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1 review a few issues on first order transitions. The motivation arises
from unexpected peculiarities encountered in numerical simulations of
rather common classical spin systems, and relative to the finite size be-
haviour of thermodynamical quantities such as the specific heat or higher
order energy cumulants. The g-states 2-d Potts model is discussed in
some details, in order to state the problems met as well as to propose
explanations and to remedy to their consequences in numerical simula-
tion analysis. Emphasis is put on the relationship between the finite size
behaviour of the partition function and that of the internal energy distri-
butions.

PACS numbers: 05.70. Fh

1. Introduction

Continuous transitions, mainly because of their universality properties
and of the contact with field theory which these allow, have attracted much
attention during the last two decades. First order transitions do not present
these appealing features. They are present however in nature, not only in
condensed matter physics, but also in the context of particle physics. In
particular, the problem of the nature of the deconfining or chiral symme-
try breaking transition expected in QCD is a still opened question, whose
answer is of interest for example within the context of primordial nucleo
synthesis after the Big-Bang.

Although this transition is definitely believed to be first order in the
case of pure gauge QCD, its nature is still controversial in the realistic case
of several light dynamical quarks. At least until now, no other method than
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numerical simulations has been proposed to solve the problem. Hence the
need for safe methods allowing to characterize the nature of phase transi-
tions by numerical means. Experimentation on simple classical spin systems
reveals to be fruitful, as it will be here illustrated on the case of the 2-d,
g-states Potts model.

These notes are organized as follows. Section 2 contains generalities on
classical spin systems, the description of their thermodynamical properties
from their partition functions and free energies, and the behaviour of the
latter in the event of a temperature driven phase transition. The third
section discusses the relationship between the free energy of a system, often
subject to analytical approaches, and the energy distributions which may
be provided by numerical simulations. Section 4 is specifically devoted to
the two-dimensional, ¢-states Potts model. Results of analytical as well as
numerical studies are presented and compared to each other. Conclusions
are drawn on safe ways to deal with finite size effects in numerical data
analysis.

Most of the material presented in these notes results from various works
made in collaboration with Bhattacharya, Billoire, and Lacaze.

2. Partition functions and free energies for classical spin systems.
Generalities

The typical problem we want to describe is that of a classical spin hamil-
tonian, where the spin variables o;, attached to the sites ¢ of a lattice, have
short range interactions. We will consider d-dimensional (hyper-)cubic lat-
tices, with L sites in each of the d directions; periodic boundary conditions
will be assumed. The number of sites V = L¢ is referred to as the volume.

To be specific, all illustrations of the concepts and properties will be
given for the case of the g-states Potts model. A useful review on this model
is that by Wu [1]. The Hamiltonian is:

HPotts =-=J E 50’,‘0,‘ y (2-1)
(i5)

where the summation extends over the d x V pairs (75) of nearest neighbour
sites. Each spin variable o; may take ¢ different values. A pair (ij) gives a
non vanishing contribution —J iff o; = ;. We restrict to the ferromagnetic
case J > 0 where the energy carried by a link (¢j), namely —J or 0, is
non positive. In what follows, J will be taken as the energy unit and will
disappear from all equations. The ground state of the system is manifestly ¢
times degenerate; it consists of the ¢ completely “ordered” states where the
spins take the same value on all sites. Hence in the zero temperature limit,
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the system is in either one of these ¢ states of total energy —dV. At high
enough temperature T = ™1, the entropy wins and the system becomes
“discordered”. In between, one expects a transition temperature T; = 3, 1
and we will focus on the properties attached to this temperature driven
phase transition, especially to its nature. Note that for ¢ = 2, the model is
the standard Ising model. Many g-dependent, properties of the Potts model
are exactly known in 2 dimensions (see below), which makes this case ideal

for experimenting methods and tools.
2.1. The partition functions

The basic object for studying the thermodynamical properties of a spin
system with Hamiltonian H is its partition function at temperature 81,
whose definition is

Zy(B) = Trlexp(-H)], (2.2)
where the trace extends over all possible states of the system. For a classical
system, any spin configuration C specified by the values of the o;’s over the
whole lattice assigns H a well defined value, the energy of the configuration,
which is extensive for short range interactions and noted V E¢. Conversely,
given E, there is in general a number 2y (E) of configurations which have
the same energy density E. So we can rewrite (2.2) either as

Zv(B) = > exp(-BVEq) , (2:3)

all configurations

or as

Zy =Y 2v(E) exp(~pVE). (24)
E

This latter form is the most suitable to our discussions. Note already that
N2y (FE) is independent of the temperature, which appears only in the Boltz-
mann factor.

Remark
Other external parameters can be introduced besides the temperature.
In particular, adding H a term of the form

R ai, (2.5)

allows to study the magnetic properties of the system by computing the
response of the system to the external magnetic field h. In particular, the
magnetization density

1
M=z zi:(ffi) , (2.6)
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where { ) denotes average over all states of the system, and the magnetic
susceptibility

_ 4

X=3h

can be deduced from the h dependence of the partition function in the
presence of (2.5) in H. The magnetization density M and the susceptibility
x play with respect to h the same role as E and the specific heat with
respect to 5. Hence field driven phase transitions can be studied through
the response of the system to h in a way very similar to what follows for T
driven transitions. We set h to zero in the rest of these notes.

M, (2.7)

2.2. Free energy. Energy cumulants. Thermodynamical limit

We define the finite volume free energy of the system in a box of vol-
ume V as

Fy () = —anv(ﬁ) (2-8)

Strictly speaking, the free energy is, if it exists, the thermodynamical limit
(that is the limit as L, the linear size of the box, goes to infinity) of

__Fv(B)
fv(B) = 3

Note that for finite V, Zy/(B8) is a finite sum of exponentials in 3; hence
Fy(B) is an analytic function of 8 for any real 8. It may not be so for its
thermodynamical limit (phase transition, see (2.3)).

It follows from Eqs (2.8) and (2.4) that differentiating Fy(3) with re-
spect to § yields

OFv(B)

(1)
BV==% ="z (ﬂ)

> E Qv(E) exp(-BVE). (2.9)

Equivalently, —F{,l )(ﬂ) = (E)v where (E)y, the internal energy density,
appears as the average of E with respect to the energy probability distri-

bution
v (E) exp(~BVE)
Zv(B)

Numerical simulations of a statistical physics system provide samples of
configurations distributed according to this weight [2].

The ntP derivative F(")(ﬂ) of the free energy with respect to 8 gen-
erates combinations of higher moments of the distribution Pgy(E), called

Pgv(E) = (2.10)



Topics on First Order Transitions 1641

ntPorder energy cumulants, and thus measurable in principle. For example,
the specific heat at fixed volume is defined by

o) =52 = -s %2,

and according to (2.9)-(2.10), is given by the familiar expressions

c(B) = BAFP(B) = VB? ((E?) - (E)?) . (2.11)

They relate the specific heat either to the energy fluctuations or to the
second derivative of the free energy. The index V in energy averages is
omitted for simplicity, but should not be forgotten. Because the energy
dispersion in the r.h.s. of (2.11) is non negative, we recover that the free
energy is a convex function of 3, wherever the 224 derivative exists, namely
always on a finite lattice and, in the thermodynamical limit, away from a
phase transition point; this is what we shall immediately discuss.

2.3. The free energy near a phase transition

A temperature driven phase transition is mathematically associated
with a singularity at 8, 0 < B¢ of the thermodynamical free energy

F(g) = Jim Fy(p). (2.12)

The standard classification of phase transitions is as follows

1% order transition: F(l)(ﬂ) has a discontinuity at 8 = f¢; the internal
energy jumps at 3, due to (2.9).

— 27 order transition: F(1) is continuous, but F(2) ~ 4 (B-B:)" %, that
is the specific heat diverges (for a > 0) at 3; (see the first of Eqs (2.11)).

— Continuous transition: F(™)(B) diverges at 8 = B, for some n > 2.

In a generic case, a singular point (3, is isolated. According to the
heuristic argument given at the beginning of this section, the Potts model
does have such a transition point (see Section 4 for details). It follows from
the above definition that the order of the limits 8 — B, and V — oo is
relevant to the study of a transition: one should take the thermodynamical
limit first, and then approach §; either from above (“low” temperature,
ordered, phase) or from below (“high” temperature, disordered, phase).

Because only the opposite situation can be realized in numerical simu-
lations (V is bound by limited computer resources; 8 can be varied in the
vicinity of a known or assumed transition point), the identification and the
study of a phase transition by such means requires careful analysis of both
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the § and V dependencies of measurable quantities, essentially the energy
distribution (2.10). Therefore, we need to explore the relationship between
free energies and energy distributions in a given situation. This is done in
the next section.

3. Energy distributions and free energies

Let us summarize the problematic at hand.

Analytical investigations of statistical models may often be performed
which lead to information on phase transitions. Standard methods are:
mean field theory, low or high temperature expansions, large N limits of
O(N) symmetric models, large ¢ expansions in the Potts model, Bethe
ansatz, conformal theories (in 2 dimensions), etc. They often provide exact
properties or approximations for the free energy

F(8) = Jim —1nZv(p), (3.1)

which may be singular at some g, value.
Conversely, numerical simulations give access to the energy density dis-
tributions,

2y (E) exp(-BVE)
Z(B) ’

Z Pﬁ’V(E) =1. (3.2)
E

Pg y(E) =

We are interested in answers to two questions.

Question 1: given a measurement of Pz v(E), with a given accuracy
associated with the size of the configuration sample generated by some
stochastic method, what do we learn on F(8)?

Question 2: assuming a phase transition occurs at 8 = 34, what should
be expected for the finite volume energy distributions?

3.1. Free energies from measured energy distributions
Suppose that one has measured Py v (E), the distribution at some g =

Bo in a volume V, and that we want to construct Zy(8). We start from
Eq. (2.4), which we rewrite as

Zv(B) = Y [2v(E) exp(~BoVE)] x exp (— (8 — fo) VE).

E
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It immediately follows from (3.2) that the above square bracket is nothing
but Pg, v (E) X Zy (Bo). So we have

Zy(B)
Zv (Bo)

which shows that up to a § independent factor Z;l (Bo) , Zy(B) is noth-
ing but the average of exp (— (8 — Bo) VE) with respect to the supposedly
known distribution. Using Eq. (3.3), we obtain an estimate of the free
energy as a function of 3, up to a V dependent constant, by

1 Zy(B) ]
Fy(B) — Fv (Bo) = ; log [ZV 5o}l
For fixed 8, away from any singularity, and measurements of Pg,y (E) for
“large enough” lattices, Eq. (3.4) should eventually approach the thermo-
dynamical limit. Here “large enough” means that the linear size L must
be substantially larger than the largest correlation length in the system at
temperature S71.

This method has been proposed in the last of Ref. [3] and used to
analyze the free energy of the g-states 2 dimensional Potts model from
numerical data obtained at g = (3, ¢ = 10 from Ref. [4]. In this case, the
exact knowledge of 8, [1]

=Y Paov(E)exp (~ (8~ o) VE), (3-3)
E

(3.4)

Bi(g) = log (1 + /7)

and the duality property (in the Potts model, the free energies of the ordered
and disordered phases are related to each other, see Section 4) allows to
even reach the ordered phase free energy F,(8) around §;. We extract from
Ref. [3] (where all details can be found) the results obtained for

Q(L) .B) - Fo(ﬂ) - Fo (,Bt) + Eo (ﬂ - ,Bt) ’ (3'5)

as a function of 3 for different L values. Here E, is the known [5] ordered
phase internal energy; due to (2.9) taken at 8 = B¢, (L, 3) has no linear
part at 8 = (3, in the infinite volume limit, and is thus suitable to illustrate
the shape of F,(B), and its approach to the thermodynamical limit. The
data for ¢ are shown on Figs 1(a) (L = 36 to 50) and 1(b) (L = 16 to 36).
Within the errors quoted, which reflect the statistical accuracy obtained in
the numerical simulation of the energy distributions, there is no finite size
effects visible for L>36, but they clearly show up below L = 36. These results
demonstrate the feasibility of an evaluation of the free energy by numerical
means, and of a study of the finite size effects for moderate lattice sizes
compared to the largest correlation length (known to be around 10 for this
case [6-8]).
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3.2. Energy distributions from given free energies

We now address the second question raised at the beginning of this
section.

We start with an even simpler problem: find Pg,v(E) for a given F(8),
assuming fg is not a singular point. Let F(B) be the thermodynamical
limit (3.1) for some model. If L is large enough with respect to the finite
correlation length £, it can be shown on very general grounds that the finite
V partition function associated with the model can be written

Zv(B) = exp(VF(B)) (1+ 0 (¢72/¢)) .

We neglect the exponential corrections, and so assume that the only L
dependence of Z is trivially due to the extensivity of the total free energy
V'F of the system. Due to Eqs (2.4) and (2.10), Pg,v(E) can be obtained
by inverse Laplace transform of (2.4), which we write for later convenience

Pg,v(E) =
B+ioo
N exp (VF (o)) /
f—ioco
N is a normalization factor ensuring Y 5 P(E) = 1. The value J is a real
value of A in the complex §-plane, suitably chosen in the vicinity of Gy in
order for the integration path to avoid any singular point of F(3). Strictly
speaking, since the energy values E in (2.4) are discrete (in the reference
model, they are of the form —k/V, k = 0,1,...,2V), the function Zy is
periodic in the imaginary direction, with period 2xi, and the integral (3.6)
should be truncated accordingly. This has no practical effect however for

our purpose.
We now evaluate (3.6) at large V' by the saddle point method. Let

Bs(E) be the solution in 8 of
FO@B)+E=0. (3.7)

Since d2F/dg@? is positive (Eq. (2.11)), F(!)(8) is monotonically increas-
ing and Eq. (3.7) has a unique solution if —F is chosen in the interval

[minﬁF(l),maxﬂF(l)] . The saddle point estimate of (3.6) is then
Pgov(E) =ND(E)exp(V F (5o))

i ~1/2
D(B) = | TP (6s(E))|

vdg

27

exp (V (F(B) - F (Bo) + E (B - Bo)) ) - (3.6)

x exp (V (F (Bs(E)) - F (Bo) + E (Bs(E) - ) , (3.8)
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and corrections can be systematically computed as a power expansionin1/V.
Although it is trivial, we would like to emphasize that only if F(f) is
quadratic is D(E) a (normalized) Gaussian in E for any Bo.
Furthermore of course (3.8) is exact in this case: no 1/V correction, the
transform of a Gaussian is a Gaussian. The Gaussian is centered at

E=—-FY (8y)
and its width o is given by
1
2 . (2
o F

where F(2) is a constant in fo.

In non academic cases, F is not quadratic. The (1/V') corrections to
(3.8) begin with the F(3) and F(4) derivatives being non zero.

More importantly, and this has been overlooked for a long time in nu-
merical data analysis, the leading order estimate (3.8) differs from a Gaus-
sian shape by two features

(i) the prefactor, proportional to [F(z) (Bs(E ))] T , is E-dependent,
(ii) the limit
1
p(E) = lim - log [Psov(E)]

= F(Bs(E)) + E (Bs(E) — fo) (3.9)

is a function of E as general as F(f3) can be, only restricted by general

analyticity and convexity properties.

In particular, although one may check, using (3.9) and (3.7), that the
maximum E of p(E) is correctly located at —F(1) (39), the thermodynam-
ical internal energy, it differs from the maximum Ema.x of the predicted
distribution (3.8) by corrections of order F(3)/V. This is a consequence of
(i). A corollary of (ii) is that there is no reason why p(E) should be sym-
metric around E, and this is not a finite size effect. These features will be
exemplified in Section 4 on the Potts model.

What remains true is that the infinite volume limit of any average

(4) = [ 4B AE)Pav(E), (3.10)

where A(E) is sufficiently regular, is
(Ay=A(E) .
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In other words, P(E) acts asymptotically in V as a § (E — E) distribution.
For F(B) analytic, the fluctuations are killed at infinite volume, as expressed
in Eq. (2.11) for the quadratic fluctuations: they vanish as F(2)(8)/V. A
Gaussian P(E) is nothing but the first correction to § (E — E) which in-
cludes the gquadratic fluctuations.

After this exercise, we examine what happens in the presence of a phase
transition at 8 = B, i.e. of a singularity of F(8) at this point, and focus
on the case where the transition is first order. We recall that it corresponds
to a discontinuity of the first derivative F(l)(ﬂ) at B;. The situation is
sketched in Fig. 2: F(B) is the maximum of two functions Fg(8), Fo(B).
Below B¢, F coincides with F; (disordered high temperature phase), above
it coincides with F, (any of the ordered low temperature phases). Hence for
V large enough, the energy distribution is given by a formula like (3.8) where
either F = Fj, at By fixed below 3, and a peak is present around E4 =

__F‘SI), or F = F, at By fixed above B;, and the peak appears around E, =

—Fgl) . Now the question is: how can one describe the finite V' crossover
between the two behaviours, in particular in the region |8 — B¢|V of order
one. Phenomenological analysis [9] and more recent rigorous results, valid
for a class of models which includes the g-states Potts model [10], have led
to the following prescription for the partition function in the vicinity of a

2.0

T 1 T T T T 1 T 1 i T
_ L -
n
= 15 - Fd -/
[t L =
3 L. -
;»:. - . -
- N -
o N
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-0 1 2 3

Fig. 2. First order transition F(8) versus £ (arbitrary units)
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1% order point: the full partition function Z(8) can be written

Zy(B) = Z Zi(B)[1 + O(exp(—AL))]

2:(6) = exp (VE(B)) , (3.11)

where A is a positive constant, and the sum extends to all phases i which
coexist at § = B, i.e. such that F;(8) = F (fB;) is independent of 7 at the
transition.

With the prescription (3.11), the corresponding energy distribution

B+ico

PovV) =N [ TL 2@ en(VE@-p)  (312)

B—ioo

can be investigated along the same lines as above. We neglect the expo-
nentially small correction in (3.11), the only true finite size effect in Zv(8),
and assume the functions F;(83) are sufficiently smooth around g8 = 3; to
allow for a saddle point integration.

Then Pgy(E) can be written as a normalized sum of contributions

Pgy(E) = NZ Zi(B)Di(E) (3.13)

with each D;(E) given by an expression similar to D(E) in (3.8) with F
replaced by F; and 8s(FE) by the solution of

FYB)+E=o0.
Suppose there are, as in the Potts model, ¢ ordered phases and one disor-

dered one. Then specializing (3.13) to B = B; where all the weights Z; are
equal by definition one obtains,

(3.14)

Fu(e) - 7 [2AEL 242

The new normalization factor N is 1 in the Gaussian approximation for D4
and D,. We thus expect, for such a first order transition at B;, an energy
distribution represented by an equal weight sum of more or less Gaussian
peaks. The example [4] of the ¢ = 10, 2 dimensional Potts model, is dis-
played in Fig. 3. The two peaks are clear, one is about ¢ = 10 times larger
that the other in accordance with (3.14); they are clearly non Gaussian
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Fig. 3. Energy density for the ¢ = 10 2d Potts model at 8;. Data from [4].

shaped (very asymmetric with respect to their maximum). These shapes
and their L dependence will be discussed further in the next section.

The specific heat

Since as we saw the asymptotic limits of the D;(E) distributions are
§ functions, it is easy to compute the leading behaviour of the quadratic
fluctuations of their weighted sum (3.13). Suppose we have in the vicinity
of B = B; two phases 1 and 2; we represent the distribution by

P(E)=a 6§(E~-E1)+(1-a)§(E-E,) .

a = Z1/(Z; + Z;) is the relative weight of phase 1 at 8. At V — o0, a
varies very rapidly from 0 to 1 as one crosses 8 = 3;. We have
(E>=GE1+(1—Q)E2,
(E?) = a E}+(1-a)E2,

and hence

(E?) - (B = a(1 - a) (B1 - Ez)? .

We see that although the pure phase fluctuations are neglected, the mixed
phase system allowed at a(l — a) # 0, fluctuates between energies E; and
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E3, leading to a divergent asymptotic specific heat (Eq. (2.11)):
C ~a(l-a)V B2(E- E2)* + smaller terms.

This is the well known result that at a first order transition the specific
heat diverges proportionally to the volume. The proportionality coefficient
contains the latent heat squared and is maximum for a = 1/2. For the
example (3.14), a = 1/(g+ 1) at 8 = B; : C also diverges at (¢, but with a
smaller coefficient. Subdominant (constant in V') terms can be computed.
Apparent inconsistencies in the analysis of the latter terms, depending of
whether it is performed at §; or at the 8 value which maximizes the specific
heat [4], have been one of the motivations for understanding better the free
energy of the Potts model.

4. The g-states 2 dimensional Potts model.
Properties and applications

4.1. Known properties

Let us first summarize a few known properties of the model [1]. We
recall that its Hamiltonian is

H=- Zﬁagaj (4'1)
(i3)

(1) is a pair of neighbouring sites. The variables o; take on ¢ distinct values
on each site i of a L x L lattice. For any ¢, there is a phase transition at
inverse temperature

B =1log(1 + q) - (4.2)

The transition is second order for ¢ < 4, with a and v critical exponents
given in the ¢ ordered phases as well as in the disordered phase by

_ 2(1 — 2u)
a(q) = m ’
(2—-wu)

v(q) = 31=w)’ (4.3)

where .
2cos-2—u=\/§, 0<u<l.
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Accordingly, the correlation lengths £, and the specific heats C, (¢ = o or
d in the ordered or disordered phase) diverge as |3 — 8;| — 0 as

Eo~ AplB =B,
Co ~ |8 — B2 (4.4)

We notice that since v(4) = a(4) = %}, the ratio {,/C, remains finite at
g = 4 when one approaches 8 = ; from either side.

For any g > 4, the transition is 1% order, and at 8 = §;, exact expres-
sions are known for the internal energies E, [5] and the correlation lengths
[6 — 8]. If keeping B = B, ¢ is extrapolated down to ¢ = 4, one finds the
following behaviours:

€a= 8\/—3(1‘*‘0( )) ’
&= 42, (45)

where z = z(g) diverges very fast as ¢ — 44 :

7‘.2
z = exp (—5—0—) R

2coshf = /q, (4.6)

and one may check that § ~ /g — 4 at low ¢ — 4. In Section 4.2., from a
large g analysis of the model, we will argue that the pure phase specific heats
C, also diverge proportionally to the same variable z. In Section 4.3., we
shall conjecture from this property an ansatz for the free energies Fy(3) and
F,(B), discuss its implications for energy distributions, and compare them
with results of numerical simulations in the light of the general discussion
given before.

4.2. The free energies Fo, Fy from a large ¢ expansion
of the partition function

We limit ourselves to sketching the method and giving the main results
of a recent investigation whose full account can be found in Ref [11].
The partition function of the Potts model is

Z = ZeXp J¢] Zﬁaiaj , (4.7)

{} (i5)
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where {0} represents any configuration of spin values on the lattice. Rewrit-
ing the exponential as a product over the 2V (ij) links,

2= II ((exp(8) - Voie; +1) , (48)

{c} links

and performing the spin summation, one arrives at the so-called Fortuin-
Kasteleyn representation [12]

(X
Z = z (e‘3 - 1) ( )qc(x) . (4.9)
{X=bond configurations}

This expression has to be understood as follows. Let X be any subset
of links of the lattice. Call bond a link which belongs to X, 5(X) the
number of bonds of X, and ¢(X) its number of connected components, with
the convention that an isolated site (not at the edge of any bond) is a
component. Going from (4.8) to (4.9) proceeds by expanding the product
(4.8) before summing over {o}. One obtains a polynomial in

w = exp(8) - 1

whose monomials are, up to a combinatorial factor,

0’65, o, 801304 + -+ 003, 0,

if the w term has been taken in b of the 2V square bracket factors of (4.8).
This is zero unless all links (¢371)...(injn) are satisfied (i.e. o; = o, the
links are called bonds). For each connected set z of this set X of bonds, one
may sum freely over the value of ¢ common to all sites of z, which yields a
factor g. The weight wbq® in (4.9) follows. Using (4.9) to compute Z now
amounts to count the number N(c, b) of X configurations which correspond
to the same values of ¢ and b, leading to

Z =y N(c,b)(exp(B) — 1)°¢° . (4.10)

c,b

This series may be reorganized as a large ¢ expansion in the following sense.
The maximum degree in w is 2V: it corresponds to the fully ordered configu-
rations; all sites carry the same value of o, all links are bonds and the whole
lattice form a unique connected set: N(2V,1)= 1, and the contribution to
Z is ¢ w?Y. We factor it out and Eq. (4.10) is then rewritten

Z=qw 121,: Ny (%) B (—%) o : (4.11)
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Now [ is the number of bonds which are removed from the fully ordered bulk
configuration, k is the number of additional connected components (not
counting the bulk ordered configuration one starts with), Ni; the number
of (k,!) configurations. One can easily show that ! — 2k is > 0, and that a
finite number of (I, k) pairs contributes at fixed ! — 2k. Hence if one keeps
(w/4/3) of order 1 (B in the vicinity of B; according to (4.2)) as ¢ becomes
large, Eq. (4.11) constitutes an expansion of the partition function in pow-
ers of 1/,/q. Because it is also an expansion of Z about the fully ordered
configuration, a computation of Ny for I — 2k < M constitutes an approx-
imation to the ordered phase partition function Z,; at the same order in
1/./q,10g(Z,) /V approximates F,. Computing Fy for the disordered phase
needs no new effort because of the duality property of the {wo-dimensional
Potts model [1]: if 8 and § are related by

(¢ -1) (£ -1) =g, (4.12)

then

Fy (B) = Fo(B) - 210g ((¢ - 1) /A1) -

The computation of Ny; for I — 2k < 10 has been achieved in [11], and
we jump to the results directly relevant to our purpose.

T T 11T I IllIIIIL T IlHIIII 1

L. Dashed line: 3/3 PAD
Solid lines: 3/4 and 4/3 PADES

- [} : 3/5 and 5/3 PADES pu
+ . 4/4 PADE

»
g
o
£ 9

30 20 15 Fo 8 7 I 6 1 5

AT N IR R R 1T R I W B R 1871 B A

10! 10° 10° 104

Fig. 4. F(3)/z becomes constant at large z (log abscissa)
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Fig. 5. —F(®)/F(?)/23/? is smooth at large z (log abscissa)

A series in 1/,/q of F,(q,B) gives access to the energy cumulants at

fixed ¢ - i
F, 7 = 'd_IB;FO(qaﬂ)' (413)

Their truncated series have been tentatively resumed by Padé techniques
adapted to conjectures on their behaviour as ¢ is lowered from large to small
values of ¢ — 4. The basic conjecture is that because the correlation lengths
become very large, of order z (see Eqs (4.5) and (4.6)), very large fluctua-
tions, i.e. large cumulants, are expected and the relevant scale is the variable
z. We reproduce on Figs 4 and 5 evidences that F(2) and F(3) are close to
simple powers of z at ¢<10, namely #>100. Various curves correspond to
different Padé resummations. Fig. 4 strongly suggests that F(2) is of order

z. In Fig. 5, the dashed straight line is just a guess of what the ¢ = 4 limit
might be (if any) for the positive quantity —F(3)/ (33/ 2F(2)) ; it supports
the conjecture that F®) might be dominantly of order 25/2, Higher order
cumulants are found not in disagreement with the statement:

3
22~ F(™)  is a smooth function of q.

Apart from bringing evidence for this general trend of the energy cumu-
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lants to reveal very large fluctuations, the large ¢ expansion allows a quite
precise determination of the pure phase specific heats, via the knowledge
we got on Fé ) down to g ~ 7 where numerical simulations have been per-
formed. The origin of discrepancies between different analysis [13, 4, 14— 16]
can be elucidated, and our analytic result helps in identifying best methods
to analyze data when the correlation length becomes of the same size as the
box linear size.

4.3. An ansatz for the pure phase free energies in the first
order region ¢ > 4

The ansatz for F, and Fy at q > 4 which we now present [3] incorporates
both the effect of the nearby 2" order point ¢ = 4, B; = log3 and the
information gained from the previous large ¢ expansion.

From Eqgs (4.4) taken at ¢ = 4, and, for definiteness, at §—3;>0 (ordered
phase), we know that

D(g=4,8)~ AB-) +... (4.14)
Eola=4,8) =X (B-Be) 2P +..., (4.15)

where the dots stand for less singular or regular terms at § = 3;. We already

remarked that this implies that ng) /€ tends to a constant at ¢ = 4 fixed,
and B — P, . We extrapolate this result as follows. By differentiating
(4.14) p times W1th respect to 3, we have

(p+2) L(p+3h) 0 oy\-2/3-
F#* (= 4,0) = AP LB 0 - gy
We next trade (8 — ;) for {, using Eq. (4.15), and then set g = By :

I(p+ 2/3) p/rH

FP¥) o _y = A(—)P2E T 3/

The ansatz consists in wildly continuing thxs relation above ¢ = 4, where we
do know the behaviour of ¢, at 8 = 3; via Eq. (4.5). Hence we conjecture

I'(p+7s)
Fipt2) B.) = A(~)? Bz)1t3p/2 L
0 (B) = A= Fa P (Be)
which we hope is a reasonable approximation wherever z is large, A and
B being “constants”, at least functions of ¢ smooth compared with the
behaviour (4.6) of z. Within this approximation, it is consistent with duality
to write
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FPD () = (-)PFP D (8) + ...

With (4.15) and the exact knowledge [5] of Féo) (Bt) and Fél) (Bt) = —E,,
it is straightforward to resum the Taylor series of F,. The result is:

Fo(B)— Fo(Bt) = —Eo (B—Be) + ('%1)'5
]4/3

X {2 [1+6- B0 - - (6 - ﬂt)(Bz)"/z} Fo (426)

and duality gives F4(3):

Fy(B) = Fo[Bo «— —Eq,(B—Bt) e— —(B-B)] +.... (4.17)

This tentative form of F,, F; depends on the two “constants” A and B.
These we determine by comparing

F2) F®) 2 2/
—=AB+t... ad —omn =28 124 ...
to the values obtained in Subsection 4.2. from the large ¢ expansion (Figs 4
and 5). Once a “best guess” is chosen for A and B, one has a parameter
free prediction of the partition function of the Potts model around 8 for
g > 4[17].
This construction leads to the ansatz

Zy**t(B) = exp (VFy) + gexp (VF,) (4.18)

with Fg g4 given by (4.16), (4.17). If these free energies are good approxi-
mations to the true ones, then we know from Eq. (3.11) [10] that (4.18) is
a good approximation to the true Zy(8). To test whether it is the case, we
compare the energy distributions obtained by (3.13) for ¢ = 10 to the data of
Ref. [4] taken at L = 16, 20, 24, 36,44 and 50. Because L is not large enough
for the saddle point method to be reliable, the integrals of the type (3.6)
required by (3.13) are performed numerically. The results are presented in
Fig. 6. A good agreement is found. In particular it is quite remarkable
that the intermediate region between the two peaks is very well reproduced.
Study of the integral (3.13) reveals that this region is especially sensitive to
the existence of very large cumulants in the pure.phase free energies, and
confirms the relevance of interpreting the whole pattern as a consequence
of the second order point at ¢ = 4, 8 = B; [4]. Other physical issues, such
as interface tension measurements [14,19 — 22] can also be touched upon by
reference to the same ansatz [3].
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Fig. 6. Solid lines: Densities predicted by Eqs (4.16)—(4.18). Data from [4].
5. Conclusion

The overall lessons one may extract from this general study of first order
transitions and from its confrontation to practical cases via the “Potts model
laboratory” are two-fold:

— The finite size effects observed in energy density distributions may lead
to misinterpretation. Especially when large energy fluctuations are
present, standard phenomenology based on “gaussian peaks” attached
to pure phases is not reliable. In addition, very large linear lattice sizes
are required before the E-distribution is close to an exponential of V
times a function of E.

- A safe point of view is that given (at least for a class of models) by the
work of Borgs, Kotecky and Miracle-Sole [10]. Unlike P(E), each phase
contributes a term exp(V F(f3)) in the total partition function, up to an
exponentially small finite size correction which is of physical interest.
In fact, the latter is related to correlation lengths in general, and to
interface effects in the vicinity of a first order transition point. Similar
situations in cases of field driven first order transitions (e.g. in the Ising
model below the transition temperature) deserve similar analysis of the
magnetization distribution.
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