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The familiar analogy between the quantum time evolution of an iso-
lated system and the thermal equilibrium of an open system with a ther-
mostat is considered as a signal of a profound thermodynamic-type as-
pect of the physical time, suggesting small nonunitarity corrections to the
conventional quantum theory. These imply, as their characteristic con-
sequence, a tiny unitarity defect of S matrix. Another surprising conse-
quence is a slight time dependence of mass of any matter system localized
close to an experimental device such as a running supercollider or a big
laser in action, where an intensive particle flow is produced. This suggests
a described gedankenexperiment.

PACS numbers: 05.90. 4+m, 11.10. Lm, 11.90. 4t

1. Introduction

As is well-known, the relativistic physics discovered and established the
geometrical aspect of physical time, unifying it with physical space into one
3 + 1 dimensional spacetime being generally a Riemannian manifold. On
the other hand, the familiar analogy between the time evolution of an iso-
lated system in the quantum theory and the thermal equilibrium of an open
system with a thermostat or heat reservoir [1] may be not a formal coinci-
dence but rather an important signal of an underlying thermodynamic-type
aspect of the physical time, somehow hidden in the conventional quantum
theory.
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Let us first recall briefly our contribution to this point of view [2]. In
fact, in the spirit of the familiar correspondence it/h — 1/kT taken d re-
bours, 1/kT — it/h, we put forward the hypothesis that any so called
isolated quantum system persists in a temporal equilibrium with the phys-
ical spacetime which plays then the role of a chronostat or reservoir of a
new thermodynamic-type quantity being an analogue of heat Q. Call this
quantity energy width I'.

Such a chronostat defines time ¢ running equally at all space points # (in
a Minkowski frame) and causes the time evolution in the quantum theory
to be described by the familiar unitary operator exp(—:iHt/h). This is an
analogue of the thermal-equilibrium distribution exp(—H/kT') conditioned
by a thermostat defining absolute temperature T equal everywhere within
the complex of the system and thermostat.

The above hypothesis, although in the case of conventional quantum
theory it may seem only a phrase of semantic character, becomes physically
significant when we ask the question whether some small deviations from
such a temporal equilibrium may occur, implying tiny corrections to the
conventional time evolution. In this case, in analogy with the thermal-
nonequilibrium temperature field T'(7)), we can speak of the temporal-
nonequilibrium time field t = t(¥) having small nonzero gradient (of course,
an important phenomenological difference is that at any space point ¥ the
temperature field may be fixed, while the time field is always running). De-
noting by £y time running at a particular space point ¥ = 7, we can use g
as a time parameter and thus write ¢(, ¢g) (obviously, t(75,t0) = tg). Then,
t(7,to) = to in the temporal equilibrium.

The analogy kT « —iht™! or, in consequence, its shifted form k(T —
To) « —ih(t™? -ty 1), if considered as a physically profound correspon-
dence, suggests for the inverse-time field

(p(‘f", to) = t—l('l—", to) - to_l (1)

(in the case of a homogeneous matter medium) a conductivity equation of

the form
1 0 .
(A - A—cht‘g) ¢(7,t0) = 0. (2)

This is an analogue of the familiar conductivity equation for the temperature
field T(7,t) — To. Here, Apr > 0 plays the role of an unknown length-
dimensional conductivity constant. Of course, in the temporal equilibrium
the identity ¢(#,¢9) = 0 holds.

It is interesting to note that the conductivity equation (2) can be consid-
ered as a nonrelativistic approximation for a tachyonic-type Klein-Gordon
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equation of the form

1 9% 1 L
(A--c-z-bt—%'i‘m') x(7,t0) =0, (3)
where
- - ctp

x(7yto) = (7, to) exp (2—/\I‘—> . (4)

In fact,

1 62 1 cto 1 98 1 6%
(A‘zfézﬁ':\?) x=exp(535) (8- 5reot ~ wa) *
cty 1 4

(i) (2 sman) e O

if ¢ changes slowly enough.

2. Basic equations

Taking over the form of Eq. (3) in the case of inverse-time field in the
vacuum (then Ap > 0 becomes an unknown universal conductivity constant
of the vacuum) and introducing there matter sources, we may construct
a universal equation for the inverse-time field interacting with the matter.
Specifically, we propose in this way an inhomogeneous equation of the form

1 62 1 Op
A- et — ) x = ~dngprip [ 22 + divy 6

( 522 +4A3~) X = memerar (6to ¥ v’) - ©®
corresponding to the homogeneous equation (3). Here, gy > 0 is an un-
known dimensionless coupling constant and (cp, 7) = (j#) denotes the mat-
ter 4-current with

FH (7 to) = (F(2) | TH(7) [€(t0))av (7)

being the spin-averaged expectation value (in the state ¥(ty)) of the oper-
ator of total particle-number 4-current J#(7) (in the Schrodinger picture,
identical with the Heisenberg and interaction pictures at an initial instant
to = too).

In the nonrelativistic approximation, Eq. (6) gives through Eq. (5) an
inhomogeneous conductivity equation of the form

1 8 _ dp . —ctp
(2 sagg) o= -momae (g + ) o (352) - @
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corresponding to the homogeneous conductivity equation (2).

Since T is the absolute temperature varying in the interval 0 < T < 0,
the analogy kT « —iht~1 if taken earnestly, suggests that also the physical
time t gets in the realistic universe an absolute meaning in the sense that
0 <t < oo ,where the limits ¢t —+ 0 and t — oo are analogues of the limits
T — oo and T — 0, respectively. Obviously, it would be natural to ascribe
the limit ¢ — 0 to the hypothetic Big Bang of the universe, which thus
would determine the absolute zero of cosmic time, an analogue of the infinite
absolute temperature. In this limit, the deviations of the universe from an
overall temporal equilibrium ¢ = 0 would be singular. In contrast, in the
limit ¢ — oo the universe would approach an overall temporal equilibrium
¢ = 0 because for ¢ — oo the source term in Eq. (8) would switch off.
So, for our “old” universe (if it is old enough) its deviations from an overall
temporal equilibrium should be small, and then gp exp(—cto/2Ar) in Eq. (8)
could be expected as small (depending, however, on the unknown constants
gr > 0 and Ap > 0 as well as the actual age ty of the universe, popularly
estimated as 1.5x101° yr). Further on, we will accept this point of view.

Then, for the length-dimensional Ay two opposite options are interest-
ing: (i) the case of “microscopic” Ap < ctg , where exp(—cte/2Ar) << 1,
and (ii) the case of “macroscopic” Ap<cty , where exp(—cto/2Ar)<1 or
& 1. In the case (ii) there might be some chances for experimental de-
tection of the hypothetic temporal-nonequilibrium deviations, even in our
“old” universe (cf. Eq. (15) later on). Further, we will assume this option.

From the standpoint of phenomenological thermodynamics, the new
conductivity equation (8) implies that the first law of thermodynamics [3]
should be now extended to the form

dU = §W + 6Q — isT (9)

including an imaginary term —i§I" with —iI" being an analogue of heat Q
(when —iht takes over the role of kT'). Thus, a new thermodynamic-type
quantity I' — called by us energy width — is transferred to the system from
the physical spacetime (that is included in the system’s surroundings). In
general, this transfer makes the system’s internal energy U complex. Only
in the conventional case, where the temporal equilibrium ¢ = 0 persists, the
internal energy U can be taken as real, since only then Eq. (9) is reduced
to its conventional form with 6I" = 0.

Thus, in general, it is natural to consider for a so called isolated system
a quantum state equation in the nonunitarity form

d¥(to) _
dtg -

(in the Schrédinger picture), where 1 is the unit operator and I'(ty) denotes
the total energy width of the system (I'(tp) is a c-number-valued function

th [H —41I'(t)] ¥(to) (10)
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of tp ). Specifically, we propose that in the nonrelativistic approximation
I(to) = grh [ &7 p(7, )¢ (7, o) (11)

with ¢ satisfying Eq. (8) and p = ¢~ 13 as given in Eq. (7).Then, as it

should be, I'(tg) = 0 in the temporal equilibrium ¢ = 0, what reduces in

this case Eq. (10) to the conventional quantum state equation [4] having

the unitarity form

dy(t)
dt

with ¢t = ty. Evidently, Eq. (10) leads to a nonunitary quantum time evolu-
tion, including small nonunitarity corrections to the conventional quantum
time evolution described in Eq. (12).

The mixed set of coupled equations (6) or (8) and (10) (with (11) ) for
¢(7yto) and ¥(tg) gives us a quantum theory of hypothetic small deviations
from the temporal equilibrium. Call such a theory phenomenological chron-
odynamics in analogy with the phenomenological thermodynamics. Note
that, when treating the physical spacetime as a chronostat or energy-width
reservoir, we do not discuss the physical nature of spacetime which is cer-
tainly connected, to some extent at least, with the theory of gravitation
(or supergravitation) and its expected quantization. Analogically, in phe-
nomenological thermodynamics, we do not discuss the physical nature of
thermostat or heat reservoir.

ih = H¥(t) (12)

3. The first approximation

Strictly speaking, the set of equations (8) and (10) is nonlinear (and non-
local) in ¥(to), slightly perturbing the superposition principle, fundamental
in the conventional quantum theory (valid in the temporal equilibrium).
However, this set becomes linear (and local) in the approximation, where in
Eq. (7) defining j#, the state ¥(t;) is replaced in the zero approximation by
the state vector ﬁ(o)(to) satisfying the temporal-equilibrium state equation
(12). Then, in the first approximation, Egs. (8) and (10) take the forms

1 8 (1) — _ 6p(°) R _,(0) (—ctq)
(A Arcato)so (Fyto) = —4mgrir I + divj P | o3n

(13)

4 (1)
1
ihd![’ (to) _

T [ - i1r®) (1)) 2 (1) (14)
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with

r®() = orn [ @50 e = 0 [shen (F52)] 1 (19
r

where .
FHONF, t0) = (#O(to) | TH(7) 1209 (20)av - (16)
From Eq. (14) we can see that
to
1
TN (ty) = #O(t) exp [—g / dt 1"”(‘:3)} , (17)
too
where
#((tg) = _
0) = exp —EH(to - too)| ¥u, (18)

if at to = too the Schrddinger picture coincides with the Heisenberg picture
(and interaction picture): #(1(tgg) = ¥n(= !P}l)(too)). When both in-
stants tgg and t¢ (reckoned from the Big Bang) belong to our “old” universe,
the approximation proposed above can be expected as excellent because we
accepted grexp(—cto/2Ar) < 1in Eq. (8).

In spite of the varying—in-time norm of the state #(1)(ty) obeying the
nonunitary time evolution (17),

(D (20) | #(t0)) = (P | ) exp [-—-f; [ r‘”(ta)} . (19)

to0

we will take for %ranted in our further considerations the probability in-
terpretation of ¥(1)(ty), thus maintaining in the first approximation the

conventional probabilistic interpretation of W(o)(to). Such an interpretation
of #(1)(¢y) is consistent with the linearity and homogeneity of Eq. (14) as
well as with the fact that Eq. (14) can be rewritten in the form

A (o) _

th
t dtg

[H - iI(])(to)] 7 (to) (20)

for any state ${1)(¢;) related to an eigenstate

®(to) =|v) exp [—%Ey(to - tgg)]
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of the energy operator H. Here, the energy width-operator

r®t,) = 21 I3 (21)

(with (¥’ | ¥) = 6,4,) is state-independent, while the particular #(})(¢,)
and I'1)(ty) are denoted by SPSI)(to) and I’,(,I)(to). Thus, the superposition

principle holds for the states SP,(,I)(to) and so, for all states being their linear
combinations.

When interpreted probabilistically, the varying-in-time norm of #(1)(t,)
is a thermodynamic-type manifestation of the exciting physical fact that our
so called isolated system is dynamically not complete, interacting — on an
underlying quantum level — with the physical spacetime (whose consistent
quantum structure may be topologically more involved than its familiar
classical counterpart). So, this spacetime plays the role of an “enormous”
dynamic complement of the system, being a chronostat in an excellent zero
approximation corresponding to the temporal equilibrium. Of course, a con-
sistent quantum theory of gravitation (or supergravitation) is invited here
as a natural ingredient of the theory of this dynamical complement.

From the formal point of view, our nonunitarity quantum state equa-
tion (10) for a so called isolated system may be considered as an averaged
result of projecting the states [5] of a future dynamically complete quan-
tum theory (including the physical spacetime as an “enormous” dynamic
complement) onto the Hilbert subspace corresponding to the system. This
remark characterizes the difference between our basic thermodynamic-type
concept of energy width I', connected formally with the act of projecting
onto the whole Hilbert space of the system, and the familiar notion of the
width of an energy level, following formally from projecting onto a distin-
guished direction in this space, corresponding to the energy level of the
system. Of course, another component of our thermodynamic-type theory
is the phenomenological field equation (6) or (8) for the parameter-valued
inverse-time field. Such an equation should hopefully follow from the future
complete quantum theory as an averaged result valid in the case of small
deviations from the temporal equilibrium.

4. Some consequences

For scattering processes ¢ — f, we impose on !P}o)(tg) and !P}l)(tg)
in the interaction picture the initial conditions T}o)(too — §/2) =| i) and

!P}l)(toa — §/2) =| i), where § is a time interval sufficiently large to cover
the (microscopic) effective interaction time for the collision at ¢y = tgq, but
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extremely small when compared with the age to ~ fog of our “old” universe.
Then, when transformed to the interaction picture, Eq. (17) implies that in
the first approximation S-matrix elements Sffli) = (f] s?}l)(too + 8§/2)) are
equal to

5% = 5P exp(-a{Y), (22)
where S (0) = (f| W}O)(too + &§/2)) describe elements of the conventional
unitary .S' matrix and

. too+5/2
ASI)EE / dto IV (to) (23)
too—58/2

are small decrement exponents dependent on initial states 7 and the age g9
of the universe at the instant of collision (of course, tg ~ tgg). For ¢§/2Ap
small enough (what is always true in the case of “macroscopic” Ap)

AW o %1’(1)(:00) 5 (24)

due to Eq. (15).
We can see from Eq. (22) that in the first approximation the § matrix

avails a tiny unitarity defect (determined by Agl)), conditioned by the hy-
pothetic small nonunitarity corrections to the conventional time evolution.
In principle, Agl) can be measured (or estimated) by experimentally test-
ing (6] the corresponding deviations from the conventional optical theorem,

where, in the first approximation, the additional factor exp(-—AEl)) appears
at the imaginary part of forward scattering amplitude.

The possible nonunitarity of time evolution may be also examined by
comparing the norms of a quantum state in the temporal equilibrium and
in a situation when the temporal equilibrium is perturbed by an external
inverse-time field. To set an academic example for such an experiment,
consider a container with gas of hydrogen atoms in their ground states,
put close to a big collider, say, the Tevatron. Producing particles during its
stationary run, the collider induces the nonzero matter-current 4-divergence

0p%*(7)

o+ v () = vy () = f5() (25)

and so, due to Eq. (8), creates the inverse-time field

—ct
P (7, tg) = () exp | — 0) ,
2Ap
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where 1
¢°*(F) = —4mgrir (A + -2—;—2—) fs(7) (26)

(more accurately, using Eq. (6) for x"‘(r to) ©**(7) one gets Eq. (26)
with (Arv/2)~2 replaced by (2Ar)~2, what is irrelevant in our argument).

In particular, consider as an analytically calculable model the inverse-
time field

gr r—T7
¢(F) = Qs IrFi'l'; c 'Ar\/ﬁlzc‘mlylml(a ¢) 27)

with Elm, €1m;Y1m,(0,0) = 1, corresponding through Eq. (26) to the
matter-source distribution

f5(7) = 25 [63(r-—rs)+2czm,4 e cos";r‘j;'mm,(o,m] :

lmy

(28)
where 0, ¢ are spherical angles of the distance vector ¥ — g from a well
localized particle-production centre 7. Here, the constant 25 > 0 is the
number of particles produced by the collider per unit of time. In fact, from

Eq. (28)

[ #7550 = as (29)
in consequence of
2r
(1 + 1)/smodo/d¢y,m,(o $)=0. (30)
0

Note that ¢**(7,t5) > 0 and so t**(,tg) < tg for | ¥ — 75 |< o0, where
to = t**(7g,t0) for |7 — 75 |= oo (cf. Eq. (1)).

The external inverse-time field ¢**(7, tg) modifies the temporal-equilib-
rium wave function

¢1(£)(Fe,Fp) exp [*% E(to - too)} (31)

of any hydrogen atom in the container. If switched on at the instant ¢y = #40,
this field leads in the first approximation to the modified wave function

to
.. 1 1
(7., 7p) exp [—EE(tg — too) — v /dt{, 1“‘”(:3)} (32)

tgo
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consistent with Eq. (17), where now

I‘(l)(to) = 291«711—\7—}-1 /dsi-'goex(v") exp (—Ct0> (33)
Vv 2Ar
\4

according to Eq. (15). In Eq. (33), consistently with Eq. (16), the hydrogen-
gas particle density is given in the zero approximation by

PO = Ny / &7, / &7y |90 (e, ) |2 [83(F = 7)) + 63(F — 7))
v v

_ 2Ny
v

with Ny denoting the number of hydrogen atoms in the container (notice

that [ (Fe, ) |2 =| WG (Fe — 7) |2 /V as |exp(iP - B/R)/VV 2= 1/V).
Hence, due to Eq. (32), the hydrogen-gas particle density in the first ap-
proximation becomes

(34)

- 2N;
pV(F t0) = VH exp [—d(};)(to)] , (35)
where
to
&)= 3 [at (). (36)
too

For ¢(to —to0)/2Ar small enough (as it is always in the case of “macroscopic”
Ar)

2
dB(tg) ~ 3-‘i-z"(l)(tm,)(t(, — too)

= 4gp’—"‘;‘— [ / d*ﬁ"(ﬂ] exp ("le“) (to —too)  (37)
vV

according to Eq. (33). Note that a tiny unitarity defect of time evolution of

hydrogen wave function (32) is determined by d(Hl ) (to)/2Ny.
If in the considered experiment the model (27) of ¢**() can be approx-
imately used in Eq. (37), then we obtain

A L —ct
dg)(to) ~ 4NHg?~ (%) cos (m) exp ( 201\;0) s (to — too)

A —ct
~ 4Nyg% (%) exp ( 2/\;0) N25(to — too), (38)
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when we apply the mean-value theorem to the integral in Eq. (37) and so
replace there the distance |# — 75 | by the mean value L =|7,, — 75 | over
the container. The last approximation above is always justified in the case
of “macroscopic” Ap, where certainly 2Ar > L. In Eq. (38), the value of
Loschmidt number gives Ny =~ 2.69 X 10?%V/ cm? (in the so called normal
conditions), while tg ~ tgg ~ 1.5 X 1019 yr is the actual age of the universe.

Taking, as for the Tevatron, the luminosity ~ 1031cm™2sec™?, the pp
total cross-section ~ 100 mb and the average particle multiplicity ~ 100
we can get {15 ~ 108sec™?! for the particle-production rate. Then, Eq. (38)
implies

A — -
dB(to) ~ 107842 ('ITF) exp ( ;;;0) V_to — oo , (39)

cm®  sec

where ctgo >~ 1.4 x 1028 cm and, for example, V/L ~ 10 cm?. Unfortu-

nately, the constants gr > 0 and Ap > 0 are unknown from the very
beginning. We only assumed the option of “macroscopic” Ap (otherwise
there are no chances for experimental detection of the hypothetic unitarity
defect of quantum time evolution). In such a situation, to make a numerical
exercise, put g% ~ 1 and, specifically, ctoo/2Ar ~ 140 to 150, what gives
Ar ~ (5.1t04.7) x 10%® cm and

em V g —tgo

dB (o) ~ (107" to10712) (40)

L cm3  sec

(notice that if alternatively ctoo/2Ap ~ 1, the estimate (40) requires g ~
10793 to 107%8). Hence, for V/L ~ 10cm? and the run-time #5 — tpo =
1month ~ 10° sec, our exercise leads to

(o + 1 month) ~ 1 to 1075, (41)

Note that then exp[—dg)(too + 1 month)] ~ 0.37 to 1 — 10~°. In general,
d(H1 )(to) decreases violently with decreasing Ap. Of course, only a small

d(Hl )(to) is physically acceptable, but how small and for what run-times
tp — too, is an experimental question.

In connection with this question, it is surprising to realize that, after
the stationary run of the collider is switched on at the instant tg = £y, the
mass of hydrogen gas in the container is

MP(to) = Namz exp [-d(t0)] (42)
although before this switching on the mass was

M{,?) = Ngmy . (43)
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In fact, making use of the probabilistic interpretation of the state (17) and
so of the resulting wave function (32), we calculate :

(1)(to) = Nu /d3 /d3 / I G e, 7o)l

X exp [—dﬁi)(to)] [mgffﬁ(f'- 7o) + meTe (7 - 7,)| }
= Nya(mZ™ + me) exp [-d(t0)] | (44)

where myg = mgﬁ + m;ﬁ is the mass of hydrogen atom. An analogical
remark pertains also to any other global physical quantity ascribed to the
hydrogen gas in the container (e.g. its polarized magnetic moment).

We can see from Eqs. (42) and (43) that the ratio M%,l)(tg) : M‘(,o) is
equal to exp [——d(Hl)(to)] <1 or

In M () — ln ME = —d{P(t0)<0. (45)

In principle, such a new effect of slight change of matter mass in an external
inverse-time field can be experimentally tested, offering to us an interest-
ing method of measuring (or estimating) the hypothetic unitarity defect of

quantum time evolution (determined in our academic example by dg )(to)).
This completes the gedankenexperiment proposed here to examine the pos-
sible nonunitarity corrections to the conventional quantum theory.

As a final remark, let us note that if in our nonunitarity quantum state
equation (10) we take H = ¢@ - p + fmc? (i.e., the free Dirac Hamiltonian)
and then I' = fBec? with an infinitesimal constant ¢ > 0, we obtain auto-
matically the Feynman-propagator prescription m — m — ie when £ — +0.
Thus, the Feynman’s (or Stiickelberg’s casual) choice for spin —1 fermion
propagator, correct in the Dyson-Wick perturbation procedure in the con-
ventional quantum field theory, may be interpreted as a signal of a tiny
nonunitarity deviation of the quantum state equation from its conventional
unitarity form (12). Hence, the infinitesimal ¢ > 0 may be a physically
necessary remnant of our more basic thermodynamic-type theory when its
other nonconventional, thermodynamic-type features can be approximately
neglected. A remark that the Feynman’s ¢ might be of a statistical origin,
the author had an opportunity to hear from Wolfgang Pauli in ETH many
years ago.
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