPT + TMZTPM = “"("’MZ"'MT - TNZ"'PT) .

To write out the middle blocks of Eqs (2.34) and (2.35) explicitly, we use
the KAP-splitting relations for the Dirac current densities

(L7 (N); baEN RN (P Sa(@) = 15 ati(ai M) & dr= (255 )
2
X (3 wdi(z; P) * $r+(375P), (3.17)
P}
(B (M) xa @ENEHP) (o)) = pz(gada(ei V) 7 xn= (375 M)
N3
x (6 441(z; P) & %1+ (07 P)). (3.18)
P}

The procedure for solving the equation occurring in (2.34) that involves
the left-handed field density is now developed. We will see that the solu-
tions of the other electromagnetic FDE can at once be achieved by making
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adequate replacements. In accordance with the general prescription given
in Refs [4-6], one seeks a solution of the form

(L™ (N)R*(P); $aB(z)) = aaBpAj(z; N)Ay(z; P)

N N P o4
X 7r_1/)L_(oc;N) 7r+¢R+(gC;P), (3.19)
N} P}

where a4 and fp are spinors to be determined along with j and k. Thus

operating on (3.19) with VB A’ and making use of the generalized SI deriva-
tive

BA'A (0 MY —m o ZB A A (o I TBSA'A (..
v Aj(z, N)—-TNZO g AJ+1(3, N)—mo g A](:c, N),
(3.20)

together with the expression that arises from applying the NP-ZT inter-
change rule to (3.20), we obtain

z 2z € TNZ
s 4 = A [4] [4] /\ = —
4Pp A% B 27 zpm(*MZTMT — TNZTPT)

,i=Lk=0.

(3.21)
Hence the solution sought is uniquely given by

(L™ (N)R*(P); $45(2)) = 5——— 540 5As(z; N)Ao(z; P)

N N . - ol
x & Yp-(0% N) & Pgre(3; P), (3.22)
N Pl

provided that
V-4 ~ A
O0A0
.2 Z € T
VBA (A0 40p5) = ———— . 3.23
( )= "2 zmZm(rMZTMT ~ TNZTPT) (3.23)
In fact, the terms involving A;(z; N) and Ag(z; P) cancel when (3.22) is
inserted into the density equation under consideration, the remaining terms
thus reinstating the pertinent right-hand side. The field contribution is then
symbolically expressed as

< L™(N)R*(P); daB(z) >

= [ @ORYPY base) arn g A dunal,  (24)
Eg

where the (charged) A-forms are those associated with the contributions
of the spotted vertices occurring in the configurations that give rise to the
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formation of the relevant current spots. The f2-forms are associated with

the explicit contributions emanating from N AA" and PA4’, These latter
forms are SI volume forms of the type

w
AS, (3.25)

where the affine parameter involved lies on the generator of the future null
1
cone of an appropriate vertex H44 that appears in the underlying configu-

w
ration, and S stands for an SI element of two-surface area of the (space-like)

intersection between Cy, and C}_"I, with Y44’ denoting a suitable point lying

to the future of either N44' or P44’ (see Ref. [7]). The integral is taken
over the space IEy, of structures of the type shown in Fig. 8a. Once again,
we see clearly that the former calculational structure (Fig. 3a) is “reduced”
because of the presence of the distribution A;(z; N). Thus, for Eq. (3.24),
we have the graph

< L™(N)R*(P); ¢aB(z) >= ~v Nl e~

= 7l
1 | (3.26)

It is evident that the (typical) structure associated with the internal line

occurring in the above graph is z—’;—%.

When worked out explicitly, the prescription yielding (3.26) shows us
that the distributional solution for the right-handed density involved in
Eqs (2.34) can be obtained from (3.22) by first applying the NP-ZT inter-

change rule to the affine parameter and distributions, replacing the explicit
3 A-spinors by g A g B', and then taking a complex conjugation of the inner
product at M AA', the overall sign being also changed. We thus have the

statement
e

(L™(N)RT(P); 0 41 p(2)) = mgA'gB'Ax(fc;P)Ao(z;N)
. N . - _c
X 7 ¢L-(OC;N) 1r+1/;R+(gC;P), (3.27)

N}~ P}
whence the corresponding contribution is written as
< L™ (N)RY(P); 0 415(2) >

- /(L‘(N)R+(P); Oum(E)AIAQRAALIAQE, (328)
Epg
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with the integral being taken over the space of null configurations of the
type exhibited in Fig. 8b. The colored-graph representation of Eq. (3.28) is
then given by

< L™ (N)R+(P), Oarpi(z) >= ~~~T—-———-—\¢l/~ v
' l (3.29)

To the FDE (2.35) with the current density (3.18), the standard pre-
scription yields the solutions

BAi(z; P)Ag(z; N)

. e d " - P
X % XR—(OC;N) # xL+(oC; P), (3.30)
N}t

e

(R_(N)L+(P); 0AIBI(2)) = - OAI oBlAl(:c N)Ao(l‘ P)

2nZpmrpM 2

XNZ xr- (3% N)pz_;zm(’éc; P). (3.31)

The associated field integrals are thus expressed as
< R™(N)L*(P); ¢48(z) >
= / (R™(N)L¥(P); 4B(2)) S INQNAS 1IN T, (3.32)

L34
& R™(N)L*(P); 048:(z) >

= [ NLF Py oumle) s 1A QR A S AR E, (339

€r

with the differential forms bearing essentially the same meaning as in (3.24)
and (3.28). We notice that the integrands of Eqs (3.32) and (3.33) can be
constructed from (3.22) and (3.27) by using the NP-ZT rule and supplying
the #-data. The configurations which are relevant for the integrations are
depicted in Figs 8c and 8d. Accordingly, a simple white-black interchange
rule yields the graphical representations

< R™(N)L*(P); $ap(z) >= ~~~\c|>;—_lm~
l | (3.34)
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| i (3.35)

It should be emphasized that the A;-function “reduction” yielding the pat-

terns of Fig. 8 implies in each case the identification of z44" with either
ZAA or TAA,

A; XAA’

{d)

Fig. 8. Null configurations involved in the integrations leading to the basic electro-
magnetic-field contributions produced by current pieces. The loops denote the
branches that give rise to the formation of the current datum spots. The structures
for left-handed (resp. right-handed) fields are shown in (a) and (c) (resp. (b) and
(d)). In any case the relevant diagram has to be suitably displaced so as to make
its end-vertex coincide with z44",

3.2. Potential integrals

Upon working out the prescription for obtaining the basic potential
expressions, one has to solve simultaneously the density equations that en-
ter into each of the pairs (2.33), (2.36) and (2.37). The explicit form of
Eqs (2.33) is achieved by simply using the field densities (3.1) and (3.2).
We thus have

' 1 ¥ kK N M
Van{LO(M); 88 (2)) = 5= 0 4 0 BA1(2; M) o ¢r0( 0 ©; M),(3.36)
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c";M).
(3.37)

1 o
V 44{R"(M); $5:(z)) = E;QA'QB'&(?L‘; M) Mﬂ;+¢R°(

zor

It follows that, invoking the basic procedure of which we made use in the
preceding subsection and employing the formulae (3.4)-(3.6), we obtain the
expression

1 1 K . M
(LY(M); S44:(2)) = — | = Ag(ziM)0 45 4 7 ¢po(0 % M)+ cec.
2% | ZMTRX M7 M1

= (R(M); ®44:(2)). (3.38)

This is the real (“zeroth order”) potential density referred to before. Notice
that it can be re-expressed as

(LO(M); &4 00(2)) = 2% [40(z: M) E BV 4005 & 610(6 %5 M)+ ccc
= (R"(M); $4.4/(2)). (3.39)

The corresponding SI contribution is then written as

< L'(M); & 01(2) >>=/(H°(M);¢AA'(Z')) D =< BO(M); 8 40(2) >,
Os

(3.40)

where the letter  stands for either L or R, and the (five-edge) configura-

tions over which the integral is taken are of the type shown in Fig. 9. We

should point out that the presence of the step function in (3.39) does not

entail any collapse of the null loop of Fig. 2. The graphical representation
of Eq. (3.40) is thus depicted as follows

< Lo(M); P 4a(z) >=L§ + %‘L =< R (M); B44(z)> . (341)

Recall that, for the potential contribution just calculated, it is convenient to
use the upper-lower end-point convention. In fact, the conjugate graphical
pieces carried by Eqs (3.41) can be easily constructed from one another by
reflecting the spinor lines in the verticals that “contain” the “interfaces”
between the colored parts, keeping the vertices fixed.

To calculate the potential density that enters into Eqs (2.36), it is con-
venient (but not strictly necessary) to use the whole expression for a4 8p as
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Fig. 9. Five-edge null configuration involved in the integration of the real potential
density. The presence of a step function in the overall integrand does not entail
any collapse of the null loop.

given by (3.21) in conjuction with the one associated with the right-handed
field density (3.27). We thus have the explicit statements
- Aj(z; N)Ao(z; P) z
v LNR+P°§A'2 _ & _TNZA1%S ; z
an (L (N)EH(PY; 8 (2)) = - THESTETZ0E)
x & Y-(0%N) # gr+(3%:P), (342)
N%_ P%+ P

z
o

AYB

and

- e rprdli(z; P)Ag(z;N) . _
VanlET(NRH(P); #4(2)) = - LT DT, g
. N ~ T _c!
x & $p-(0N) & Pr+(3;P). (343)
N} Pl

Therefore, when inserted into (3.42) and (3.43), a common solution of the
form

(L™(N)RY(P); $ g 41(z)) = p€anarAj(z; P)Ag(z; N)

x & _$-(C%N) & Jp+(g°iP), (344)
N}~ pyt P
leads us uniquely to
e 1 z _ .
p= fanar =048, j=k=0,

2r zpZm(rMzrMT — TN ZTPT)'
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where the relation (3.20) and its NP-ZT dual have been used. It follows
that the pertinent potential contribution is written as

< L_(N)R+(P), diAA:(z) >=

[ @R PR Ean@) ArngR A AARE,  (46)
vd

with the (SI) density involved being explicitly given by

. o4 g 41 Ao(2; P)Ao(2; N)
(L™(N)R*(P); $44(2)) = =

27 zpmEim(rMzrMT — T'NZ"'PT)
X a‘_d)L-(O iN) 7 1/’R+(° P).
N} 12y

(3.47)
The integral (3.46) is taken over the space 5¢¢-, of null patterns of the type
exhibited in Fig. 10a, its graphical representation being

C LR Pidan(a) 2= yrods—tih oo
| |

(3.48)
Thus, for the structure (3.48), the internal line represents the factor

—e/2xzpmZMm(TMZTMT — TNZTPT) -

In verifying that (3.47) does indeed satisfy Eqs (3.42) and (3.43), one can
make use of the relations

V4 - T
Vaar[zmZm(ramzrmr — *NzrpT)] = —(PNMO A S a4t +TPM O AT A1),

and

(3.49)
VBBI[ A A Ao(z P)Ao(z N)]

ZA Na~ A'
_(ZNZMTNM 3 A ZMEprpM © 2”)

OB OBIAQ(:B P)Ao(z N)

z
0 s N)Ao(z; P
ZNZMZMZP(TMzTMT—-rNZrPT) ["NZOBgB'Al(m, )Ao(z; P)
+rpT03031A1(z P)Aq(z; N)] A A (3.50)
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which actually imply that
Vpp(L™(N)R*(P); $40:(2)) =

Z N
e ZMTNMOAQA ZMTPMOAQAN ,
- —{ Ag(z; N)Ao(z; P - 0BG p
5 | Ao(2 N)Ao(z; P) i pr BSB

V-4 _ T - z _
+ (rNM op 2B +rPMOB g B’) °a9 A’] + zmZpm(rMZTMT — TNZTPT)

z T _ z
X [rNZ OB(Z-)BI,Al(z; N)Ao(z; P) + rpr oBgB'Al(Z§ P)Ao(:; N)] OAgAI}

N3 Pz
[zMmZMm(rmzrmT — PN 2ZTPT))?

Consequently, making contractions over the indices A, B and A’, B' yields
the expressions (3.22) and (3.27) along with the divergencelessness of

(L™(N)R*(P); € 44:(2)) .
It should be noted that the densities (3.22), (3.27) and (3.47) differ by an

overall sign from those provided by Penrose & Rindler [3]. This is due only
to the choice of sign convention involved in the definition of the (variable)

# $p-(0C;N) & Ppe(3C;P)
1+ P

(3.51)

inner products at M AL

There is another property of the configurations shown in Fig. 3 which
gives rise to an important alternative expression for the potential density
(3.47). The property in question is that the SI quantity zpZpmrpmrNm
remains constant when the relevant integral is performed. A simple way
of seeing this is to invoke the formulae (3.12)-(3.15) together with their
(NP & ZT)-counterparts. This procedure yields the formal relations

1 _ T z _ . B'
VAAI(].Og(ZMTPM)) = I (zM oV oB + ZMgBIVAAIgB ) s
(3.52)
_ 1 _ T z _g _
Vaa(log(Zmrnm)) = ZniZnt (ZM OBVAAI op+ ZMgB VAAIgBI) ,
(3.53)

whence V 4 4/(log(zpZmrpmrvar)) = 0. Thus, the density (3.47) can be
rewritten as
- e znZpAg(z; N)Ay(z; P
(L™ (N)RH(P); S a(z)) = — o 220 (B ) 202 P)
N N . 7 _c!
x Vpn(log(zmrpm)) #_vp-(0%N) & dpe(3%3P),
N3 Py

(3.54)
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where K is the scalar quantity defined in (3.11). Similar calculations tell us
that the distributional potential density produced by the (R™(N)L*(P))-
current piece (see Eqs (2.37)) can be directly obtained from (3.54) by replac-
ing the #-data and taking a complex conjugation of the remaining factor.
Using (3.52) and (3.53), we thus obtain

e zpZNQo(z; N)Ao(z; P)
27 K

. _c! PO P
X V g a:(log(zprna)) w+xR-(gC;N) T xr+(0C; P).
N} P}

(R™(N)LH(P); # g a(2)) =

(3.55)

L {a)

Fig. 10. Minkowskian configurations involved in the explicit integral expressions
for the potential densities produced by elementary current pieces. The fact that the
integrands carry only the step functions for the points at which the datum spots
are centered implies the preservation of the structure of the former calculational
devices. The circled loops have the same meaning as before: (a) structure involving
a YP—current piece; (b) structure involving a xX—current piece.

Therefore, the SI expression for the contribution corresponding to this
latter density is written as

K R™(N)LH(P); 8 44/(2) >=
[ @ @t Erean) s1ngi s ingh, (356)

Exx
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with the integral being taken over the space of null patterns of the type
shown in Fig. 10b. For Eq. (3.56), we have the graphical structure

<L R—(N)L+(P); ¢AA’(2) >= ?NN\T'*'__:I./N ,8, ~,
i | (3.57)

4. Electromagnetic scattering of Dirac fields

We shall now be concerned with evaluating the null configurations that
describe the processes of electromagnetic scattering of Dirac fields. The rel-
evant prescriptions are based upon the result that, whenever the structures
for the basic potential densities are coupled with the branches correspond-
ing to the KAP-splitting of incoming Dirac fields, all the density equations
associated with the former configurations remain formally unaffected. This
fact allows one to carry out the actual calculation of the diagrams shown in
Figs 5 and 6 systematically. The coupling prescriptions involve modifying
the (complex) potential flag poles in such a way that the block carried by
the right-hand side of each of the equations governing the propagation of
Dirac densities in regions with potential is “annihilated” is case the hand-
edness of the electromagnetic-field branch involved is different from that of
the relevant incoming field. Thus, an incoming field of one handedness con-
tributes a spinor to the modified potential kernels which carries the other
handedness, but the “strong” statements (3.39), (3.54) and (3.55) still hold,
with the formal labels Z and T carried by (3.52) and (3.53) being replaced
by R and K, respectively. In the case of Fig. 5, in particular, either of the
incoming fields then picks out the piece of the real potential density which
involves the electromagnetic datum of the same handedness as that of the
associated incoming density. Accordingly, each configuration of Fig. 6 in-
volves a Maxwell-field structure which possesses the same handedness as
the corresponding incoming field. The spinor that emanates from the cur-
rent spot carrying the other handedness thus becomes a “dummy” in the
sense that it is taken over by one of the spinors involved in the incoming
flag pole. The former spinor is the one whose pole lies on the main plane
of the “dual” configuration, the structures of either pair having to be dealt
with in this way. In any case, the standard potential kernel is brought back
when the incoming Dirac branch is dropped from the relevant structure.
For Fig. 6, the main planes of each pair of “dual” configurations turn out to
coincide, the NP-ZT interchange rule that emerges from the evaluation of
Fig. 3 thus appearing as an N P-RK rule. Indeed, this feature of the IRIM-
diagrams comes from the wave equations for the Dirac densities exhibited
in Section 2.
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The explicit expressions for the NID for the scattering processes natu-
rally arise from the solutions of the relevant FDE. We will make use here of
the distributional structure of the solutions provided in Ref. [3]. Each such
solution carries two pieces which show up as a distributional phase-shift and
a scattering term. Both of these terms turn out to vanish when the pertinent
incoming field propagates far away from the respective scatterer branch. In
this limiting case the incoming field thus propagates as if it were free. All the
phase-shift terms involve step functions for the scatterer spots along with
A;j-functions for the spots from which the incoming fields emanate. These
pieces carry also certain scalar functions together with the spinors involved
in the KAP-splitting of the incoming fields. The phase-shift scalar functions
appear to be constant on Cg and C; with respect to those derivative oper-
ators which are defined in the direction of the propagation of the incoming
densities. Such functions play a significant role in the determination of the
null data for the processes in that they contribute pieces of elementary data
which couple suitably with the structures occurring on the right-hand sides
of the interacting FDE, thereby leading to useful (non-vanishing) scatter-
ing #-data. Each scattering term involves only the product of a massless
free charged spin :f:% field density with the step functions for the spotted
points of the corresponding configuration. These “electron neutrinos” are
effectively required to satisfy certain specific relations set upon the future
null cones of the spots involved in the scatterer branches.

The organization of the section is as follows: In subsection 4.1, the cal-
culation of the diagrams of Fig. 5 is carried out. The structures of Fig. 6 are
evaluated in subsection 4.2. We will complete the procedures for calculating
explicitly just one configuration of each of the figures. The integral expres-
sions for the other configurations will be constructed thereafter on the basis
of simple interchange and conjugation rules. Most of the relations involving
the derivatives of the spinors and affine parameters carried by the structures
under consideration can be obtained from those associated with Fig. 3 by
making trivial replacements. For this reason, the entire set of formulae that
arise from working out the geometric properties of the scattering diagrams
will not be written out explicitly.

4.1. Scattering by (L°(M); & 4 4+(2)) and (R*(M); & 4 4/(2))

In order to write down the explicit right-hand sides of the FDE (2.38)
and (2.39), we have to replace the complex vector kernels and inner products
that enter into the derivative terms of Eq. (3.39) by those for Fig. 5. The
corresponding modification of the formulae (3.12)-(3.15) amounts simply to
replacing the labels (NZPT) by (MK DS), respectively. Thus, using the
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relations for the latter null structures (see Eq. (3.49))
V,,A,(’éng"éb)=-§-eAB§LD’c§L=o, (4.1a)
VAA.(’éng,’éL)=%5A,B.§LD’5L=0, (4.1b)

along with their conjugates, we obtain the density equation

Vaar(LO(M); 84 (2)) =
%A;(z;M)ergAgA,(gng '51,) . 60(8C; M), (4.2)

together with the one which involves the right-handed electromagnetic da-
tum. Hence, the expressions for the field densities that emerge from the
distributional splitting of the electromagnetic free-field contributions hold
on C;&. It must be emphasized that the datum spots producing the incom-
ing Dirac densities do not contribute at all to the integral expressions for the
Maxwell quantities which enter into Eqs (2.33). Thus, the Dirac branches of
Fig. 5 cease to play any role when the electromagnetic integrals are actually
performed. It follows that Eqs (2.38) and (2.39) can be rewritten as

ie ZmTDmAo(z; M)A (z; D) 2‘4'

VA4 (L=(D)LY(M); $a(z)) = -

472 Zn(rDmTMK + TmSTMm)
. M X Dy
x & ¢po(0%;M) & ¢p-(of;D), (4.3)
Mi1- D%—
ie EmTDmAQ(:C;M)Al(Z;D)(S)A
472 Zm(*DmTMK + TmSTMm)

- Sy . S L,
x & opo(g ,M)D§+xn~(g ;D). (4.4)

VAY(R™(D)RY(M); x ar(2)) = —

The standard distributional solution of Eq. (4.3) is given by
(L™(D)L°(M); pa(z)) = (L™ (D)L (M); 7 (2)) Ao(2; M) As(=; D)
+(L™ (D)L (M); Sa(2))Ao(z; M)Ao(2; D). (4.5)
In (4.5), the first term on the right-hand side constitutes the density of

phase-shift that occurs due to the presence of a potential density in Eq. (2.38).
Its bracketed piece is explicitly written here as the SI expression

(L™ (D)L (M) 7a(2)) = Ulz)5.a & _#10(5 %3 M) i3 ¥1-(0 % D),

(X1

(4.6)
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where U(z) is a well-behaved scalar function of the type {0, 2;0, 0}, the rel-

evant scaling acting on the spinor o A (see Eq. (4.10) below). The bracketed
piece of the second term is a massless free-field density of spin —1/2 which
actually describes the propagation of the outgoing field. By definition, this
latter term satisfies the following relation on C;&

(L~(D)L°(M); Sa(2)) 04 = 0. (4.7)

Thus, substituting (4.5) into (4.3) and using SI derivatives of distributions
together with (4.7) and the massless-free property

!
VAY(LT(D)LO(M); Sa(=)) = 0, (48)
yields the “reduced” scalar function at § A4

(L™(D)LY(M)L™(S)) = (L™ (D)L°(M); Sa(5)) 04

N M R D
zm & ¢ro(0 M) & ¢p-(ol;D)
Mi1- D%_

_ e
T 4x? ZnTMmTDS ’
(4.9)
along with the “strong” requirement
r 54
TDmTmK 9
s ' :
0 4AVAYU(2) = - U(z)= K
ZmtDS(TDmTMK + TmsSTMm)
- A'
; ZmPmS O
ie mTmS
s (4.10)

4r? Zm(rDmrMK + rerMm)

Hence, the function U(z) is constant on Cg with respect to 8/9rps =

gAts?A'V A4’ whence a suitable displacement of the “reduced” form of Fig.
5a leads us to

8
Orps

U(z)=0. (4.11)

It is of some interest to re-define the phase-shift function as U(z) =

z—mvzéﬁ%, with W(z) satisfying (4.11). In this connection, we should notice

that the quantity zp,7prm, is also constant along generators of Cg. In fact,
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the latter form exhibits the desirable behaviour of (4.6). The phase-shift
integral is, therefore, written as

< LT (D)L (M)ima(e) >= [ (L7 (DIL(M);ma(2)) A0(e3 M) As(2: D)
PL
xg‘}wz\gm 25, (412)

which is taken over the space Pr of null patterns of the type shown in

Fig. 11a, the w-form being involved in the formation of DAA Tts graphical
representation is depicted as

< L~(D)LY(M); m4(z) = ;~~o°———1l>: e,
| (4.13)

with the internal line thus denoting the whole U-function.

The scalar function (4.9) is indeed the {1, 0; 0, 0}-null datum at 544 for
the scattering process controlled by Eq. (2.38). Now, using the #-operator

2
F o= TLS{ID(SWS) + ——»}, (4.14)
s}~ 25 DS

X
and setting zg = oA D A, We obtain the {0, —1;0,0}-datum for the process

< L~ (D)L*(M)L=(S) >=

. M . D
Zm w_qSLo(oC;M) 7r_1,bL-(oL;D)
ie M1 D%—

~ 4n? ZmZSTMmTDS ' (4.15)
In consequence, the relevant scattering integral becomes
<« L= (D)L(M)L=(5); Sa(z) >
- / 5 4 < L~ (D)LY (M)L™(5) > Ao(z; M)Ao(z; D)
gL
XNYUANwI AR AKS, (4.16)

with Kg being the KAP-form at § AA’, and the space X of null structures
over which the integration is to be performed consisting of configurations of
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Fig. 11. Null patterns involved in the evaluation of the elementary contribution
arising from the interaction between an incoming left-handed Dirac density and
the real potential density. The loop denotes the IRIM-structure occurring in the
formation of the Dirac spot that produces the incoming field. The relevant branches
of the underlying calculational device have been displaced suitably: (a) phase-shift;
(b) scattering.

the type exhibited in Fig. 11b. Graphically for Eq. (4.16), we have

<« L~(D)L(M)L~(S); Sa(z) >= (RIS :TV 2,
I

(4.17)
where the internal solid line represents the overall inner-product affine-
parameter block occurring in (4.15).

The contributions associated with the distributional solution of Eq.
(2.39) can be readily constructed from those obtained above by first replac-
ing the #-data, and then taking a complex conjugation of the inner products
carried explicitly by (4.15). This result amounts to changing the color of
the vertices borne by the graphs (4.13) and (4.17). Thus the corresponding
phase-shift expression is depicted as

< R-(D)RO(M); HA:(z) >= ~f;~oo—-——l: ~evy

I 1

| (4.18)
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and the scattering integral as

< R-(D)RO(M)R~(8); S p(z) = b el :r, S,
|

(4.19)
with the (scattering) #-datum involved in the latter structure being
< R™(D)R*(M)R™(5) >»=
5 & & .(5C. ~ 5L,
ie Zm K Or0(GT M) D7;+ xr-(373 D)
- . 4.2
47?2 ZmZSTMmTDS (4.20)

The configurations for the integrals represented by (4.18) and (4.19) are
shown in Fig. 12.

(a)

Fig. 12. Null patterns involved in the evaluation of the elementary contribution
arising from the interaction between an incoming right-handed Dirac density and
the “zeroth-order” potential density. The loop denotes the underlying configuration
which gives rise to the formation of the Dirac spot producing the incoming field.
The relevant branches have been suitably displaced: (a) phase-shift; (b) scattering.

4.2. Scattering by higher-order elementary potentials

We have seen that the colored graphs which represent the scattering
terms coming from the evaluation of Fig. 5 do not involve any splitting of
the data for the processes. This feature is related to the fact that each
of the scatterer structures partaking of the processes carries only a single
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spotted vertex. Thus, as the situation stands, the graphs do not carry any
specific information concerning the individual pieces of the relevant data.
We shall now see that the graphs associated with the scattering pieces of
the elementary contributions arising from the calculation of Fig. 6 bring
out naturally such a splitting of the data. In accordance with this latter
fact, internal solid lines that join vertices corresponding to current spots
appear as contributions due to scatterer branches whilst contributions due
to incoming branches are represented by internal solid lines that connect
current blocks and KAP-vertices. The pattern of the explicit distributional
statements coming into play here is the same as that of the structures used
in the previous subsection, but each piece of the solutions of the FDE now
involves three distributions.

Only the calculation of the IRIM-structure associated with Eq. (2.42)
will be explicitly carried out, but it is convenient to introduce also the inner
products for the configurations associated with Eqgs (2.43)-(2.45). We have,
in effect,

N AR P AK R A K
zNzoAOA, zp_=voA, Zm'::OAOA, (4.218.)
Do Ryo B A X KaZ
zD=voA, 2F=°A0A’ zB:voA,szvoA,(4.21b)

along with their conjugates. At this stage, all the procedures rest crucially
upon the fact that statements of the type (4.1) involving the basis spinors
of Fig. 6 are also true. The relevant K-scalar is readily obtained from that
for Fig. 3 by replacing the labels Z and T by R and K, respectively, but the
SI real vector a44’ = TNF oA g A _ rpr 0484 is also held fixed as z44'
(-4
varies in a suitable way. For the relations defining the position of zAA', we
have

' [ R ' 4 U

ZAA "‘NAA +1'NROAgA +rRXoA5A s (4.223)
o
K ! R ] o !
44 = pAA +1‘me‘42‘4 +rmRoAgA +rprx 0454 (4.22b)
o

' ' o ' R I}

244 = pAA 4 . 0454 +raxo‘42‘4. (4.22¢)
[-4

Thus, differentiating out (4.22) and making appropriate contractions we
derive the relations
Kp ZmTNmTDF
v AAl O = ——=
Zm2pZFTPm(TNFTDo + TFRTDF)

6404 08,(4.23)

0
R

TNmTDF

2pzpim(3® g 51)0 4 3 a4 cec.
Vaarpm = ( ) [ ] , (4.24)

ZmZm 2pzpZpZr(*NFTDo + TFRTDF)
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) [zszzp(gB g,B’)OAgA' + c.c.

] ,(4.25)

TNmTDF
VAaT"Nm = ( —
ZmZm

zN2FZNZF(*NFTDo + TFRTDF)

together with the conjugate of (4.23) and those expressions which are de-
rived from (3.12)-(3.15) by making the simultaneous replacements
(NZMPT) « (NRFDo). It should be pointed out that, as regards Eqs
(4.24) and (4.25), the NP — RK interchange rule applies only to the spin
{}ozAgA,, ’gAgA'}
actually enter into the picture only when the null patterns of either pair of
“dual” configurations are appropriately combined together.

To write out the explicit right-hard side of Eq. (2.42), one has first
to re-instate the expression (3.22) by adapting the pattern of either cf the
potential densities (3.47) and (3.54) to the situation depicted in Fiv. 6a.
This task can be easily carried out by taking the derivative of tle SI vector
associated with the K-scalar for the conﬁo'uratlon being considered as well

inner products. This is because the stardard flag poles

as suitably contracted second derivatives of 64 and g A’ Thus, making use

of the derivative relations arising from (4.22), after some calculations we
obtain the statements

—fﬂVAAlam: VA,O + v 101\,1 VAIRA —z—"lo IVA'-AII
Zm R B AA

28 M

1

X aT.vM,aT'+-—(’5MV,§”<§M)§TVAA,’<§T=0, (4.26)
K R Zm

K 'R K R
o 1\4VA1[AV§] oM=0= %EAB O},{D oM s (4.27)
and ) o A .
gM'VA'[AVb]gN =0= oeAB 01\1150 . (4.28)

Hence, invoking the modified RIZ-versicn of (2.52), we get the equaticns
1
V 4114V 5)(l0g(zmrPm)) = 0 & O(log(zmrpm)) = 0, (4.29)

which, when combined with 7 4 4+ Ag(z; P) = Ycn CF; yield tha ST statemont
A4 NY .

VaulLT(NRH(P); 85 (=) =5 0 ﬁgﬂl(m;flgji(w;m
x & r-(8%iN) % dre(g"iP).
N} P}

(4.27)



Null Dynamics of Classical Mazwell-Dirac Fields 1539
We have, therefore, been led to the “reduced” version of Eq. (3.42). It turns
out that Eq. (2.42) takes the explicit form
VA (L (D)RF(P)L™(N); Ya(s)) =
ie? 2FTDFAo(®; N)Ao(z; P)As(2; D) 54

472 zZpZFtpm(*NFrDo + TFRT'DF)
) N . -
x & %-(0%N) “'+'/’R+(° P) ’/’L (66;D). (431)
N} P}

Now, inserting into (4.31) the expression
(L™(D)RT(P)L™(N);$a(2)) =
(L™ (D)R*(P)L™(N); Pa(z))Ao(z; N)Ao(z; P)As(2; D)
+(L™(D)R*(P)L™(N); Za(z))Ao(z; N)Ao(z; P)Ao(z; D), (4.32)
along with the defining relations

VA4 (L= (D)R*(P)L™(N); Za(z)) =0, (4.33a)
(L~ (D)R*(P)L™(N); Za(z)) 34 =0, (4.33b)
(L~ (D)R*(P)L~(N); Ba(z)) 64 =0, (4.33¢)

and invoking once again the generalized pattern of derivatives of distribu-
tions, we require the following SI expression

VA4 (L~(D)R*(P)L™(N); Pa(z)) — (L~ (D)R*(P)L™(N); Pa(z))

RA A,

° + g4 _A
W'F(L (D)RT(P)L™(N); Za(z))rpo0” 2

- A

ie? ZF"DFg

472 2 ZpTPm(*NFTDo + rFR?‘DF)

. N . -

x &_$p-(0%N) & dpe(37; ) F_Yr- (6% D). (4.34)

N} P}

Strictly speaking, the distributional statement associated with Eq. (4.34)
holds on C}} whence the expression involved in the general situation actually
carries the “reduced” form of the denominator of the piece that bears the
coupling constant. It follows that, writing

(L (D) B (W) Pae) = 2 DB

!
x & Ppe(3¥iP) #_
P} D}

$1-(0C;N)

>
e

¥1-(09; D),

(4.35)
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we obtain the following expression at oA

(L™(D)RY(P)L™(N)L™(0)) = (L™ (D)R*(P)L™(N); Za(0))04

. 2

ie Zp X N
=T ie2 73 # Pp-(0Y%N)

47% Z QW ZPPPmPNFTDo Ny”

. T ,-L . D
x & Ppe(g¥5P) #_4p-(0% D), (4.36)

P} D}
provided that
~ A
rFRrDF}Oz

4 AA
04V W(z) =W (=z
A (=) ( )iFTDa(TNFTDa+TFR7'DF)

- Al
iez ZFTFag

_ 4.37
47? 2, Zprpm(*NFTDo + TFRTDF)’ (4.37)

with W(z) = ;1%"%}—. Equation (4.35) defines the explicit SI kernel
of the phase-shift density for the configuration under consideration. The
scalar function W(z) can carry only spin weights for 64 and 10; A 35 a
quantity of the type {1, 0; 1, 0}. It clearly satisfies §/9rp,W(z) = 0 on C$,
and, therefore, so does V(z), since 6/61‘D0(m) = 0. Thus, the
phase-shift integral is written as

< I (D)RH(P)L™(N);Pa(e) = [(L™(D)RF(P)L™(W);Pal2))
X Ao(2; N)Ao(z; P)A1(2; D)3 ARy AD 11 A Qj; ASIIIAQR D,

(4.38)

where 77, denotes the space of null configurations of the type depicted in
Fig. 13a, and the ¥-forms bear the same meaning as before. For the corre-
sponding graph, we have

—0 40 | 2
& L™ (D)RT(P)L~(N);Pa(z) >= o o~ oo~

| I |
| | |

(4.39)
For convenience, the internal solid line that connects the vertices associated
with the current spots has been arbitrarily taken to represent the quantity
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W—]—. The reason for this convention is the fact that it may eventually
PmTNF

be useful to ascribe a standard internal structure to the current branches
of Fig. 6. The function V(z) is represented by the line which connects
the blocks associated with the incoming field and scatterer. When the in-
coming Dirac branch is disconnected from the structure, the contribution
involving 7y “evaporates”, and the step function Ay(z; V) gets replaced
by A;(z; N). We can easily see that the first term on right-hand side of
(4.37) actually cancels that coming from the combination of the derivatives

of 04 and A;(z; D). The second piece couples together with the right-hand
side of Eq. (4.31), thus yielding the appropriate null-datum expression. It
now becomes clear that if the former potential flag pole had been utilized
for calculating the scattering diagram, the information about the null da-

. . R4 K
tum for the process would have been lost since the spinors 04, 0 4 and

04 and their conjugates are taken to be independent. Obviously, similar
considerations are also applicable to the case of Eqs (4.3) and (4.4).
In fact, (4.36) is the expression for the {1, 0; 0, 0}-datum for the process.

X
Hence, setting z, = 040 A, We obtain the following expression for the
corresponding #-datum

: .2
- + - - _ e zZFp
<L (D)R (P)L (N)L (0') >= 4n? ZmZF2ZoTPmTNFT Do
. N . T L N D
x * $p-(0%N) # dps(a"5P) #_vp-(0%D), (4.40)
N} P} D}~

whence the relevant scattering integral turns out to be given by
< L™ (D)RY(P)L=(N)L™(0); Za(z) >=
/ 3 4 < L~ (D)R(P)L~(N)L™(0) > Ao(z; N)Ao(z; P)Ao(z; D)
XL
XNNANEANDAKS,  (441)

where N |, denotes ¥ 4 A 2, with the letter V (resp. .A) standing for

either N, P or D (resp. I, I or III). The integral (4.41) is taken over the
space Xy, of the configurations shown in Fig. 13b. Its associated graph is
depicted as

< L~(D)R*(P)L~(N)L™(0); Za(z) »=
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with the internal solid line that connects the “wavy-line-free” vertex de-
noting the datum piece zp/ZpzoTp,. We stress that a structure without
a distribution for D44’ also arises here, when we perform the potential
integral which involves the (common) solution of Eqs (3.42) and (3.43).
Thus, the incoming Dirac densities appear to be meaningful only when the
scattering processes are explicitly considered.

(a) 9m 9 (b)

Fig. 13. Null graphs associated with the integrations involving the distributional
solution of Eq. (2.42). The loops denote the structures involved in the formation of
the datum spots occurring in Fig. 6a. The end vertices have been taken to coincide
with z44"; (a) phase-shift; (b) scattering.

The prescriptions for evaluating the other configurations of Fig. 6 are
essentially the same as those worked out before. All the quantities entering
into the integrals for Fig. 6b can be immediately obtained from those for
Fig. 6a by first applying the simultaneous interchanges ¢ & X, F & G,
D «+ B N « P, along with a complex conjugation, and then replacing
the #-datum that generates the incoming density. This constitutes the in-
terchange rule which enables us to write down the field integral for one
configuration on the basis of that for the corresponding “dual” structure.
Roughly speaking, the integrals for Fig. 6¢c can be constructed from (4.38)
and (4.41) by replacing zp, z;, and z, by their conjugates and the y-data
by x-data. At this point, one might set up at once the formulae for Fig. 6d
by using the interchange rule given above. We should observe that this

. . R _
rule actually arises out of replacing the conjugate potential kernels 0 4 6 4,
[»4

o P K _ . .
04 g Ay by 0 4 ;?; Aly 0 4 g A’ Tespectively. For the scattering process of
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Fig. 6b, for instance, we thus obtain the #-datum (see Eq. (2.43))

ie? zZg

< R~ (B)L™(N)R*(P)R™(Z) »= -

472 Zp2GZETNmTPGTBS
. N “ - - U " - !

x & Yp-(0N) & Pp+e(3";P) * xr-(3%:B). (4.43)
N} B}

Accordingly, we have the graphical representation displayed in Table I.

TABLE 1

Symbolic expressions and colored graphs for the configurations b, ¢ and d of Fig. 6.

PHASE-SHIFT

GRAPHS
< R-(B)L~(N)R*(P); Par(z) > J|£~_§.~__TI>~£;I|~_~‘~~
I I I
< R~(D)L*(P)R~(N); Pa(a) > _T_I’_IJ
I | I
& L~ (B)R™(N)L*(P); Pa(z) > *T':_i_:.__—l~£~ l~_;~
| | |
SCATTERING
GRAPHS
& R~(B)L~(N)R*(P)R~(Z);oa(z) > ‘L_—T:LT:Q :.|~~3
I I I
< R~ (D)L*(P)R~(N)R~(0); 54 (z) > ) SRS 1 o0 R

< L-(B)R-(N)L*(P)L~(5); S4(z) > L dgend m gz et
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5. Concluding remarks and outlook

One remarkable feature of the IRM-expressions presented here, which
has also arisen as a consequence of the particular choice of NID for all the
distributional contributions, is related to the simplicity of the form of the
potential and field integrals. The introduction of null data for potentials on
C(',*' would entail the generation of additional electromagnetic fields which
would, in turn, produce further elementary Dirac current pieces. The pro-
cedure for working out the corresponding FDE would therefore be reversed,
but the new integral expressions would not provide any further insight into
the whole picture. It was seen that the procedure involving a suitable mod-
ification of the potential vector kernels gives rise automatically to adequate
NID expressions for the processes. However, we should point out that such
a procedure does not yield any explicit expressions for the scattering den-
sities. The requirements amounting to the vanishing of the scattering data
on the future null cones of the spotted vertices that occur in the scatterer
branches, were indeed made in order to balance the “degrees” of the distri-
butions involved in the interacting FDE. An important feature of these data
is the fact that the datum contributions due to incoming densities are natu-
rally separable from those due to scatterers. It is believed that this property
can eventually play a significant role in a quantum description of the scat-
tering processes. In this connection, it would be convenient to employ the
usual definition of the charge-helicity conjugation which actually preserves
the handedness of the Dirac fields. The helicity of the electromagnetic-
field subgraphs occurring in the scattering diagrams would, consequently,
be specified by the sign of the charge borne by appropriate current spots.
Nevertheless, both the masslessness of the Maxwell fields and the diver-
géncelessness of the potentials must be retained, regardless of whether the
conjugate Dirac fields are effectively taken to propagate towards the past.

Of course, the structure of the statements involving the directional
derivatives of the phase-shift functions leads immediately to expressions
which allow one to calculate explicitly any phase-shift integral. The con-
stants arising from the integration of the relevant differential equations have
to be specified so as to avoid the vanishing of the densities on the future
null cones of the spots that generate the incoming fields. In the case of
(4.10), for example, the integration constant appears to be proportional
to 1/r, . When the contractions yielding the directional derivative rela-
tions are made, the pieces of the defining expressions that contribute to the
scattering data are “annihilated”. Hence the role played by these datum
pieces is to make up the data, thereby “neutralizing” the vanishing of the
#-expressions which arise from the combination of the contributions due to
derivatives of A¢(z; D) and Ag(z; B) with the right-hand sides of the Dirac
FDE.
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It is worth remarking that the graphs which enter into the standard
mass-scattering expressions recovering the Dirac fields [7, 10] can also be
associated with colored trees of the type defined in subsection 2.4. Thus,
the only internal lines carried by these trees appear to be solid lines.- The
structure associated which each such line consists of a single affine param-
eter while each of the colored vertices turns out to represent also an inner
product. The parameter is the one which connects the spots associated with
the vertices joined by the lines. Such spots always carry spinors bearing op-
posite helicities whence each internal line now connects two vertices carrying
different colors. Any one of the inner products is set up at the JRIM-point
which corresponds to the vertex associated with it, whence the middle ver-
tex occurring in any two-adjacent-edge branch contributes just one inner
product to a massive integrand. Their specification is attained by using a
trivial white-black rule. For a field of order IV, the tree thus possesses N
colored vertices carrying wavy lines together with one vertex which actually
bears the (external) spinor line. All the wavy lines carry the number 0. In
the left-handed case, the vertex associated with the datum spot lying on C[,*'
is taken to be white or black if N is even or odd, respectively. For an even-

order (resp. odd-order) field, the graph accordingly carries 1—;’- +1 ((resp.
ﬁzil) white vertices and -{; (resp. I—V—itl) black vertices. For the right-
handed contribution of the same order, the colored-vertex configuration is
evidently similar to the previous one, but the other way round. Hence, the
number of internal lines occurring in any graph equals the order of the cor-
responding field in the case of either handedness. The expression for the
entire left-handed field, for instance, turns out then to be given by

J) é 0 0 J: 0 0 0 0
I NG Ny Pt s PG PN PN P P N P PN s P
46— e~ g4 + TS o . ’s) + ...
[ SR GO JUSO SO 39
+ 0o 4+ 0O——e="="p X"
N S SN SV VPP SO SV

It becomes clear that our graphical label device can be particularly utilized
for calculating potential-field contributions which involve the coupling of
several basic null configurations.

It is of some importance to observe that the phase-shift and electro-
magnetic-field integral expressions take a considerably simpler form when-
ever we make use of statements of the type

[ 1@ 20 = [ 10) K.
g g
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This procedure entails removing the wavy line from the (colored) vertex cor-
responding to M AA', and restricts the values of some appropriate function
f(z) to those specified on C; for which 244’z 4 4 = 0. Tt turns out that
vertices carrying external dashed lines without wavy lines have ultimately
to be taken into consideration.

The important question concerning the convergence of the graphical ex-
pansions which recover the entire set (2.1) still constitutes an open problem.
We think that the use of an appropriate twistor version of the RIM-patterns
exhibited in Sections 3 and 4 would shed some light on this situation. The
crucial point here is, in effect, that the evaluation of the twistorial integrals
for typical distributional contributions might lead to explicit expansions
possessing very simple properties. In the absence of electromagnetism, this
insight would be particularly brought about by employing the transcription
techniques provided by Cardoso [16] in connection with the construction of
a twistorial representation of the mass-scattering integrals. Further investi-
gation along these lines will probably be carried out elsewhere.

I wish to acknowledge Dr Asghar Qadir for making some invaluable
suggestions. My warmest thanks go to the World Laboratory for financial
support.
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