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1. The screening theorem

Long ago it was shown that Yang-Mills theories with massive vector
bosons, but without a Higgs, are one loop “renormalizable” [1]. The quotes
are put because, certainly at that time when no good regularization scheme
was available, renormalizability was not an easy thing to establish. In the
paper quoted what was meant was that the divergencies encountered up to
one loop were as in a renormalizable theory:

self-energies at most quadratically divergent;
three-point functions at most linearly divergent;
four-point functions at most logarithmically divergent;
no divergencies in five- or higher point functions.

Of course, the strict definition of renormalizability is that the divergencies
can be absorbed in the available constants. Thus, the divergencies must
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satisfy the same relations as the constants in the Lagrangian, that is the
divergencies must satisfy certain relations as required by the gauge symme-
try of the theory. The four-point divergencies of the Higgs-less theory do
not satisfy that criterion, but the self-energy divergencies can be absorbed
in mass and wave function renormalization.

Consider now a truly renormalizable Yang-Mills theory with Higgs. The
case mentioned above, no Higgs, can presumably be derived by taking the
limit m — oo, where m is the Higgs mass. It follows that at one loop in
this limit:

2-point function behaves as m?;

3-point function behaves as m;

4-point function behaves as Inm.

If we are to detect the Higgs from radiative corrections then we must
find a correction that behaves at least as m? (like for instance the radiative
correction due to a heavy top-quark). Else it will be too small and too
insensitive to the Higgs mass to be useful as a tool for establishing that
Higgs mass. From the above we see that such a correction must be sought
in self-energy diagrams. These Higgs mass dependent terms are however
precisely as terms that can be absorbed in the vector boson masses. Such
“renormalizable” terms are then observable only if not all masses are free
parameters. Thus the only way to have an observable m? type radiative
correction is a relationship between the vector boson masses, which then
could be broken by these m? radiative corrections.

Is there such a relation between masses in the Standard Model? There
is, but only if we restrict ourselves to the simplest Higgs system, the complex

doublet Higgs. Then
2

=2
¢t M;

In here M and M, are the charged and neutral vector boson masses, and
¢ = cos Oy, with 0y the weak mixing angle. Thus there could be terms of
the form:

p =14 0(g?).

2
p= 1+aog2—l%+...

As it happens, sadly, the coefficient ag turns out to be zero [2]. The con-
clusion is that up to one loop, in the Standard Model with a doublet Higgs,
the only observable radiative corrections that grow with the Higgs mass are
logarithmic. This is what has become known as the “screening theorem”.

Another conclusion is that in models where p is not necessarily fixed
(more complicated Higgs sector containing other than Higgs doublets) this p
parameter will probably receive large corrections proportional to m?. That
depends on the model, it is not a well investigated subject. It makes it all
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the more unlikely that p = 1 by accident; the experimental observation that
p = 14(Top-correction) therefore strongly suggests that there are Higgs
doublets only.

What happens if m > 1 TeV? Radiative corrections are still small,
being logarithmic. Remarkably, tree amplitudes for WW scattering can
show strong effects, but that will not be discussed here. See [3] for our view
on the subject.

2. Symmetries of the Higgs system

It seems therefore to be opportune to investigate the symmetries of the
doublet Higgs system, also known as the linear o-model. This is the one
that is commonly used in the Standard Model. The Lagrangian of the linear
o-model is:

__1 N2_H 2 A 2
L= 2(%%) G 8(99.),

with real fields ¢;, ¢ = 1...4. This Lagrangian is obviously invariant for
rotations in four-dimensional real space, O(4):

@i = O0ijp;, with 071= 0.

The symmetry O(4) is a six-parameter symmetry, as may be seen easily.
Usually one writes o for 4. Then O(4) is like O(3) and a (real) “Lorentz-
transformation”:

i = pi t € djer
c—o.
We are considering here infinitesimal transformations with infinitesimal A.
The above is the O(3) part, much like isospin. The other part:
pi = pi— 0 4;

o— o+ pid;.

The O(3) part is like the ordinary three-dimensional rotations, and in fact
that is known under the name of isospin. Under the isospin transformations
the ¢; behave as an isospin triplet. Written this way the o-model can be
used as an effective model describing the pions and their interactions, with
the o some resonance way up. That has received considerable attention,
and has met with certain successes. The “Equivalence theorem” relates
longitudinal vector bosons to the ¢; of the Higgs sector; this suggests a
similarity between longitudinal vector boson scattering and pion scattering,
because also the latter is reasonably well described by a o-model. How
useful this line of reasoning is remains to be seen. See Ref. [3].
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There are two alternative ways of writing the linear o-model. The
symmetry remains of course the same, but in these other notations other
symmetries, part of O(4), become manifest. Here the second way of writing
the o-model, in a way that makes it more directly applicable as Higgs sector
of the Standard Model, as it exhibits explicitly the necessary SU(2)xU(1)
symmetry:

2
L=-8,K'0,K - uKK' - 1A (KK*) :

K:-l—( 7 +ips )
V2 \—p2tip1)

This is manifestly SU(2) invariant:
K — K - iAFTK.

with

In here the 7; are the Pauli spin matrices. This transformation of K cor-
responds to a certain transformation of ¢ and o. The corresponding trans-
formation is:

o— 0o+ %Af’gai )
pi— pit 3 (—011{“ + éijkdfsok) .

This corresponds to the O(4) transformation with A4; = A; = :}Af’ The
U(1) symmetry for which the Lagrangian in the K-form is invariant:

K — e—iAOK.

This corresponds to Az = —A3 = —A°.
There is a third way to write the o-model Lagrangian that exhibits
explicitly other symmetries. Define the 2 X 2 matrix &:

S = (.a+up3 up1+.<p2) =070 +ip;rl.
1 — P2 0 — i3

Here 70 is the 2 X 2 unit matrix. The ¢ model Lagrangian can be written
in terms of &: ‘

L= —% T (8,910,8) - £ [%’I‘r (45*4%)] - -;\- B— Tr (45*@)]2 .
Now the obvious invariances are:

¢ - GP G = exp (-—%Af"r")
& — dH! H = exp (—%Af‘ri) .
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We could of course have used H instead of H', but this is more convenient.
G and H are called SU(2)z, and SU(2)g. With infinitesimal AL and AF:

c— o+ -;— ((,aidf' - (piA,B)
. Lo (AL — ARY 4+ 1c... (AL + AR
$i = pi— 30 i i ) T 2€ijk i HA7)
From this we find the relation to the O(4) symmetry:
3 (aF +4F)
1 (aF - 4Ry,

A;
4;

From this we learn that transforming with equal AL and AF is the isospin
transformation discussed in the beginning. One often writes SU(2)y +
SU(2)g.

The latter way of writing the o-model exhibits the full six parame-
ter symmetry. It is also straightforward to identify part of that with the
SU(2)xU(1) symmetry required for the Standard Model, and therefore it is
probably the best way of writing this model.

In coupling the vector bosons to the o-model one may actually accom-
modate 6 vector bosons, three with each SU(2). For the moment we will not
yet argue which of these are to be the vector bosons of weak interactions
and the photon, but just take the six of them and see what happens. Thus
we assume the existence of 6 vector bosons:

L a=1,2,3 left SU(2) bosons
R; a=1,2,3 right SU(2) bosons.

Define the 2 X 2 matrices £, and r,:

l,,:-—% ore r,,:-% are.
Now the actual coupling of these vector bosons to the o and ¢ of the o-
model. This is achieved by replacing 3, % by D, &:

8,8 - D, $=0,8+gl,%—g'dr,.

Remember, €, £ and r are all 2 x 2 matrices. The coupling constants g and
g' may be chosen independently. With this substitution the global (i.e. with
space-time independent parameters A) SU(2) XSU(2)gr symmetry becomes
a local (with space-time dependent A) symmetry under which also the L
and R transform, in fact as ordinary triplets much like the pions. Actually,
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under the isospin transformation (with equal AL and AR) the R and L each
behave indeed as a triplet. It is worthwhile to keep an eye on that symmetry;
if it would survive there would be isospin symmetry and the vector bosons in
a given triplet would all have the same mass. This indeed happens, except
that, as we will see, electromagnetism breaks this symmetry. The masses
will not be equal but there remains a relation, which is precisely what we
want to understand.

3. Vector boson masses

So, rather then going in all kinds of details we will simply find the mass
matrix for this model. The & field develops a vacuum expectation value,
and applying the available symmetry this vacuum expectation value can be
put in diagonal form. We may write:

¢o=fo(z (1))

Any constant matrix can be transformed into this by some well chosen G
and H transformation. The relevant term in the Lagrangian is the term
containing D, ®. Inserting this constant &:

Dy&o = —3fo (9L5 - g'RE)T°,
and the vector boson mass term is:
Ly =-3Tx (D,8}D, %)
= ~1f2% (cLg - sR2)? .

We introduced the weak mixing angle, writing ¢’ = g2, with s = sinfy and
¢ = cosfy,. There are three terms in this Lagrangian (a = 1,2,3). Thus
three vector bosons can get a mass. We now identify the three massive
bosons of the weak interactions and the photon with the L and R. Since
there are six L and R two must be absent. We assume R! and R? to be
non-existent. That will ruin the SU(2)g symmetry, but that cannot be
helped. The SU(2); symmetry remains, as must be in order to keep the
weak Lagrangian SU(2)xU(1) invariant. We identify:

wi? = [1:2 with W* = % (W} xiw}?)
Z) =W} =cL} - sR3.
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With this: .
Ly = -M*WSW, - 1M (Z))" .

There is a fourth combination, orthogonal to the Zy, namely 4, = sL3 +
cR3. This field, not occurring in the mass term, has no mass, and we
identify it with the photon. Given that there are four vector bosons, at
least one must remain massless with this Lagrangian, because the mass
term accommodates only three vector bosons. It is a prediction of this
particular Higgs sector that there is one massless vector boson, as indeed
observed. That is a strong point in favour of this o-model Higgs sector.
Moreover, the three masses are not independent. In the limit that ¢' = 0,
i.e.c =1 and s = 0, the Z° mass becomes the same as the W mass. If ¢’ is
zero then we never note the non-existence of R! and R? and the o model
keeps its global SU(2)g. Since SU(2) is not only a global but even a local
symmetry we have global SU(2)z and SU(2)g symmetry. Therefore isospin
(global SU(2)r, + SU(2)Rr) holds, the three vector bosons form an isospin
multiplet and their masses are equal. This global symmetry is often called
the custodial symmetry, a particularly bad name. If g' # 0 (sinfy # 0)
then the isospin symmetry disappears. As luck has it a relation between
the vector boson masses remains, namely

2
Mon/czM(1+%';i) y

which makes the p-parameter equal to one. It is often stated that the
custodial symmetry forces

M2

= —= ]
2 9
2 M¢

P

but the correct statement is that this symmetry gives My = M + O(8y),
not involving a coupling constant.

Anyway, here we have a mass relation, and there could have been radia-
tive corrections to this proportional to the square of the Higgs mass m, but
as it happens they are not there. Altogether the model so far fits wonder-
fully with experiment: not only is the p-parameter found to be very close
to one, but moreover the deviation from one can be understood as a radia-
tive correction involving a top quark. This latter correction is proportional
to the top mass squared [4]. There is no visible large Higgs correction, in
accordance with the screening theorem.
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4. Other Higgs systems

What happens if a more complicated Higgs sector is used? First, using
anything else but the o-model type Higgs Lagrangians, i.e. SU(2) doublets
(we refer here to the K notation), destroys immediately the mass relation
that makes the p-parameter one in lowest order, with calculable (and indeed
observed) radiative corrections. But one could add more doublets, each of
which would give a contribution to the masses such that p remains one.
However, the other prediction, namely that there is one massless vector
boson, disappears. It must be forced. Let us elaborate on that for a moment.
Suppose two o-model Lagrangians, which we will examine using the K
notation. The first K field, K1, will have a vacuum expectation value that
can, by using the available symmetry, be put in the form

K&:(sg).

The vacuum value of the second K can a priori be anything. Less symmetry
is now available to transform it to some preferred form, because we must
keep K] to the form chosen. The result will be

Kg=(g).

In words, the two vacuumn expectation values are not necessarily aligned.
They would be aligned if b were zero, which is in general not the case. The
vector boson mass matrix is then:

M2 0 0 a1
0 M2 0 az
0 0 M2 as ’

a1 an as M'2
with
a1 = 399’ (ab* + a*b)
az = igg'(ab* — a*b)

as

M2

M =

57M2 — gg'bb*

%gz (aa® + bb* — 33)
!

g

r M

The eigenvalue equation for eigenvalues k£ corresponding to this matrix is:

2 242 2 g" 2 1277% 2
(M —n) K — kM 1+? +g°g “bb*sg| = 0.
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This has four non-zero solutions for x except when b = 0. The prediction
of zero photon mass disappears unless somehow b happens to be zero.

This may be understood also in a more general way. In the Higgs dou-
blet model there are four degrees of freedom (o and the three ¢). Since there
remains always at least one physical Higgs at most three can be reshuffled
to become longitudinal vector bosons and thus give mass to three vector
bosons. Thus if there are four vector bosons, one remains massless. How-
ever, if we add another Higgs doublet then there are six degrees of freedom
available. Something must then be done to keep the photon massless.

There are two cases when more than one Higgs doublet is needed.

— Peccei-Quinn [5] solution to the strong C P violation problem|6];

— Supersymmetry.

An additional problem is that if there is more than one Higgs multiplet
there is often an additional symmetry that will be broken spontaneously,
and then gives a zero mass physical Higgs particle. In the Peccei-Quinn case
that is called the axion. Despite considerable efforts nothing of the kind has
been seen.

The situation with respect to supersymmetry was investigated by Diaz-
Cruz and Mendez {7]. Their conclusions: the Higgs system will in general
generate a photon mass except for the minimal supersymmetric extension of
the Standard Model. However, even for this minimal SUSY-SM the problem
appears in the slepton-squark sector.

Nobody knows how to avoid these problems in a natural way. Thus, on
the basis of these arguments we propose: '

— Exit Peccei-Quinn mechanism and axions;

— Exit supersymmetry.

But this leaves us with a big problem: strong CP violation. To solve that
needs some really drastic measures.
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