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We give a detailed account on the application of the Schwinger varia-
tional principle (SchVP) for the evaluation of operator Padé approximates
(OPA’s). OPA’s can be considered in their simplest "one-loop” (ladder)
form as solutions of scattering equations but allow for a more natural tran-
sition to quantum field theory beyond ladder approximation. Therefore
methods for their evaluation are of high interest. One of these meth-
ods is the SchVP which we study in the special case of elastic nucleon—
nucleon scattering in terms of the Blankenbecler-Sugar equation. Since
exact proofs of convergence for the SchVP cannot be found in general,
the intention of our paper is to give by a detailed study of this complex
example a justification for the application of the SchVP in even more
complex situations. Applying the SchVP, it is shown that relatively sim-
ple and quite precise approximations for the T-matrix elements can be
constructed valid for the whole energy range under consideration.

PACS numbers: 03.80. +r

1. Introduction

The Schwinger variational principle (SchVP) [1] is described in text-
books of quantum mechanics (see e.g. [2]) and in particular also its ap-
plication to the calculation of phase shifts [2, 3] in potential scattering.

* Work partially supported by Bundes Ministerium fir Forschung and Technolo-
gie, project no. X081.9 and Polish grant KBN 2 0426 91 01.
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Nevertheless its merits seem not to be appreciated properly if in [2], under
“Extensions to Complex Collisions” , p. 863, we read as final conclusion “In
any case its applications are rather limited” . The purpose of the present
paper is to demonstrate the opposite.

The suggestion of our method to evaluate the SchVP has been made
earlier [4], resulting in a “variational operator Padé approximation”. In con-
trary to the “standard” procedure of constructing a functional of stationar-
ity for the partial wave amplitudes directly, which depends on trial functions
in configuration space, in our procedure we start with the Green functions
in momentum space and use the “off-shell” momenta as variational param-
eters. Moreover the functional which we construct, is not directly related
to the phase shifts. Its absolute minimum determines the off-shell momenta
at which to evaluate the (discretized) “matrix Padé approximate”.

Proofs of convergence for the variational methods are in general difficult
to find. In potential theory proofs of convergence have e.g. been given in [5]
for the SchVP, but only for potentials with definite sign. In more complex
situations like nucleon-nucleon (NN) scattering, taking into account all spin
complications, general proofs seem out of reach and therefore it is highly
desirable to have at least available for such a complicated case a detailed
numerical study of a “realistic” partial wave analysis. This is the purpose of
the present work: to explore in a more calculable example the application
of our procedure, i.e. the model should not be as trivial as square wells or
potentials of definite sign, it should be more accessible than the elaborate
Bethe-Salpeter equation (BSE) but it should also reproduce the phase shifts
properly, what we call “realistic”. In the case of the BSE [4] in particular,
we were unable, because of the amount of CPU time involved, to find the
solution for the §; phase shift by means of the SchVP, which should be the
first problem to be solved if one wants to demonstrate the quality of a new
method. In particular in this coupled channel problem it is far from trivial,
what the one variational quantity should be, yielding simultaneously two
phase shifts and one mixing parameter. How this can be achieved, will be
demonstrated.

In order to be able to perform a complete analysis of the NN phase
shifts and to answer such as the mentioned questions, we give in this paper
a detailed study of the phase shifts in terms of the simpler Blankenbecler—
—-Sugar (BbS) equation, the known solutions of which we reproduce by the
application of the SchVP. Even if such analysis cannot substitute proofs of
convergence, we think that it adds some more justification for the applica-
bility of the SchVP in scattering processes.

The explicit numerical evaluation of the principle, in the form we pro-
posed it, uses much computer time and it cannot therefore be its purpose to
substitute standard methods for the numerical evaluation of the Lippmann—
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-Schwinger equation (or relativistic generalizations) like matrix inversion or
the application of ordinary Padé approximations [6]. Rather the idea behind
our approach is to investigate in detail in how far the method is applicable
to the summation of any strong coupling theory. Indeed it is our conjecture,
that in contrary to one of the possible approaches to scattering problems in
relativistic quantum field theories (QFT) like the Bethe-Salpeter equation
(BSE), it is much more natural to formulate the QFT in terms of “opera-
tor Padé approximations”, for the explicit evaluation of which we use the
SchVP.

Our paper is organized as follows. In Section 2 we describe our general
procedure based on the SchVP. In Section 3 we discuss the application to the
BbS equation and give some technical details of the NN scattering. Section
4 contains our results and in Section 5 we summarize our philosophy.

2. A general formulation of scattering theory in
Quantum Field Theory

As starting point we consider the (amputated) Green functions for a
relativistic scattering theory in momentum space. The (renormalized) on-
shell values of these yield the S-matrix elements. In a two-particle elastic
scattering problem (to which we confine here for simplicity) the S-matrix
is symmetric under exchange of ingoing and outgoing particles, ¢.e. under
exchange of the corresponding momenta. In this sense we consider the
Green functions as symmetric operators in some Hilbert space H (labelled
by off-shell momenta), which posses a formal power series expansion (loop-
expansion) of the form

T=To+T1+T2 +---. (1)

Since in the following applications we consider the T-matrix, we call our
operators T as well.

The usual formulation of the scattering problem in QFT is the follow-
ing: take the on-shell values of series (1) term by term and sum it — which
does not work in strong coupling theories. Even using “ordinary” Padé
approximants, one would need to calculate in general higher than one-loop
orders — which is almost out of reach. Here we propose a different ap-
proach: consider the contributions T3(¢ = 1,2, 3, --) in the above expansion
indeed as operators and sum the operator series by using “operator Padé
approximants” (OPA’s), which in lowest order yields

TS = To [To — T1] ' Ty (2)
and which can be continued in a natural manner to higher orders, e.g.

T(()ZI:)»A =To+ T[Ty - T2) ' Th, 3)
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taking into account the next (“two-loop”) order. The on-shell matrix el-
ements are then to be taken only after the “summation” of the operator
series, i.e. we want to obtain on-shell matrix elements from the r.h.s. of (2)
and (3), respectively, as will be explained below.

Before entering the technicalities of this approach, let us first demon-
strate that already on the level of the lowest order of the OPA (see (2))
with T3 = Bornterm and Ty = direct box diagram, the proposed approach
is formally equivalent to the BSE in ladder approximation — and corre-
spondingly of course its reductions like the BbS or nonrelativistically the
Lippmann-Schwinger equation.

Inserting the direct box diagram T; = Tp5Ty = D with S the two-
nucleon propagator into (2) and expanding [Ty — Tl]'1 in powers of Ty,
one obtains:

T8, = Ty + ToSTo + ToSToSTo + - -+, (4)

which is the ladder series, taking the on-shell matrix elements after the
expansion.

Already at this stage we want to point out that, provided the above ap-
proach is manageable, it appears more natural than the BSE when going to
a full theory. The kernel of the BSE is defined as the sum of the two particle
(nucleon) irreducible diagrams. Adding diagrams in a strongly interacting’
QFT, it makes more sense to add those of the same order than adding e.g.
the crossed box diagram as a “correction” to the Bornterm. This is what
we advertise: adding all one-loop diagrams in T, one only adds contribu-
tions of the same order. Assuming — as we want to demonstrate in the
present paper — that the evaluation of (2) works for Ty = D, one can hope
that it also works when taking for T the full one-loop contribution. In this
manner also the inclusion of contributions considered particularly impor-
tant in certain problems, like the crossed box diagram in NN scattering [6],
is possible in a very natural way. Thus we exploit as much as possible the
one-loop approach, which is nowadays feasible [7], i.e. before entering the
tremendous work of two-loop calculations, we here propose to go off-shell
in the described manner.

To clarify our point of view even more, we want to stress that the OPA’s
are constructed in such a manner that their expansion reproduces the first
terms in the loop-expansion properly (i.e. ngA =To+T1+ -+, Tgpy =
To+Ty+T2+---, elc.), while the further terms need not have any meaning,
i.e. in general they will not even be higher order Feynman diagrams. In view

of this, the fact that the lowest order OPA, ng A» Produces the ladder series
(4), i.e. it solves the BSE in ladder approximation, is a very welcome result,
as trivial as the formal algebra to obtain it may be. Thus we consider

the lowest order ng 4 already as a very effective starting point for the
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summation of the perturbation theory. The Padé philosophy behind our
procedure does not keep us from including e.g. the two-loop ladder diagram
in T; in the next order even if it is contained in the formal expansion of

ng 4 already. This is so because of the above reasons we give no particular
meaning to any finite expansion of the OPA’s beyond the one used for its
construction. The relevant objects of our approach are only the OPA’s
and clearly in the infinite order limit they do reproduce the perturbation
expansion, at least formally.

The Schwinger variational method enters the evaluation of the desired
on-shell matrix elements in the following manner [1]: starting from the
functional

Rop(¥,9') = ($'|To|B) + (a|Tol9) — (¥'|To — Ta[#) , ()

(considering only ng As Equ. . (2), in what follows) we perform independent
variations with respect to the states |[¢) and |¢') . A simple formal algebra
then shows that the stationary value of (5) is the sought matrix element

Toes = (a|TopalB) , (6)

where |a) and |8) are considered as on-shell states.
The practical realization of the above principle is performed in two
steps:
1) In the first step one confines oneself to a finite-dimensional subspace
Hr C M of the Hilbert space in which the T-operator acts, i.e.

Hy=PLH, P;=Pg, (7)
with P, a projection operator. Assuming that Hy is spanned by some
vectors |@1) = |a), |¢2) = |B), |#3),---,|PL) , it has been shown [8] that

the stationary value of R,z obtained with |¢) , |¥') € H[ only is given
by the “discretized” operator Padé approximate, i.e. a “matrix Padé”
stat value Rop(v, ') = <a

(MP) :
‘)
I¢>!I¢’)eﬂL

= Rﬁﬁ(ﬁﬁh ttty QSL) . (8)

PrTo

ToPr,

1
Pr(To —T1)Pg

2) In the second step one has to find an optimal way of how to determine
the states |@3),--+,|#L), which in our case are characterized by certain
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off-shell momenta of the momentum space Green functions under con-
sideration. As has been proven in [4], the condition for stationarity of
R, is the vanishing of the vector

1
Pr(To - Th) Py

(tel = (alTo [T~ Py PTo-T)]. )
and similarly ('m], i.e. the stationary point of Ri‘g is achieved when

(Yol =0 or (7ﬂ' = 0. Under this condition Rﬁ’ﬁ also coincides with the
stationary point of the Schwinger functional, i.e.

Rig= TS, (10)

which to obtain was our goal.

An “intuitive” way to understand the above is the following: consider
the difference of the on-shell matrix elements of the OPA and the matrix
Padé, i.e.

_ 1 1
A= <a ToTo - TlTo ﬂ> bl <a TQPLPL(TO —TJ)PLPLTO ﬂ>{
1 1
= |(argy g [1- @ - m0P g e o)
= [{¢alrp) |5 (11)
with 1
(¢l = (@l To—g - (12)
From
| {alrp) | < lall - 1vgll, (13)

we immediately conclude that (yo| = 0 or (7ﬂ| = 0 provides the solution of
the problem to calculate the on-shell matrix element of Topa.

In general, however, it will not be possible to achieve (y4| = 0. The best
we can achieve is to minimize the norm ||y4|| of {(yo|. Even if we have no
information about ||¢4|| (see (12)), from (11) and (13) we conclude that in
this case we have obtained the best possible approximation to our problem.
Thus the procedure in practice will be to begin with a low number (1 or 2)
of “trial states” and look for the minimum of ||7.|| as a function of their
position. Increasing the number of trial states should yield a lower minimum
of ||7|| but finally should leave the value of the investigated matrix element
stable. Observe that

Pr |7a> =0, (14)
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i.e. the more trial states are introduced, the more zeroes “contribute” in
the calculation of the norm of (y4| (see also (20) below) and this is at lest
a qualitative explanation of how ||7,|| can be made smaller and smaller by
introducing more and more trial states. The real problem in this procedure
is to find the minimum of ||y4|| for a given number of trial states. This is so
in particular if a large number of trial states is necessary, since in general
the calculation of ||y4|| will involve a relatively large amount of CPU time
already for one set of trial states as will be seen in the next Section.

3. Application to the Blankenbecler-Sugar equation for
NN scattering

The Blankenbecler-Sugar equation in the form used here is reduced
from the BSE

@(p, Do, a) = G(p» Po, 3 13, 0’ K‘)

i
—E;f/dquOZG(P,Po,a;q, 20,5)5(4; 90, 8,7)%(¢, 90, 7) » (15)
By

where « stands for the partial wave under consideration, G is the kernel
and § the two-nucleon propagator. For the detailed meaning of the sum-
mation indices see [6, 9]. The elements of S are expressed in terms of
S++,5-—,8ce and Seo, the indices here referring to positive and negative
energies (and “even” and “odd”, respectively), for details see [6, 10]. In the
BbS reduction the positive energy two-nucleon propagator is represented as
a dispersion integral in the total energy squared such that in our case we
have 54+ ~ &(qo) [11]. The go-integration in (15) can then be performed
and only go-even contributions remain. For the two-nucleon propagator this
means S., = 0 and we can write

_E-E(9)
See = m ++ - (16)

Thus also of the kernel G only those elements even in go are kept. The kernel
remains otherwise the same as in [6], i.e. it is a superposition of the relevant
boson exchanges. The equation under consideration in this approximation
finally reads:

?(p, 0’ Q) = G(P: 03 a;ﬁ: 0: K)

1 o0
+—/ dgq E G(P) 0, a; g, O,ﬂ)s(% O,ﬂ,‘)’)é(q,oﬂ), (17)
T Jo B~
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with
1

i____ -
2E(q)— E —ie’

and summation is only over gg-even states. The number of on-shell states
isgiven by s=1for J =0 and L = J # 0 and s = 2 for the coupled triplet
states.

The obtained equation with the chosen couplings [11] etc. reproduces
the NN phase shifts properly for elastic scattering. The details of this
reproduction are not so relevant here; for us it is only important that the
chosen potential is “realistic” and we have a reasonable basis to test our
approximation procedure.

First we have to construct the MP with Tp = G and Ty = GSG, the
direct box diagram, i.e. we calculate these with discretized external off-shell
momenta to obtain the corresponding matrices. For each pair of off-shell
points, however, due to the spin complications and those from the inclusion
of the positive and negative energy states, we have to take into account
already a whole “spin-matrix” as building block, the dimension of which
depends on the partial wave under consideration: for J = 0 (J the total
angular momentum) their dimension is d, = 3, for L = J # 0 (L the orbital
angular momentum) d, = 4 and for coupled triplet states with J # 0 d, = 6.
Thus we construct matrices of the size (s +d,- (L - 1)) x (s +d,- (L — 1)),
with L — 1 the number of off-shell points, from which we have to calculate
the matrix Padé, the physical elements of which (i.e. the upper left s x s
matrix) yields the physical phase shift at the given energy. The reason not
to take matrices of size (d, - L) X (d, - L) for the calculation of the MP’s, is
that also in the BSE or the BbS equation, there are no on-shell states with
negative energies involved.

In the next step we have to calculate for the given set of off-shell mo-
menta our variational quantity

S(q, 0,1, 1):-" S++ = (18)

rell? = [ da Y v%(aipn = Bypare im0, (19)

with
72(9=Pi;}71 =I3aP2a"',PL)=0 (i=2,"'L)a (20)

according to (14).

In (19) summation is over “spin” indices and integration over the off-
shell momentum g like in (17). Here $ is the modulus of the on-shell mo-
mentum and a characterizes the partial wave. (19) clearly shows why our
procedure is so CPU time consuming: to evaluate ||74||> one has to calcu-
late (9) for each integration point in the above integral. This then yields
||[7al|? only for a specific set of off-shell points and one must search for the
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minimum of ||74||? as a function of these in order to determine the off-shell
momenta with which finally to calculate the MP to obtain the phase shift.

It should be mentioned that too few integration points for the numerical
integration of (19) can produce spurious absolute minima and lead to wrong
values of the phase shifts. Therefore we had to make sure that the number of
integration points was large enough to stabilize the positions of the absolute
minima. In general 24 Gaussian points were sufficient.

There is one peculiarity concerning the coupled triplet states: since
two physical states couple, except for J = 0 where we have only the 3P;-
wave, we obtain from the 2 X 2 on-shell matrix two phaseshifts: 3(J — 1),
3(J + 1) s and one mixing parameter €. It is not unique in this case, what
to take as “variational quantity”. Writing (see (11) and [4])

A

we do not only have one vector squared, but we have to “minimize” the

2 X 2 matrix
71) <‘71

(1|t ) (o

and we have to define what we mean by that. One option, e.g., would be to
minimize separately gi; to calculate § 3(J—1),1 922 to calculate § 3(J4+1);
and |g;2| to calculate e;. But this does not necessarily correspond to the
coupling of the two channels. Therefore we propose to take only one varia-
tional quantity, namely the norm of the matrix (22), i.e.

A= , (21)

To—-Th

1
(71 ”F'_T'o— A

—73—1771!72> (9’11 912) (22)

1 = g21 4922
Tty | 72)

N = g11? + 2912912" + 9222, (23)

which yields according to ||g12|[* < |lga1ll - |g22|

N < (11 +722)?, (24)

1
Iy -1
with v;; =< v;|yi) (i=1,2). Thus we will take 713 + 722 as variational quan-

tity to obtain simultaneously all three physical parameters in the coupled
channel system.

4. Results

Before entering the details of our results, we shortly describe the way
of searching for the minimum of our variational quantities.
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The first observation is that looking at the minimum of the norm of (y4/,
what we need to calculate are the Born (Ty) and Box (T;) contributions in a
twofold manner (see (9)): firstly we need matrix elements (p| T;|q)(i = 0,1)
with both momenta p and ¢ taking discretized values, which are indeed our
variational parameters (specified formally by the projection operator Pr)
and secondly we need the matrix elements with the momentum p discretized
and ¢ being the integration variable in (19), for which we take Gaussian
integration with 24 mesh points in general.

The crucial observation now is that these matrix elements are the build-
ing blocks to calculate ||< 7,||, independently of how many off-shell points
as variational parameters are in fact used: thus, dumping such sets (p;| T;|q)
(p1 € p1,p2,--pr and ¢ Gaussian), one can use it in the construction of
||< Yo lI’s for any arbitrary number of variational parameters. Moreover, to
guarantee repetition of p;’s and in this way saving for this computation as
much execution time as possible, we always performed the search on a fixed
grid of p;’s, taking for them multiples of stepsize m/64 in general (m the
nucleon mass), i.e. p; = ém, (I=1,2,--:). Only close to a minimum the
stepsize was decreased occasionally to improve the result.

To accelerate finding of a minimum we furthermore applied the simplex
method [12], adapted to the situation that we search on a k-dimensional
grid (k = L — 1) instead of a continuous space. We recall that the simplex
search algorithm starts from a simplex formed from k + 1 vertices (in a k-
dimensional space) and searches for a minimum basically by reflecting the
vertex corresponding to the maximum value of the function under consid-
eration with respect to the hyperplane spanned by the remaining k points.
If at the new point a lower value of the function is found, the former vertex
is rejected and a new simplex is formed by the old k points and the new
one. If, however, the new value is lower than the lowest one of the original
simplex, another point is taken at a distance from the hyperplane of reflec-
tion twice as large as the former one. If the value at the reflected point is
higher than the highest one, the simplex is shrinked with ratio 1:2 around
the vertex corresponding to the smallest value of the function. In this way
the simplex moves in space towards the minimum, shrinking in a narrow
valley leading down and expanding if descent is fast. When our simplex
reached the size of our grid’s stepsize, such that it could not be shrinked
anymore, we performed a refined search in this area, decreasing the stepsize
down to m/256. To make sure that we found the global minimum, after
finding a local minimum, we restarted the search with a simplex having one
vertex in the minimum found and other vertices generated randomly. The
process was interrupted, when the new search found the same minimum
several (usually two or three) times.

Finally we present our results in Figs 1-5 and Tables I-III. 42 as given
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in the following, is always meant as the “normalized” one, i.e. 72/7,2%, where

702

1)

2)

is obtained from the Bornterm only. In detail our results are:

In Figs 1-3 we show for various partial waves 72 as well as the phase-
shift at Ep,p = 100 MeV as a function of one off-shell momentum p
as variational parameter (in units of m/64). The minimum of 4? is
indicated by a vertical line and so is the phaseshift, calculated from the
MP with the corresponding off-shell momentum. The dotted horizontal
line is the “exact” value of the phaseshift, obtained by the application
of ordinary Padé approximates to the BbS equation. Compared to the
strong variation of the phaseshift in the considered range of the one
off-shell momentum, the variational principle picks in general a fair ap-
proximation. It is interesting to note, that the value obtained in this
manner is practically never a stationary value of the phaseshift itself,
though one of the stationary values is mostly somewhat better. As has
been demonstrated, however, in [4], where a very strong square well
potential was investigated, this can only be considered as an accident.
Amazingly we can observe already here — as will also be confirmed
later — that it is the 1S, partial wave, which is the easiest to obtain
by our procedure, i.e. the phaseshift is relatively smooth as a function
of the off-shell momentum and the minimum of 2% is quite deep (see
Fig. 2).

Since obviously the approximation with one off-shell momentum is not
good enough, we present in Tables I-III the corresponding results with
higher numbers of off-shell momenta as variational parameters. As a
general remark we can state that, as expected, the 3§;-coupled chan-
nel system (see Table I) is the most difficult one. To obtain a precision
of the phaseshifts with an error < 1° in the whole energy range, we
had to perform a search with 5 off-shell momenta (L = 6). This was
in particular necessary for the low energies (< 50 MeV, closest to the
bound state), while for the energies > 100 MeV, four off-shell momenta
gave already results of the same accuracy. This latter case also demon-
strates very nicely the final stability of our procedure: increasing the
number of off-shell momenta from four to five, 2 drops (though not
drastically), but the phaseshifts obtained in both cases differ only by
less than 0.2° for these larger energies. For the lower energies we expect
the same kind of stability if we would perform searches with even more
off-shell momenta, which we avoided, however, due to the increasing
CPU time involved. For the purpose, we have in mind here, namely to
demonstrate that the proposed method works for “realistic” problems,
we consider our results in every respect convincing.

This is confirmed even more if we now look at the higher partial waves.

With four off-shell momenta (L = 5), the largest error for the 1§, is ~ 0.3°
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Fig. 1. For the 3S;-coupled channel system 4? and the phaseshifts are shown for
ELab = 100 MeV as function of one off-shell momentum p [m/64] as variational
parameter. The minima of 42 are indicated by vertical lines and also the phaseshifts
calculated from the “matrix Padé” at the corresponding off-shell momentum; the
horizontal vertical line represents the “exact” value. (a) 3S;, (b) 3Dy, (c) €.
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Fig. 3. Same as Fig. 1 for the 3P, phase shift.

(see Table II) and the stability of the phaseshift with increasing number of
off-shell momenta as well as the decrease of 72 even at the lower energies is
much better than that for the 3S5; coupled channel system. Similarly for
the 3P, (Table III): the error for L = 5 is even less than 0.1%, only 42 is
not so low as for the 1S, (remember that we give the normalized v?), but

the stability of the phaseshift is really excellent.
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off-shell momenta ([m/64]) are for the 3P, : 33,68,125,200 and for the 3P, :
24,56,97,149. The largest deviations from &pps are 0.3° (for the larger energies)
and 0.059, respectively.
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For the higher partial waves we present our results less detailed. For
the 3P; they were as well of the same convincing quality and the ones
for the 3P;- coupled channel system show that our choice of 711 + Y22 as
variational quantity (see (24)) appears to be the right one to obtain all three
coupled phaseshifts with one variational quantity as in the case of the 35;-
coupled channel system (see Fig. 5 for some further details concerning these
two phase shifts). Finally we find the surprising result for the !P; that
we obtain a good phaseshift but 42 is really dropping only very slowly, for
which we don’t understand the reason — in particular since the !$g, which
is of similar type, gives easily a relatively small 42, as already discussed
above.

Finally Tables I-III also show that the off-shell momenta, obtained in
the process of the search for the minimum of 42 are surprisingly almost in-
dependent of the energy (see also [4]) and mainly depend on the partial wave
under consideration, which allows us to construct for each partial wave a
relatively simple approximation by choosing some set of “averaged” off-shell
momenta (see Tables I-III) for the whole energy range. The results of this
approximation are presented in Figs 4 and 5, where the phaseshifts calcu-
lated from the “averaged” MP are shown in comparison with experimental
data, taken from [13]. The deviations of the averaged results from the ones
obtained with specific searches are only relevant for the S-waves (see Tables
I and II) at low energies. Moreover, the slow and systematic change of the
off-shell momenta with the energy could be taken into account in a search,
which would in fact drastically accelerate our procedure. Tables I and II for
the S-waves (351 :L=6and!Sy: L= 5) indicate that finally all off-shell
momenta slightly increase with energy. Thus, changing the energy stepwise
and taking such property into account, the changes of all off-shell momenta
would be in one direction only (all increasing or all decreasing, respectively)
and change only in relatively small steps. In this way the method would
become even for the S-waves pretty fast. Figs 4 and 5 also demonstrate the
fact that we are indeed dealing with a “realistic” problem.

5. Summary

We have shown that it is possible to solve the BbS equation by summing
the ladder series with the help of an OPA even in the case of the 3, phase
shift, evaluating it by means of the SchVP — and indeed it turned out that
the 35, is a much harder problem than that of the higher partial waves.
While for the 35, in particular at the lower energies, at least five off-shell
momenta as variational parameters are needed, only one or two give already
almost sufficient results for the higher partial waves.

The intention behind our procedure is not to substitute standard meth-
ods to solve integral equations but rather to develop a general approach
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to sum the perturbation theory of a strongly coupled QFT. If the Padé
approach is to be successful, it is first of all necessary to show in practice
by evaluating explicit examples that it nevertheless solves known scattering
equations. Since even for these proofs of convergence for the SchVP can-
not be found in complex cases, the only remaining possibility is to test in
as much detail as possible the procedure in numerical examples. The BbS
approach appears as a case where a complete analysis of the partial wave
scattering equations could be performed with a still reasonable computa-
tional effort. Therefore, because of missing proofs in general, we performed
this numerical analysis, which finally was quite successful. We hope that
our method will be applied with similar success in the evaluation of more
complex models of QFT (for first attempts see [14]). Indeed, as has been
explained, it appears to be the most natural way to include other higher
order loop contributions than just direct boxes and higher rung ladders. If
the proposed method can be considered as a manageable procedure to solve
scattering equations, however, one can hope that it will also yield correct
answers in more complete approaches to QFT. Even if our method is quite
involved in certain cases, the surprising energy-independence of the off-shell
momenta (variational parameters) obtained in the process of the search for a
minimum of 72 allows in any case to construct quite precise approximations
for the T-matrix elements valid over the whole energy range under consider-
ation by simply performing the search for one energy, 100 MeV e.g., and use
the corresponding off-shell momenta for all other energies. Moreover, as has
been discussed, the slow and systematic change of the off-shell momenta can
be used in a search to make the method fast even for the S-waves. In this
sense we believe that the SchVP can be of great use in further calculations
and may well compete with the direct, brute force matrix inversion.

What concerns models for the application of our procedure, e.g. a gauge
field model with p- and w-mesons as gauge fields, extending the linear o-
model, has been proposed [15], which should contain the essential ingre-
dients of low energy hadron interactions. Even if QCD is considered as
the “final” theory of strong interactions, the proper approach to low en-
ergy physics is still an unsolved problem. Taking into account the physical
particles with finally as little phenomenological ad hoc assumptions (like
“formfactors”,e.g.) as possible should be a worthwhile approach.

The authors are grateful to J.A. Tjon for making his version of the
T-matrix Blankenbecler-Sugar code available and for a discussion of the
manuscript. A discussion with D.J. Broadhurst is also gratefully acknowl-
edged. One of us (M.P.) is grateful to the BMFT for financial support.
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