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A model is presented describing quasi elastic and damped heavy ion
collisions, at energies larger than 10 MeV/u, as a process of stochastic
nucleon and momentum transfer. Mass, energy, and angular distributions
are calculated. The model allows also to evaluate dissipation of the en-
trance channel angular momentum. The effect of subsequent evaporation
is included.
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1. Introduction

The aim of this work is to describe heavy ion reactions at intermediate
energies (> 10 MeV/u) in which a projectile-like fragment, PLF, is ob-
served. Similarly as at lower energies (< 10 MeV/u) the quasi elastic and
the damped heavy ion collision scenarios are assumed. This is the reaction
mechanism suggested recently for non central collisions at intermediate en-
ergies [1, 2]. We would like to calculate from our model the mass, energy,
and angular distributions of emitted particles. Such predictions are impor-
tant in investigations of heavy ion reaction mechanism and also for planning
of complicated and expensive multi-detector experiments.

At low energies (damped) deep inelastic collisions, DIC, are observed
for impact parameters which are too large for a formation of a compound
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nucleus but which still involve a considerable overlap of projectile and target
nuclei. The colliding ions reseparate after some exchange of nucleons, mo-
mentum (energy), and angular momentum. The relative kinetic energy may
be dissipated down to the Coulomb barrier, but the participating ions do not
completely loose their identity. In the collision process the attractive mean
field of the system governs the effective flow of nucleons through a window
between the target-nucleus and the projectile-nucleus [3, 4]. The individ-
ual nucleon-nucleon interaction is highly suppressed by the Pauli principle.
Consequently, the energy damping seems to proceed mainly by one body
dissipation [5]). The flow of nucleons through the window between the tar-
get nucleus and the projectile undergoes fluctuations which can be included
in the picture by solving the Fokker—Planck equation, within the transport
theory of dissipative collisions [6]. In order to get a proper isotope compo-
sition of ejectiles different random walk procedures are being incorporated
in the transport calculations [7).

The reaction picture becomes more complicated at intermediate en-
ergies where individual nucleon-nucleon interactions, residual Pauli block-
ing, and mean field effects have to be included. To solve the problem one
commonly uses semi-classical kinetic equations based on the collision term
derived for quantum gases by Uehling and Uhlenbeck [8]. Further improve-
ments have been taken from Landau and Vlasow [9], who were solving simi-
lar problems for plasmas, where both collisions and long range electric fields
have to be accounted for. Different methods used to solve this problem are
referred to as B.U.U. [10] or V.U.U. [11], and L.V.[12]. As an alternative one
can use the molecular dynamics formalism [13]. Here the classical equations
of motion are used to describe individual interacting nucleons and both Pauli
blocking and mean field effects are included in Monte Carlo simulations.

The above calculations, based on general kinetic equations, are per-
formed on the microscopic level. Due to numerical and computer time
difficulties they are frequently not able to answer detailed questions con-
cerning the dynamics of heavy-ion nuclear collisions and the production of
heavy fragments. In particular they have difficulties in describing periph-
eral collisions, whereas simpler phenomenological models appear to be quite
successful in explaining some of these aspects [14-18]. Most of the latter
models are based on the Randrup assumption that in a heavy ion collision
the energy dissipation proceeds mainly through stochastic transfer of nucle-
ons [14]. In the model of Tassan-Got and Stéphan [15] the random transfer
of nucleons is influenced by the Coulomb barrier between colliding nuclei
and by corresponding densities of states. In the models of Harvey [16] and
Cole {17] use is made of the observation that yield of fragments at collision
energies higher than about 10 MeV /u is influenced by individual nucleon-
nucleon collisions. These collisions are responsible for stochastic transfer
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of nucleons between colliding nuclei. The “event generator” of Durand [18]

is based on experimental findings known in the intermediate energy range.

A geometrical limit picture corresponding to a straight trajectory for the

incoming particle, and a simple nucleon-nucleon cascade model are used
to estimate the number of nucleons randomly transferred between colliding
nuclei and nucleons emitted as preequilibrium particles.

In the present work we present a model which allows to calculate the
mass, energy, and angular distributions of emitted particles in a consistent
way. Our work was inspired by that of Cole [17] who proposed a model for
peripheral heavy ion reactions based on two main postulates:

i) The mechanism is mediated by the number of nucleon-nucleon collisions
taking place along the trajectory describing the relative motion of pro-
jectile and target.

1) The deflection of the projectile-like fragment is produced in part by the
potential acting between the ions and in part by recoil effects due to the
mass exchange.

With these two assumptions the model of Refs [17] and [19] predicts
mass distributions and also angular distributions of projectile-like fragments
(PLF’s). Concerning the energy spectra, only the mean energy of the frag-
ment as a function of laboratory angle is calculated.

In the present work the following modifications were made. It is as-
sumed that the reaction is described by a number of random walk processes,
undefined as yet, which determine the mass and momentum transfer. The
processes are not necessarily limited to N — N collisions. The assumption
remains that these processes can be considered as statistically independent.
In this model random walk in the mass transfer as well as in three dimen-
sions of the momentum transfer is taken into account. In Refs [17, 19] the
random walk was limited to the mass transfer only, while the momentum
transfer was treated in an average way. Because of extension to the momen-
tum space we are able to calculate both the energy and angular distributions
in a self consistent way.

Assuming that the reaction occurs at a point of closest approach it is
also possible to determine the final relative angular momentum and spins
of fragments in the exit channel.

Another refinement of the present model is inclusion of the secondary
sequential emission. It is known experimentally that the primary PLF’s can
be excited and undergo sequential binary decay, SBD [20]. This secondary
evaporation has to be included if one wants to compare predictions of the
model to experimental data. A short and preliminary presentation of our
model was given elsewhere [2].
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2. Description of the model

The model assumes the following reaction picture. A projectile with an
initial mass number Ap, momentum Kp and spin zero is moving along a
classical trajectory given by the impact parameter, and the nucleus-nucleus
potential. When ions are close enough to feel a nuclear interaction, processes
occur which modify the potential and the linear and angular momentum,
according to the nucleon and momentum exchange. Next, the projectile-like
fragment with a final mass number AppF, and spin Sppr is moving along
a trajectory given by new exit channel parameters. The final momentum
of the PLF is I?pLF. For calculational purposes it is assumed that the
reaction parameters that determine the trajectories change at the distance
of closest approach, R?. If in addition one assumes that the reaction is
binary, the target-like fragment spin ST, and the final relative angular
momentum, ¥ 7 can be predicted in a straightforward way. The model does
not distinguish between protons and neutrons, therefore for simplicity, we
assume Zpyp = %APLF-

In order to describe the exit reaction channel, the probability for mass
and momentum transfer is calculated. The mass transfer is treated as a ran-
dom walk process occurring in the overlap region. The momentum transfer
is due to the potential interaction along the corresponding trajectory, and
due to random interactions taking place in the overlap region. A recoil due
to the mass transfer is taken into account. .

Let us consider a reaction for a given initial angular momentum I;.
The goal is to calculate the probability that the reaction will lead from
an initial state E,I?p, Ap to a final state I},Iz'pLF,ApLF. The entrance

trajectory plane is given by a location of the target nucleus and by the Kp
vector. Orientation of this plane in space depends on an azimuthal angle
. Due to the random walk process occurring in the overlap region the
final state IszF, Aprr will contain contributions from different entrance
channel trajectory planes (different angles ¢). By definition, the angle ¢ is
zero when entrance and exit channel trajectories are coplanar.

The total momentum transfer defined as

@ = KpLr - Kp, (1)
is a sum of two parts
@=0r+Qp. (2)

The random walk momentum transfer

Or=R3p- K}, (3)
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where K ?,, is the momentum at the end of the projectile trajectory, and
I?gLF is the momentum at the beginning of the PLF trajectory. Q p denotes
a momentum transfer induced by the potential interaction acting along the
entrance and the exit channel trajectories. For clarity all defined quantities
are shown in Fig. la.

A particular momentum transfer é R leading from an entrance channel
plane at an angle ¢ to a given final state I?pLF, ApLF, is labeled Q'R(ga).
For given I?p,Ap,l; and I?pLF,ApLF the final value of Qp is uniquely
determined by @ g(¢):

Qr = f(Qrn(p)). (4)
- - =
Q=RPLF'KP=QR+QP RPLF
= Rin out
QP=QP+QP .K% 6R _ _ @v
: ]
2 KpLr _ 7 ;:oq\;’
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Fig. 1. a) Vectors describing the input and output reaction channels. b) Schematic
view of the positive and negative deflection angle.
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The prescription for f(Qr(¢)) contains a numerical calculation of the en-
trance and exit channel trajectories with an interaction taken as a sum of
the Coulomb and the proximity potential [21].

According to Egs (1)-(4), the final momentum KpLr of the projectile-
like fragment is

Kprr = Qrly) + f(Qr(p)) + Kp. (5)

The energy and angular distributions are given by a probability that the ran-
dom walk momentum transfer will have a value and direction corresponding
to Qr(y). The probability has to be integrated over all possible values of ¢.

2.1. The random walk mass and momentum transfer

According to the assumptions outlined in the introduction the reaction
contains a number of random walk steps leading to the mass and momen-
tum transfer. As in [17] we define P to be a probability for a one nucleon
pick-up by the projectile, P~ a probability for a one nucleon stripping from
the projectile, and P° denotes a probability of a reaction step without the
mass transfer. In stripping the lost nucleon is not necessarily transferred to
the target nucleus but can be also emitted into the continuum (the preequi-
librium emission). We assume that

> pPr=1, (6)
A

where A = +,— or 0.

With each reaction step a momentum transfer § is associated. We re-
place a possible momentum transfer ¢’ which is a continuous quantity by
a sufficiently fine grid. Now vector §; is a one of all the possible momen-
tum transfers with a momentum transfer probability p’\(tj}). For every A,
Z.‘P/\(q'i) =1L

Let us consider a reaction for one given entrance angular momentum.
If 7 is an average number of steps, we can define the average number of
steps in a A direction as:

7t = PMm. (7)

The average number of processes associated with a transfer §; is
—_ —A A7 = —_ —
) = mpA (&) = nPpN(@) - (8)

Since the elementary interaction processes are treated as statisticall y in-
dependent the corresponding distributions of n?(nf‘ is the number of steps
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with a momentum transfer ¢; and with a direction ) are described by the
Poisson law:

Ay A (ﬁf‘)ng‘
Plnd) = exp(-m) T (9

Using a notation AA = Aprp — Ap, the total momentum and mass transfer
which take place during the reaction can be written as

Qr(y) = Z(n? +n; + 0, (10)
AA =) (nf —n]). (11)

With Eqgs (9)-(11) the probability density for a final state characterized by
Q@ and AA is given as

P,(AA,Q) = /dso l: PN [P0 [[P(RD)
all n k i
X 6p (-—én(%) + z:(n;F +n; + "?)é’i)
X 8 (AA - Z(n? - “5_)) J(Gr(p) | Q)] ,  (12)

where §p is the Dirac 4, 6 is the Kronecker §, and J denotes a Jacobian
for a transformation Cj r(p) — Q The summation is over all possible
combinations {n?} of the momentum a nd mass transfer. The products
contain all probabilities for each momentum transfer occurring in a certain
random walk. The §p and é operators pick out only those combinations
which lead to the random momentum transfer Cj r(%®), and to the net mass
transfer A A, respectively.
Using for the § functions the integral representations:

oo

1 : 2
o) = G / dze’d (13)
27

siclm) = 5= [ deei™ (14)

0
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expression (12) can be rewritten as

@
Py (AA, Q) = r )s/dga/dz/dt . e W
all n

.o —o(n ) i nt+n+0d)q
Xl}( " ur)H(e (710)')6 S
« it Ti(nf =n k)] e~ EQR(V)e—itAA 1 (T (o) | ). (15)

We now rearrange Eq. (15) and using @ = ) ; (ﬁ;F + 7, + 7)) obtain:

—+ei£¢7,-eit)n;“
Py, (A4, Q)_(2 )5/d<p/d:c/dt L =
all n J

(ﬁk ez:che—zt ( wa)n,
* l—kI (n ! H (nl ]
x e-ff@RMe-"“J(QRw) 19). (16)

After summation over all possible {n2} one finds that

PI‘.(AA,Q') (2 E /d(p/d:c/dtexp [ "+ tt+n e ‘t+ﬁ°)e““h]

xe EAR(P—AAJ (G o) | F).  (17)

Next, using (8) the sum over discrete vectors ¢ is converted to an integral
over dq

P (AA,Q) = (;T)s/dgo/df/dtexp [ﬁ/dé‘ P+p+(q*)e“
+PTp™(7)e™™ + P'p(q)) 77| e R(P)e A4 1 (G () | G).
(18)

This is the final result for the probability density . The transition from a
probability to reaction cross-section is straightforward. We obtain

d?o - whzmpm;/LzF@Epr)l/z
dNdE 2Epp?

Z [(2li + 1)Pli(AA) Q)] ’ (19)

i
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where m, E are the mass and lab energy of the projectile P and PLF,
respectively, g; is the reduced mass in the input channel and summation is
over all entrance angular momenta [;.

2.2. Relative angular momentum and spins

With the present model one can also obtain the relative angular mo-
mentum and spins. For simplicity we assume that the primary reaction is
binary, what in the considered energy region and for no central collisions is
not a bad approximation [22].

Let us consider a projectile and a target nucleus at the distance of
closest approach ﬁ?. Now, in the CM system, positions of the projectile,
the target nucleus, and the overlap region are given by the vectors #p, ¥,
and 7y, respectively,

- ATI}:?
= T8 20
P = Aot An (20)
ApR?
Fp = — P 21
T T Ap + Ar (21)

For 7y the center of the overlap region evaluated at the distance I_f? is used.
AT is the target nucleus mass number. After some straightforward algebra
one gets for spins of the PLF and TLF (target like fragment):

- - - AA

spLF = (7r — 7P) X (QR v Kf) (22)
- L. AA

STLF = (fr — 77) X ( Qr - yre Kj) (23)

The relative angular momentum is simply

Iy = B} x K}, (24)

where A 4 4 A
R =fpF 7 2T 7 (2T __LP . 25
P P A TArLr T(ATLF APLF) (25)

In formulas (22)-(24) QR and I_(')‘} are taken in the CM system.

For peripheral collisions where the size of the overlap region is small
localization of the reaction at a point 7, is a good approximation. The
situation becomes more complicated for smaller impact parameters where,
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in principle, mass transfer can take place anywhere in a large overlap re-
gion. Consequently, the magnitude and direction of the spins and angular
momentum are less certain. From inspection of Eqs (22)-(25) one may find
that the relative angular momentum, Iy, is the least sensitive to the transfer
location. The largest sensitivity is found for the spin of the lighter fragment.

In any case Eqs (22)—(24) provide average values only for § and I, f-
2.3. Model parameters

In order to use the final formula (18) one has to insert values for the
average number of reaction steps 7, and the probabilities P*, P~ (P? = 1—
Pt — P~). The momentum transfer distributions p*(g) (A = (+), (=), (0))
have to be also specified.

For sufficiently high collision energies, where the reaction cross section
is mainly determined by the average nucleon-nucleon cross section &y,
one can interpret 7(l;) as an average number of nucleon- nucleon collisions
taking place in the overlap region. A simple analytic formula for 7 was
given by Karol [23]. In his formalism the average number of nucleon-nucleon
collisions is obtained in the optical limit of the Glauber theory [24] as:

n=0NN / dz [/ P1P2dv] ) (26)

where the integral in square brackets represents the convolution of projectile
and target densities which in turn is integrated over the (supposed) stright
line trajectory in the beam direction z. For simplification Karol used an ap-
proximate Gaussian form for the projectile and target density distributions
(tail regions).

For impact parameters b = b(!;) corresponding to very peripheral colli-
sions one obtains:

2 afrap b?
n=7n‘C 0 0)—"—5exp| ———— 27
A= e oner(er(0) S e (- ) (21
where symbols ap, pp(0), and ap, pp(0) represent Gaussian shape density
distributions of the projectile and target, respectively. Numerical values
and more details are given in Ref. [23].
For smaller impact parameters we use a parameterization which takes
into account the Pauli blocking effects (see Ref. [19]):

dn db? ( —nﬁ)
= ex .
7 ok +d}

ONN

(28)
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Here the parameter x represents the amount of Pauli blocking. The two
parameterizations (26) and (27) are matched at an impact parameter where
the average number of interactions is one per trajectory.

The random walk momentum transfer associated with the nucleon trans-
fer reflects the internal motion of nucleons inside nuclei. It has a distribution
(') in which such complicated factors as the Pauli principle, the density of
states, etc. play also some role. Here we simulate p)‘(q" ) by a 3-dimensional
Gaussian distribution:

@)= e (I8 (29)

2
20

where q'r’o’\ is a center of the Gaussian taken in an appropriate coordinate
system. For instance in the LAB system

(=) _ Kb
9% = Ap '’ (30)
(- _ K§
QO - AT . (31)

For ogwe take values suggested by the Stokstad systematics [25].

In most cases the momentum transfer without the mass transfer (A =
0) is much smaller then the momentum transfer due to the mass transfer
(A = +,—). For simplicity we take for p°(§) a Dirac function centered at
the zero momentum.

The most difficult is to find proper values for the P*. In calculations
of Cole the P* are independent from the impact parameter. For Ap < Ap
he uses PT < P~ < PY. The above relation can be justified by noting that
at large impact parameters excitations due to inelastic scattering dominate
(A = 0). For large impact parameters Pt is smaller than P~ as is evi-
denced by a dominance of stripping over pick-up in asymmetric reactions
(Ap < Ar). Situation becomes more complicated at smaller impact pa-
rameters which are considered in this work. For smaller impact parameters
the overlap region of two nuclei increases together with a corresponding
phase space. Now both P+ and P~ should increase and the difference be-
tween them should be smaller. We adopted here the following prescription.
For peripheral collisions the values of P*, P~ were taken from Cole [19].
For less peripheral collisions Pt and P~ have been increased. Their values
were found in an error and trial procedure. The transition from large to
small values of P*, P~ was assumed to have a Fermi shape.

It should be pointed out that the average number of steps in the direc-
tion A, @*, (Eq. (7)) should be zero at large distances between the colliding
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nuclei. It is fulfilled by the fact that the average number of steps 7 goes to
zero at these distances (see Eq. (27)).

2.4. Some results for primary fragments lighter than projectile

In order to simplify formula (18) which includes the 8-fold integral one
can notice that usually a momentum transfer perpendicular to the entrance
channel plane is relatively small compared to the total transfer. Therefore,
only a small range of angles ¢ contribute. Consequently, one can use a single
plane approximation. Instead of integrating over ¢ we add contributions
from two trajectories only, corresponding to positive and negative deflections
(¢ = 0°,180°, see Fig. 1b). In such an approximation Eqs (18) and (19)
can be rewritten as:

--n ¢=180°
P (AA, 0) = /d:c/dtexp /dq P+ pT (7 Jeit

+PTpT(F)e T+ P°p°(q-'))effq*] et 47(Gp(p) | §), (32)

10g _ E 120
;L7 M‘A\.\ 10 | 7.5° f-
- % F ¢
Ry ’/ [ ) ; 1 b ;',‘o.v [
10 g— l‘.ﬂ ‘S -1 E / /'O
— E g :
?o ,.‘ 1 — 10 ~ * ]
= 15° F 15°
2,1 1 L %
£ e~ 7 0
IR A I e
%110 - /".o ', 10 — o.ﬂ.
% [ ®» 1 \ s 7 .
o . E o
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10 F . 10 F
3 T e, 3 ()
2f * ‘e 2f e "v
10 F e .\ 10 ¢ N
E o 4N
o q \ [ ]
\l &.

0 T 2000 0 200

Energy (MeV)
Fig. 2. Energy spectra (solid points) of B and C, and O ions from the reaction N
+ Tb. The lines are the random walk model calculations without (solid line) and
with (broken line) secondary evaporation included.
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Fig. 3. The angular momentum partition of the cross-section calculated for the B
and C ejectiles (N + Tb).
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Fig. 4. The P*, P~ probabilities as a function of the distance of the closest ap-
proach for the N 4+ Tb reaction.

Next we can assume a Gaussian for p*(§) and a §p function for A = 0 and
the integral over ¢ can be analytically calculated. Also the integral over ¢



1614 Z. SOSIN ET AL.

can be carried out (see Gradshteyn and Ryzhik, formula (3.937) [26]). In
this way Eq. (32) can be reduced to the 2-fold integral. In Eq. (33), ¢
denotes an angle between the beam direction and the ejectile velocity.

For the purpose of testing our model we have selected the reaction
14N 4159 Th at 309 MeV. Experimental data were taken from [2]. Fig. 2
presents energy spectra of 1°B and 2C ions at laboratory angles of 7.5°, 15°
and 30° calculated from the model (solid line) together with experimental
points. Fig. 3 shows the corresponding values of d®o/(df2dl). The strong
variation as a function of L for 12C is due to the contribution of positive
and negative deflection angles. For the present calculation, we have a{," =

g, = 54 MeV/c from the Stokstad systematics [25]. For k the value of
0.565 suggested by Cole was used [19]. The P*, P~ angular momentum
dependence is presented in Fig. 4. As one can see from Fig. 2 the model
describes energy distributions of fragments reasonably well. In particular a
characteristic transition from the quasi elastic scattering at 7.5° to the deep
inelastic scattering at 35° is properly reproduced. It should be pointed out
that not only shapes but also the magnitude of cross sections is reproduced.
Note, that the model does not include any normalization factor because the
total calculated reaction cross section (og) depends only on the number of
the nucleon-nucleon collisions. On the other hand Pt, P~ decide how op
is partioned over the different exit channels.

2.5. Excitation of fragments

As it was mentioned in Section 1 primary PLF’s can be excited and
undergo sequential binary decays. Energy partition between fragments in
heavy ion induced binary reactions was studied experimentally with a gen-
eral conclusion that energy goes to where the mass floes [26]. However one
has to remember that a multiple exchange of nucleons may take place in
two directions, and both PLF and TLF may be excited. Nevertheless one
expects larger excitation energies for PLF’s which are heavier than the pro-
jectile, and wvice versa. Therefore sequential decay will be more important
for heavier fragments. Indeed, the agreement sofar was for predictions of
the model without excitation energy of the PLF and without secondary
evaporation. However the different cross section of oxygen ions measured
in the same reaction are very much overestimated by the model predictions
for primary ejectiles (Fig. 5, the solid line). In the following we take this
into account.

In our reaction picture a projectile and a target nucleus move along a
classical trajectory and exchange some number of nucleons in the overlap
region. The net mass transferred in the collision is:

Am = Amt) — Am(7), (34)
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Fig. 5. Energy spectrum of oxygen ions (experimental points),with the random
walk model prediction for primary reaction (solid line).

where Am({t)and Am(=) is the mass of a group of nucleons acquired by
the projectile, and of a group of nucleons lost by the projectile, respectively.
The resulting PLF, and TLF have excitation energy Epf;p and Eq;p »
respectively.

The excitation energy is generated by a dissipation of the kinetic energy
and binding energy of captured nucleons. The ansatz for the calculation of
the excitation energy partition is similar as in Ref. [28] i.e. the stripped
nucleons are assumed to be at rest with respect to the donor nucleus.

According to these assumptions the excitation energy is given as:

L (mea) (@) (R+da)
Eprp = 2(mp — Am(-)) 2mp  2(mp + Am)
(233

~ 2(mgp — Am(H))

+ AVFLF 1 QFLF . (35)

Here mp and mq denotes the mass of the projectile and target, respec-
tively, and Q; and Qp are the momentum transfers due to mass transfers
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Am(Hand Am(_), respectively. The Q-value QE&‘F is:

wF = c(mr + mpr — mp — mpLy), (36)

where m_y, is the mass of the projectile after a loss of Am(~), and mqv, is

P
the mass of the target nucleus after a loss of Am(*t), Similarly AVFLF s a
difference of the potential in the entrance and exit channel of a “reaction”

defined by (35) (see also Ref. [28]).

For the target-like fragment one obtains similarly

(73) _ (R5-dn)

() 2
Efrr = T Qg)) +
TLF = 2(mp — Am(+)) 2mp 2(mp — Am)

(I(}’, + Q% )
AVTLF TLF. 37
2(mp ~ Am()) + * Qo (37)

With a similar meaning for AVTLF and Qg‘g‘F, thus

QTLF =c (mp +mp —my — mTLF) . (38)
Here QF&‘F + Qg‘g‘F = Qoo is a ground state to ground state reaction Q-
value. For the overall change of the potential between the entrance and the
exit channel AV = AVPLF L AVTLF must hold.

We would like to point out that instead of Eqs (35)—(38) one could try to
use a different ansatz, for example one that also allows for a hole excitation
of the stripped nucleus.

Due to the random walk character of the reaction mechanism the excita-
tion energies Ep; p and Eq;  are given by probability density distributions
that are related to the probability dlstnbutions for Am(*), Am(~), and
probability density distributions for Q(+) C? 7.

In the following we use AAT to mdlcate the number of nucleons as-
sociated with the transferred mass Am%. The net exchanged number of
nucleons is:

AA=AATD) 4 A4, (39)
and net transferred momentum is:
Gr=0% +d%). (40)

From Eq. (35) it is seen that Ej; » depends on Or, égz+)’ and AA, each
depending also on the impact parameter and a related angular momentum
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l;. However, only the net transfer, d r and A A, can be observed. Therefore,

we need to integrate over all contributions Q'g) and AA(M) and finally to
sum over ;.

We proceed by first integrating over Q'(RH. The excitation energy of the
PLF is then given by the probability density distribution

Eprp(Gr, AAD, AL) = / &g [P(Q'S?’ | Gr, AA), AA)
X EﬁLF(Q'R,Q';"), AAD), AA)] , (41)

where P(Q&“ | Ogr, AAM), A A) denotes a conditional probability density

with a requirement that (j r, AAM) and AA are kept fixed. Next we sum
over all possible values of AA(*), obtaining the final expression

Eprr(Qr,84) = > P(AAY) | Gr, AA)E*(Qr, AAM), A4)
AAL)

= % (Paa® dnan) 20 [P@
Aald)
x Gr, AA), AA)E*(Qr, 04, A4, AA)D (42)

What remains to be calculated are the conditional density distributions

P(Q(+) | Gr,AAH), AA) and P(Q(+) | Gr,AA). Because of (38) and
(39) we may write

P(Q | Qr 84D, 04) o PR | AAD)P(QR) | 24)),  (43)
and utilizing Eqs. (28), (38), and (39) we obtain

—(ng+) _ AA(-!-)%(*"))Z
2(AA(+)(09)?)

PG | Gr, AA) ALY x exp [

(QR Q(+) + (A4 - AA(-}-))-'( ))
2AAA)(o0)?)

X exp (44)

For P(QSH | Or, AA) we write (see e.g. [29]):

P(AAY) | G, A4) x P(AAM),GR, A4)
= P(AAD) | AAP(Gr | AAY),A4). (45)



1618 Z. SOSIN ET AL.

Here

P(AAT)P(AA))

P(AAD) | AA) = , 46
A A = e PAATP(B AT (#9)
where P denotes a Poisson distribution
—{4) AA(H
() = exp(—AA B4 )77
P(AA')) =exp(—AA" ) BAT (47)
and
A4 —ap) (48)
The last factor in formula (44) can be expressed as:
P(Qr|AA™),A4) =
[ P@ 1 249P((@r - 0F) | (84 - 844))a0Y)
- _ 2
1 (QR+ AA(-)Q'O( )+AA(+)Q'0(+))
= —-———-—(2152)3/2 exp 237 ,  (49)
where
$2 = (AA(‘) + AA(+)) (0)?. (50)

Using the probabilities given by Eqs (43)-(49) the excitation energy of the
PLF can now be evaluated from Eq. (42).

The excitation energy of the targetlike fragment can be calculated in the
same way but it is more convenient to make use of the energy conservation:

=0 2 =9 2 - 2 — 2
P I M o B G P

2.6. The deezcitation process

Following the philosophy explained in the introduction we divide the
reaction process into two steps. In the first step, the mass and the excitation
energy of primary fragments, PLF and TLF is calculated according to the
random walk mechanism, in the second step the excited fragments undergo
deexcitation.

We describe the deexcitation of primary fragments as a statistical, bi-
nary decay of an equilibrated system [30], [31]. Starting from an excited
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primary fragment with an excitation energy E*, and angular momentum J,
a Monte Carlo program selects consecutive partitionings along the evapo-
ration path. A probability for a given binary splitting into nuclei labeled ¢
and j is written as [32]:

exp 2\/a(E* - E;ZP - Eg - E:it - 2T)]
' (52)
exp (2\/aE*) ’

Psplit o

where Esizp is the ground state separation energy into i and j. Eg is the
mutual Coulomb barrier and T = y/E*/a is the temperature with the level
density parameter a = %— /MeV. The rotational energy is defined by

B, = 3 [3M:R} + EMGR] + pij(Ri + R;)7]. (53)
The scission configuration is assumed to be that of two touching spheres
rotating about their center of mass with angular velocity w given by the
parent spin J and its moment of inertia, t.e. w = J/(%MR2), and p;; is the
reduced mass of the system i-5. The initial angular momentum J is calcu-
lated assuming that the mass transfer must occur in the overlap region (see
Section 2.2). The total kinetic energy is randomized after each partition
according to the method of Moretto [32] in order to simulate the CM en-
ergy distribution of fission (evaporation) fragments. In the randomization
process energy is conserved on the average.

Our calculation is of the “spin-off” type, because all fragments are emit-
ted in the plane perpendicular to the initial angular momentum which, in
turn, is taken to be uniformly oriented in the plane perpendicular to the
beam direction. It should be emphasized that this “spin-off” approach rep-
resents a major simplification compared to a Hauser—~Feshbach calculation,
HF, and is invoked to avoid the considerable complexity inherent in the
H F model for emission of intermediate-mass fragments.

This evaporation model is also an “equal-temperature” one, insofar that
the available thermal energy is shared between the products in ratio of
their masses, which seems a reasonable approximation for compound nucleus
emission. In the case of “clementary” ejectiles (4 < 5) all the thermal
energy was assigned to the heavier partner.

The computer code FASTIMF combines calculations of the primary and
of the secondary (post evaporation) event data. The calculated values are
without any normalizing factor.
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2.7. Some results for fragments heavier than projectile

The importance of the secondary evaporation of ejectiles and their sub-
sequent decay can be deduced from Figs 2 and 5.

As shown in Fig. 2 the random walk model predictions for primary
events agree well with energy distributions of boron and carbon ejectiles
(solid lines). Inclusion of secondary evaporation (broken lines) has very
little effect. The situation is different for oxygen, an ejectile which is heavier
than the projectile.

F OXYGEN Total
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Fig. 6. Energy spectrum of oxygen ions (from N +Tb), calculated from the random
walk model with the secondary evaporation included (solid line). Contribution of
different primary ejectiles (Z = 8 — 11) is also presented. Experimental data are
given by black dots.

In Fig. 5 the calculated spectrum of the primary oxygen at ¥ = 35°
is shown (solid line) together with experimental points. With the excep-
tion of the quasielastic region the random walk model (no excitation and
deexcitation included) overestimates experimental data up to two orders of
magnitude. Inclusion of the excitation and deexcitation effects provides a
reasonable agreement with experiment Fig. 6 (thick solid line). Different
lines in Fig.6 represent contributions of various parent fragments to the
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oxygen yield. In particular fluorine (Z = 9) and neon (Z = 10) contribute,
whereas the primary oxygen contributes little due to the secondary evapo-
ration.

3. Summary and conclusions

We have presented a model for the nucleus-nucleus collisions, at energies
larger then 10 MeV /u, where both mean field effects and individual nucleon-
nucleon interactions have to be included. The main ingredient in the model
is a random walk process in the dimensions of mass and momentum. The
model predicts absolute values of cross sections for various ejectiles. It
allows to calculate dissipation of an initial angular momentum into the
spins of the projectile- and the target-like fragments, and orientation of the
spins. The model permits quite arbitrary forms for functions describing the
momentum and mass transfer, p*(§ ) and P*(l;), opening a way for studying
the dependence on the initial energy and the geometrical factors of these
reactions. By treating explicitly the nucleus-nucleus interaction, as it is done
here, it is possible that for the same impact parameter different trajectories
may evolve, e.g. the positive and the negative angle scattering. As the
model is analytical also very small cross sections can easily be calculated.
A Monte Carlo version of the model which treats neutrons and protons
separately is being prepared. It can be used as an event generator.

Treating a nucleus-nucleus collision as a number of independent steps
one obtains the excitation probability of fragments as a function of the
amount of the transferred mass and momentum in both directions. The
final result depends on the average number of reaction steps 7i, the stripping,
pick-up, and inelastic scattering probabilities P*, and on the momentum
transfer distributions p*(¢’). It is assumed that the excitation is generated
by dissipation of the kinetic energy and of the binding energy of the captured
nucleons.

When the excitation energy of primary products is sufficiently high it
leads to evaporation of particles. This second reaction step, simulated by a
Monte Carlo code is treated as a sequential evaporation from equilibrated
primary fragments. The change of mass and the corresponding recoil effects
are calculated step by step along the evaporation chain. For a given ejectile
mass the final energy distributions contain important (and in the deep in-
elastic region dominating) contributions from heavier primary event decays,
whereas the primary contribution is strongly reduced by evaporation.

The model has been tested by comparing its predictions with experi-
mental energy, angular, and elemental distributions in the reactions:
14N 4159 Th/mat Ag /2t Cy, at 22 MeV/u [2].

As the primary binary reaction and the deexcitation stage are treated
independently, different deexcitation scenarios may be included in the model.
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In particular the deexcitation process of TLF can be taken into account as
well as different modes of deexcitation as e.g. the statistical multifragmen-
tation [33].
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