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Intermittent correlations/fluctuations in the particle spectra of high-
energy collisions are studied using correlation and fluctuation descriptions
of cluster models. It is shown that leading contribution to intermittency in
both methods may be connected with a cluster structure of multiparticle
process.

PACS numbers: 13.85. Hd, 45.50. Dv

1. Introduction

The study of correlations of final state particles emitted at various po-
sitions of rapidity in hadron-hadron interactions has revealed a tendency
for particles to be grouped in clusters over a range of rapidity of about
1 to 2 units [1-4]. These short range correlations for hadron-hadron colli-
sions were interpreted in terms of cluster models [5-8] in which the observed
hadrons are decay products of clusters. The et e~ data shown similar effect
[9]. Moreover, the cluster scheme is useful for Monte Carlo simulation of
hadronization in et e~ -annihilation (cluster fragmentation model [10]).

In this paper we shall analyse the intermittent behaviour in particle
spectra (for short review see [11, 12]) under the general assumption that
multiparticle production can be described by a two-step cluster mechanism.
By this we mean that the clusters are formed on the first stage of multiparti-
cle process and all final hadrons are created by the decays of clusters on the
second stage. The descriptions of cluster models via semi-inclusive densi-
ties and multiplicity distributions enable one to examine the intermittency
using correlation (Section 2) and fluctuation (Sections 3, 4) approaches,
respectively.
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The purpose of this paper is to examine the contributions from both
stages of multiparticle production to intermittency phenomenon. We dis-
cuss how self-similar patterns can arise in the cluster models. It is shown
that the investigations possible without detailed understanding of structure
of particle semi-inclusive densities and multiplicity distributions for full ra-
pidity. The main result of the paper is that specific intermittent correla-
tions/fluctuations can arise among particles coming from the decay of the
same cluster. Since our analysis of the cluster models possesses large gen-
erality, the conclusion makes it appropriate to speak about general features
of the models leading to intermittency in which the clusters decay into final
hadrons independently. In our opinion, this result is important because it
can be interpreted in any particular dynamical scheme.

Note that throughout this paper we consider only identical clusters and
identical final hadrons.

2. Intermittent correlations in cluster models

Over last years, there has been a growing interest in intermittent be-
haviour in particle physics [11, 12]. In the terms of normalized factorial
moments the intermittent behaviour in spectra of particles means the exis-
tence of a power-law singularity at small intervals of phase space [13] (see
Section 3). Such behaviour is a straightforward manifestation of nonstatisti-
cal multiplicity fluctuations of secondary particles produced in high-energy
interactions. However, other way of studying of such fluctuations is possible
also. The power-like singularity in the normalized factorial moments of sec-
ond order corresponds to the power-like singularity in two-particle inclusive
density [14, 15] for y2 — y1. Then the two-particle inclusive density can be
expressed in the form

_}_ d%o
oy dy1dy;

P(y1,92) = ~aly2 -y |7 +L(y1,92), (1)
where o is the total inelastic cross section, a is some constant, d,; denotes an
anomalous fractal dimension (AFD) [16] and L(y1,y2) is some translation
invariant function. The last term in (1) corresponds to the possible non-
singular correlations.

The expression (1) implies that two-particle semi-inclusive density has
the form

pn(¥1,92) = — - an Lyz —v1 |~ +La(v1,92), (2)

recalling that
p(y1,92) = (Pn(¥1,92))n s (3)
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where o, is the cross section for the production of n charged particles,
(...)n denotes the average over all events, and L(y1,¥2) = (La(¥1,¥2))n,
@ = (an)n. Here we assume that the AFD d; is independent of how many
particles are being produced in full rapidity interval for simplicity.

Now let us consider the generating functional (GF) for the semi-inclusive
densities of final hadrons in cluster models. In terms of the GF G[¢(§)] of

clusters and the GF é[q&(y);f;] of hadrons emitted by one cluster that is
formed at rapidity ¥, we can write the GF for final hadrons as follows
(using [8] with some slight change of definitions)

Glow) = G [Gla(w) 9] , (@)

where y is rapidity of final hadrons and ¢(y) is auxiliary function. The
generating functional for m-particle semi-inclusive densities pn(¥1,...¥m)
is

Glo(y)) = ZH / dyid(:)pn(¥1, - ¥m) s (5)

m=01i=1

where the semi-inclusive densities are given by the successive functional
derivatives of the GF with respect to ¢(y) at ¢(y) = 0.

By applying formulas (4), (5) the two-particle semi-inclusive rapidity
density pn(y1,y2) of final hadrons can be expressed as

Pr(¥1,¥2) = / pm(§)pk(v1,y2; §)dF
7

+ /ﬁm(ﬂl,ﬂz)ﬁ-k(yl;ﬂl)ﬁk(yz;ﬁz)dﬂldﬂz, (6)
i,

where pm(9), Am(¥1,92) are cluster semi-inclusive rapidity densities with
fixed multiplicity m and 5x(v;§), Sr(v1,¥2;9) are semi-inclusive rapidity
densities of particles emitted by one cluster which is formed at rapidity g (k
is number of particles per cluster). As we see, the density pn(y1,y2) splits
into two terms according to whether both particles come from the decay of
the same cluster or from the decay of different clusters. Integration of the
semi-inclusive densities over the full domain of the rapidity space gives the
identities '

/ Fm(i)di = m, / Bm(in, B2)dfadis = m(m—1), ()

m 125
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/ﬁk(y;ﬁ)dy =k, /ﬁk(!/l,yz; §)dyidys = k(k - 1). (8)
(ol 1,

Let us show that the second term in (6) does not lead to the power-law
singularity in the form |y, — y; |~ %.

For the case when the clusters are uncorrelated in rapidity space, this
statement is trivial. Indeed, if clusters would be emitted independently,
Pm(71,72) would be the product of the two single cluster distribution func-
tions fm(#1), Am(g2), and second term in (6) reduces to F(y; )F(yz), where
F(y) = fnl Pm(¥)Pr(y; §)d§. For the general case, when clusters are corre-
lated, the proof of the statement will hinge on the fact that the relation

Kpi(y1;91) = / Pm(@1, 92)hk(y1; 91)di (9)
m
is linear integral transformation K of real square-integrable function /5 (v1; 1)
with kernel 5,,(§1, J2). For identical clusters the kernel is a symmetric func-
tion with respect to exchange of any of its arguments, i.e. jp(71,72) =

pm(P2,71)- Let us remind from theory of linear integral equations [17] that
the quadratic integral form with symmetric kernel

(Kprspr) = /ﬁm(ﬁnﬁz)ﬁ-k(yx;371)/3~k(y2;ﬁz)dy'ldﬂz , (10)
1,

can be expressed via the Hilbert formula as

o0

‘Pu(yl)‘Pu(yl’)’\;] 3 (11)
v=1
where
pu(yi2) = /ﬁ.k(y1,2;8)¢u(y1,2,8)d5, (12)
)

where {¢,(y, s)} is complete set of eigenfunctions of the kernel and the A,
are eigenvalues. It is easy to see that the expression (11) does not lead to the
power-like singularity in Eq. (2) and, hence, the intermittent behaviour in
semi-inclusive density may be connected only with the first term in Eq. (6).

As is well known, the cluster semi-inclusive densities can be approxi-
mated by expression [8, 18]

. k
) 1 a"‘ kY
p YY) = —— |1 D(y —4)d . 13
pk(y.‘n Yr y) a” ay] . .ayr + a;b/ (y y) ¥ ( )
a=0
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where D(y — §) is probability density to have one particle at y emitted by
the cluster which is formed at rapidity y. The D(y—§) is well approximated
by a Gaussian distribution D(y — §) x exp[—(y — §)%/262), where § is decay
width in rapidity space of the clusters. The expression (13) corresponds to
the idea about absence of any correlations between particles. To see this,
we shall consider the following probability densities in the usual statistical
sense [19]

- - k—-r) - -
(v, yri @) = ( i ) Pr(v1,---¥r3 9) (14)
with the normalization condition
/ﬁ.'k(yx,---yr;ﬂ)dyl coodyy =1, (15)

2

These quantities define the probability densities that » particles from one
cluster, successively chosen from an event with k particles (r > k), have
respectively rapidities y;,y2,...yr. The expression (13) can be rewritten in
terms of these densities as

.
By -yns9) = [ Ai(vis 9) (16)
i=1

where 5 (yi; §) = D(y; — 7). Hence, due to the factorization property, the
continuous random variables y;, ¢ = 1...r are statistically independent.

As we mentioned before, the first term in (6) may be related to the
power-law singularity in question. Let us define the second order cluster
correlation function as

C'r(y1,¥2:9) = P (v1,¥2: 9) — ﬁi(yl;ﬂ)f;'k(yz;i)- (17)

The correlation function, as defined above, vanishes if the densities have

factorization property (16) and, hence, for (13) one gets é ¥z, v139) =0
also. When the correlation function is singular for y2 — y;, then the result
follows that the final semi-inclusive density p,(y1,y2) in (6) has singularity
too, t.e., if

Clr(y1,92;9) «| y2 — w1 | 792, (18)
we have : J
Pr(y1,y2: %) | y2 — 31 |72 . (19)

Note that the correlation function does not depend on § when the particle-
separation in rapidity space tends to zero. Thus the intermittent behaviour
implies that the particles produced by one cluster are correlated in rapidity
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space and, hence, the models described by Eq.(13) are unlikely to be realized
in nature.

3. Bunching projection method and intermittent fluctuations

Up to now we have considered a simplest case of cluster model with a
fized number of particles on each stage for all events. In order to discuss
the intermittency in models with non-fixed number of particles, we shall
consider the cluster models in terms of generation functions (GFns) Q(z,Y)
for the probabilities P,(Y) that n particles be produced altogether in the
whole rapidity interval Y’

Q(z,Y) = ) z"Pu(Y) = Q1(Q%(z,4),Y - 4), (20)
n=0
QY (z,Y - A)= i "P MY - 4), (21)
n=0
Q*(z,4)= ) "Pi(4), (22)
n=0

where z is auxiliary variable. The Q!(z,Y — A) is GFn for cluster mul-
tiplicity distribution P1(Y — A). The Q?(z,A) describes the multiplic-
ity distribution P2(A) of final hadrons which are emitted by the cluster,
A is the characteristic size of rapidity interval containing almost all final
hadrons that are emitted by one cluster. There are many ways in which
the A and decay width § resemble each other. However, one must expect
that A4 > §. Concrete realizations of the convolution (20) of cluster models
are well known in high energy physics (see for example [20-27]). Here we
shall utilize only general statistical formalism to analyse the intermittency
phenomenon in such models.

As already mentioned in the previous section, the intermittent be-
haviour is defined as a power-like increase of normalized factorial moments
(NFMs) Fj(8y) in small rapidity interval 6y so that in terms of GFn one
should have

_ Q(k)(z’ 6y) |z=1 —d(k=1) |
Fk(Jy) = (Q'(Z, 6y) lz:])k x by ! ’ (23)

where d; are the AFDs. To calculate the NFMs, we must know GFn
Q(z, 8y) for small bin §y. On the theoretical side of the question, this task
is fenomenological one. It may be solved using the projection method (see
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[27,19]) where the method was used in particle physics). The GFn Q(z, 8y) is
given in terms of the projection GFn G (z, §y) and the probabilities P,(Y")
by

Q69 = 3 Pal¥)Gnl269) = (Gulz,89)), » (24)
n=0
Gn(za 6y) = Z lel,n(6y) 3 (25)
l=n

where W ,(8y) is the probability to have exactly [ particles in the bin dy
when there are n in full interval Y.

It is easy to see that the problem of possible power-like behaviour of
NFMs for small bin is one of non-trivial peculiarity of the projection distri-
bution for small §y. As an example, let us consider the case when there are
no any correlations between particles in rapidity space. Then the projection
distribution is positive binomial one with GFn in the form

GEB(z,8y) = (p(6y,n)z + q(8y,n))*,  p(Sy,n)+q(fy,n)=1, (26)

where p(éy,n) ~ A(n)(8y/Y), A(n) is some function depending only on n.
Using (23)-(26), for NFM one gets

FeB = (M mnlM) (A(n)n)* (27)

where nl¥} = n(n —1)...(n — k +1). These NFMs have no tendency to
increase with decreasing interval of rapidity and can not lead to intermit-
tency.

To overcome this difficulty, we must turn to a more general projection
distribution taking into account a possible correlations between particles.
For this, we will use bunching projection distribution which was introduced
for the first time in {28]

n § s(k)
Gl::md'(z, 6y) — GEB(Z, 63/) + Z c(k, n) (_YE) (Z - 1)" ) (28)
k=2

where c(k,n), s(k) are positive constants. As was shown in [28], this dis-
tribution reflects a clustering of particles, z.e. it leads to a fluctuations of
particles in rapidity space. Then for NFMs of any distribution P,(Y’) after
projection with (28) one obtains

_ oPB £k) (Y E-e(k)
Fk(b'y) - Fk + ——()\(n).—n)ﬁ (é-y) ’ (29)
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where £(k) = k! Y c(k,7)Pi(Y). The AFDs d; are given by dj = (k —

i=k
s(k))/(k — 1). They depend only on a free parameter s(k) of the bunching
projection distribution.

Let us now turn back to the two-step mechanismn of multiparticle pro-
duction with GFn (20). Consider the case §y € A. There is a probability
for final hadrons emitted by one cluster to be detected in the restricted in-
terval §y. Moreover, in the restricted bin of size §y may be emitted hadrons
by different clusters which are formed at limited rapidity interval of size
~ A. So, we shall make two projection in A and §y in both multiplicity
distributions of the first and the second stages, respectively. For this, we
shall use the bunching projection distributions taking into account not only
that clusters can be grouped in bunches on rapidity in the end of the first
stage but also fluctuations of hadrons emitted by the clusters on the second
one. On the other hand, it is easy to see that we must make only one pro-
jection in &y for @1, if 6y > A. The corresponding GFns are given by the

expressions

Q(z,8y) ~ Q1 (Q*(2,6y),4), sy< A4, (30)
Q(z,6y) =~ QY (Q%*(z, 4),8y), sy> A4, (31)
Q' (2 4)= 3" PAY — A)GA(x, 4), (32)

n=0
Q' (ab) = 3 PAY - A)GA(=,6), (33)

n=0
Q*(z,6y) = ) PHA)GL(6y), (34)

n=0

where G, G? denote the bunching projection distributions in the form
(28).

We have seen that in real physical situation the value of A is about
one unit in rapidity. Then the intermittent behaviour of NFM must be
determined by GFn in the form of Eq. (30). Using (23), (30) for the leading
term of NFM in limited rapidity interval §y — 0 one gets

Y k—s3(k)
Fle*d(6y) (35> ., k>1, (35)

where s (k) are constants of the bunching projection distribution G2z, §y)
for the second stage. As we see, if rapidity interval is small enough then
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leading contribution to intermittency is determined by the last stage as we
also illustrated in the second section.

If we suppose that there exist a maximum invariant mass of clusters
Mpax, then the number of the terms in sum (34) is restricted by N ~
Mnax/mx because of the law of conservation of energy (my is mass of
pion). For example, this case takes place in the cluster fragmentation model
in which the clusters are parton colourless objects possessing properties of
simple hadron resonances [10]. Then, as shown in [28, 29], expression (35)
is correct as long as k < N. If k > N, the leading terms of NFMs have form

Jx
F,‘,"d(tfy)“(%) , =k Y omm@b L (36)

{mu} max

where Y is the sum over all species {m;} which satisfy the condition
{mu}

N

> mil =k, (N > 2). After that, we must choose the maximum value
=2

among the species {fi} with fixed k. For multifractal behaviour dj ~ ak
(a is some constant), we have

dk=m Z al(l——l)ml s k>N>2. (37)

{m} max

From (37) it can be shown that AFD has a tendency to decrease with the
increasing rank k if its value is greater then N. For instance, if N = 4, we
have dy/ds = 2 and for k > 5, dj has a complicated oscillatory decreasing
form. This observation can be revealed in high-energy experiments. The
tendency to decrease in behaviour of AFM after some values of k was ob-
served so far only in some nucleus—-nucleus reactions [30, 31]. It is possible
that this is the result of some analogous of two-step cluster mechanism. Now
we have no clear evidence to consider this experimental results as dynamical
effect in view of low statistics in the experiments.

4. Clan structure as a source of intermittency

As an example of our approach, let us consider negative binomial distri-
butions (NBDs) which give a good fit to most multiparticle production data
[32-39]). The analysis of the NBD may be carried out in terms “clans” for
groups of particles of common ancestry [20-23]. For full rapidity interval,
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the NBD is given by the convolution of Poisson GFn Q¥ (z) and logarithmic
GFn QL(z)

Q¥R (5, Y) = (14 2(1-2)) = @P(@ (=), (38)
_ N In(1 — bz)
QF(z) =eN="1),  Ql(2) = T{i=0) "’ (39)

where N = win(l + f/w), b = f/(A + w), 7 is average multiplicity of final
hadrons in full rapidity interval ¥ and w is a positive parameter. The QF
is GFn for the distribution of the number of clans (or ancestors), and QL is
GFn for the multiplicity distribution of particles in one clan.

In order to illustrate the problem related to the behaviour of the convo-
lution (38) for small rapidity intervals, we shall make projection of the NBD.
For this, we will use PB projection distribution (26). For the sake of simplic-
ity we suppose that p(8y, n) is independent of n, i.e. p(8y,n) = p(dy) =
(this case see, for example, in [27]). Then one gets the same definitions of
projections, as those of Eqs (30) (34) written for bunching prOJectlon dis-
tributions, substituting GL, = (pFz 4+ ¢F)™ to G1 and G% = (p¥z + ¢)™ to
G?%. The GFn for NBD in ' small rapidity interval is then

NBD(, 5.} — "(53/) _, ~wlb3)

a(Sy) = pPan, (5y) =p'w, (40)

where
pP ~ P(A) = const., pL e 6y, for 6y <A, (41)
pPoc5y, pLg]_’ for dy > A. (42)

The NFMs are
FNBD(§y « A) ~ const., FNBD (54> A)  6y*F. (43)

Note that for both cases i « §y while the behaviour of w is different for
different values of rapidity intervals. It seems that behaviour w(fy) — const.
for §y — 0 is not improbable for high energy collisions [32, 34, 38]. If the
value of the decay width A in rapidity space is not very small, we have no
any intermittent effect.

Let us note that this two-projection method differs radically from the
one discussed in Ref.[40], where w(fy) x 6y* (0 < a < 1) for all §y. In
this case, the intermittency with a monofractal behaviour of AFD d; =
a = const. does exist. However, the existing experimental data hardly
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provide any direct evidence for such behaviour of w(8y) [32, 34, 38]. In
addition, the monofractal behaviour of AFD is very uncommon one for
most particle collisions for which the multifractal behaviour is typical [30].

In the case of bunching projection distributions, we can describe inter-
mittency with an arbitrary AFD dj = (k — sp(k))/(k — 1), where sp,(k) is
determined by rapidity fluctuations of particles in one clan. The value of
sp(k), of course, must be calculated in a dynamical production theory or
models. '

5. Conclusion

We considered the simple two-stage scheme of multiparticle production
using both correlation and fluctuation approaches for the description of in-
termittency. The most important result of our analysis is that if rapidity
interval is small enough then leading contribution to intermittency is deter-
mined by the last stage. The influence of correlation between clusters at the
end of the first stage in intermittent spectra of final hadrons must be slight
for 6y — 0. The correlations between clusters determine only non-leading
terms in the NFM of multiplicity distribution for final particles.

In conclusion, it should be emphasized that the behaviour §y~92 =
| 2 — y1 | ™92 of semi-inclusive density (or power-law behaviour of NFM),
when rapidity difference tends to zero, is not one in usual experimental
sense, since this power-law is not valid for arbitrary small §y (§y)in real
multiparticle processes. A generalization this approach for case of existence
of some critical value §y,;, determining the scale beyond which the process
is no longer scale invariant must be subject of future investigation.

I would like to thank Dr. V.I. Kuvshinov for stimulating discussions on
various aspects of this report. This work was supported by Grant MP-19 of
the Fund for Fundamental Research and the Intellectual Fund, Republic of
Belarus.
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