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The evidence for flux tubes from lattice QCD simulations is briefly
reviewed. Then I present results of a detailed study of topological prop-
erties of QCD vacuyum configurations below and above the deconfinement
phase transition, both without and with dynamical quarks. The topolog-
ical properties were probed by two local operators of topological-charge
density and the cooling method. Results obiained using both definitions
are compared and lessons from cooling experiments are briefly summa-
rized. The flux-tube formation is seen to be reflected in topological-charge
distributions.

PACS numbers: 12.38. Aw, 12.38. Gc

1. Introduction

Most phenomenological models (see e.g. [1-3]) describing strong inter-
actions of quarks, antiquarks and gluons are based on a set of assumptions
and postulates which are to a larger or lesser extent justified within the
fundamental theory of quantum chromodynamics (QCD):

1. Quarks, antiquarks and gluons are confined, not observable (under
normal conditions) as free particles in nature.

2. The vacuum is a non-trivial superposition of quark and gluon fields,
which is not amenable to perturbative field-theory methods.
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3. The quark and antiquark immersed in the vacuum are connected by
a flux tube whose energy is proportional to its length. The medium inside
the tube is essentially trivial, “perturbative”.

4. Hadrons are “bags” of perturbative medium around their constituents,
stabilized by the pressure of non-perturbative outside medium.

5. At high enough temperature (or higher density) a phase transition
occurs, the transition from the phase of hadronic matter to that of free
quarks and gluons (quark-gluon plasma). Flux tubes disappear above the
deconfinement phase transition.

The lattice formulation of QCD and its Monte Carlo simulations (for an
introduction and overview see [4]) are powerful tools for non-perturbative
investigations of QCD predictions. In principle one should be able to com-
pute any quantity to arbitrary precision like in quantum electrodynamics;
in practice the precision is still limited by the power of existing computers
and cleverness of algorithms used.

On the other hand, lattice is also useful in attempts to understand
physical mechanisms of various strong-interaction phenomena like colour
confinement (see e.g. Di Giacomo’s lecture in Zakopane last year [5]) or
chiral-symmetry breaking. An advantage of this branch of lattice QCD is
the fact that a lot of qualitative information can be obtained even with
moderate computers, working on smaller lattices and/or simulating a sim-
plified version of QCD (quenched QCD, QCD with 2 colours) or even some
lower-dimensional model.

Results that will be discussed in the present paper belong to the qual-
itative branch of lattice QCD. I will first briefly review various pieces of
evidence that lattice QCD has provided to support the above-mentioned
ingredients of phenomenological models, in particular about the properties
of flux tubes (Section 2). Then I will present results of a recent investiga-
tion of topological properties of the QCD vacuum in the presence of static
colour sources. First in Section 3 I discuss problems with the definition
of topological charge on a lattice and describe a way how the problem is
circumvented using the cooling method (for a thorough discussion see [6]).
Lessons from our experiments with different variants of cooling are briefly
summarized. Finally in Section 4 I present a sample of results of two runs
for pure SU(3) lattice gauge theory, one at the temperature below and one
above the deconfinement phase transition (Section 4.1.), and preliminary
results of the third run, simulating full QCD with three quark flavours in
the confinement phase (Section 4.2.). I will put particular emphasis on that
part of our data that brings evidence for flux-tube formation and informa-
tion on some properties of flux tubes. This work was done in collaboration
with Faber, Markum and Sakuler from the Technical University in Vienna
[7]. Section 5 contains a few concluding remarks.
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2. Flux tubes in lattice QCD

The above-described flux-tube picture has been thoroughly tested in
numerous lattice simulations. An indirect evidence was already contained
in the earliest investigations [8]: the observed area-law behaviour of the
Wilson loop of the size R x T (R, T > a, a is the lattice spacing)

W(R,T) ~ exp(-ocA), A=RT, (1)

implies that the interaction potential V(r) between an (infinitely) heavy
quark and antiquark grows linearly with distance

V(r)y~or for r— oo, (2)

which in turn can be most easily explained by a tube of constant energy
density per unit length connecting the Q and Q.

One can investigate flux tubes more directly by looking at various com-
ponents of the colour electric and colour magnetic fields around a static QQ
pair. This is done by measuring correlations between the Wilson loop (or
a pair of Polyakov lines) with plaquettes of different orientations. One can
either use “disconnected” correlators [9]

disc _ (TrW TrU,,)

pW = (TI'W> - (TrUpv>’ (3)

or “connected” ones {10}

conn __ <'I‘r(WSUFV$t)> 1 <TI'W TIU#V) 4
W= TTewy . 2 (W) (4)

(and analogous quantities with Polyakov lines). Here S denotes the Schwin-
ger line connecting the Wilson loop W with the plaquette U,,. In the
formal continuum limit the former correlators behave as a*((Tr F2,) Q0 ~

(Tr sz)o), while the latter should give a?({Tr Fuv)go — (Tr Fuu)o), where

(---)oo denotes the average in the presence of a stati¢ QQ pair and (---)o
that in the vacuum. Obviously, the latter quantities are much easier to
measure on a lattice, especially using the cooling method (the discussion of
which will be postponed until Section 3).

The correlators (3) and (4) were measured in numerous lattice simula-
tions [9-12] (the most recent high-statistics study is being performed by the
Wauppertal group {13]). The results can be summarized as follows:

1. The dominant colour field component in the tube is the parallel (to
the line joining Q and Q) electric field, which is approximately constant
along the tube.
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2. All other field components are small.
3. The parallel electric field as a function of the transverse distance

decreases exponentially; however, the exact dependence E = f(z)) has
not been singled out by lattice data. A recent paper [14] shows that both
E| ~ exp(—p*2}) (5)
and
By~ [1+pzy - 3(ue1)’] exp(—pzL), (6)

give comparably good fits to measured data points.

4. Flux tubes become broader as T — T..

5. In a simulation of full QCD with dynamical quarks an indication of
flux-tube breaking due to light q7 pair creation was observed [12].

Summarizing, the existence of flux tubes and their basic properties have
been firmly established from first principles within lattice QCD. Here we
will argue that information on flux tubes can also be obtained by studying
topological characteristics of lattice configurations. Before doing that we
have to briefly touch problems that arise in attempts to calculate topological
quantities on a lattice.

3. Topological charges in lattice QCD
3.1. Definitions and problems

There exist in the literature various proposals of gauge-field configura-
tions which could play an important role in the QCD vacuum [15, 16]. A
basic observation for the classification of those configurations is the non-
trivial topology of mappings from the surface of a sphere (in infinity) on
the gauge group. According to the asymptotic behaviour of field config-
urations at infinity, they thus split into different classes, characterized by
the integer winding number of the mapping (called often the topological
charge, or Pontryagin index in mathematical language). There exist contin-
uous transitions between configurations of the same class, but no continuous
transitions between classes with different topological charges.

The topological charge Q is defined as an integral over the whole space-
time of the topological-charge density ¢(z):

2
0= [d'ag(e),  oe) = Fm T FLE@FNE). (D

Another important characteristic of the QCD vacuum is the topological
susceptibility

- / #z(0 | T(Q(2)Q(0)) | 0), 8)
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which was proposed to solve the so-called U(1) problem [16, 17]. It is related
to experimental quantities via the Witten—Veneziano formula [17]

?J—Zix =ml + mf,, —2mk, (9)
k.4
(Ny is the number of light quark flavours, fx the pion decay constant, my,
m,y and mg are masses of 7-, 7'- and K-mesons).

There is no unambiguous definition of the topological charge on a lat-
tice (see e.g. [6]). Motivated by the aim to investigate the distribution of
topological quantities locally around static quarks and antiquarks, we have
chosen the definition of the topological charge through some local operator
of topological-charge density g, (z):

QL= ) a(z); XL=<QV%>' (10)

sitesz

Even this choice is not unique, since various operators converge in the formal
continuum limit to the continuum topological-charge density. We used two
common definitions:

+4

P 1 .
& (=) = ~3i39.3 Y e
pvpo==11

X Tr[Uu(2)Us (2 + m)UL (2 + 1)UL (2)Up(2)Us (2 + p)US( + 0)UL(2)]
(11)
(“plaquette” definition 18, 19]), and
(H 1 +4
q )(z) = — Z Euvpo Te[Uu(2)Us(z + p)Up(z + p + v)

4392
24327 v prm ]

xUp(z + p+ v+ p)UL(z +v +p + 0)Ul(z + p+ o)UL(z + 0)UL(2)]
(12)

(“hypercube” definition, proposed by Di Vecchia et al. [18]).1
With both above choices one immediately runs into troubles: at finite
coupling constant 8 (= 6/g%) and finite lattice spacing a

1 More precisely, we use a slightly different definition of the density than the one
given in Eq. (12). In this definition all 16 vertices of a hypercube are treated
symmetrically and the density is not attributed to the sites of the lattice, but
to those of the dual lattice. For details see the papers of Di Vecchia et al. [18].
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1. measured topological charges are not integer, and

2. the topological susceptibility is too small compared to the value
expected on the basis of Eq. (9).

These difficulties of the method were known for years and were not
considered surprising. In early years of lattice-gauge-theory calculations
many authors believed that attempts to calculate x on the lattice were
doomed to failure, since the topological properties of the continuum are
different from those of discretized space-time.

The real origin of both problems has been explained by Campostrini
et al. [20]: lattice and continuum versions of the theory represent different
renormalized quantum field theories, which differ from one another by finite,
non-negligible renormalization factors:

qL(z) = a*Z(B)q(z) + 0(a%), (13)
xL = a* Z3(B) x + a* Mg (8) G2 + a* My (m 4¢) + P(B) (1) + O(a®).
(14)

The multiplicative renormalization constant Z(3) approaches 1 for § — oo,
but is rather small for values of A used in numerical simulations [20, 21].
For SU(3) and the above operators of gp,(z) one has:

7(P) o1 _ 5.4508 11.0766

+ : 15

3 57 (15)
6.1296 11.2310

Z(H) ~q - = (16)

in two-loop approximation. The functions P(8), Mg(B), My(B) can also
be calculated perturbatively as power series in $~!; the first few terms are

known analytically, the others can (in principle) be estimated numerically
(see [22]).

3.2. Cooling

If one wants to make use of the above definition of the topological
charge, Eqs (10)—(12), one must either carefully take into account the renor-
malization factors Z(8), etc., or to use some procedure to eliminate them.
Fortunately such a procedure exists and is called the method of cooling
[23-25]. It is a way of “smoothening” field configurations and at the same
time removing ultraviolet quantum fluctuations. Practically, the cooling
procedure consists of replacing each link of a configuration by a new link
which locally minimizes the action. A cooling step is defined as sequential
cooling of all links of the configuration. If changes of the links are kept
sufficiently small, each cooling step can be considered as the lattice version
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of a smooth deformation of a continuum field configuration to a new one
with smaller action, which reduces quantum fluctuations, but preserves the
topology of the initial configuration. Thus cooling brings us to the minimum
action configuration of the topological sector to which the initial configura-
tion belonged. However, since classical solutions of the continuum equations
of motion correspond only to approximate solutions on a lattice, they will
be only metastable. The probability of immediate transitions to different
topological sectors can be reduced by controlling the speed of cooling.

There exist various variants of cooling. We have implemented and tested
three different procedures:

1. mild “Metropolis” cooling [24, 25]: in this procedure all links of
the configuration are updated using the usual Metropolis update procedure
(with a small spread of changes of the link matrices), but changes are only
accepted if the action is decreased and the changes are rather small [25],
namely

11 {(U) - N, - UL} < 6% (17)

2. smearing [26, 27]%: here links are transformed to

U,=T|U,+e > Y 5.1, (18)

n=—1,1v#yu

where S, is the staple (incomplete plaquette) with orientation 7 in direc-
tion v for the link g, and II[A] stands for the projection of a matrix A onto
the SU(3) manifold;

3. “Cabibbo-Marinari” cooling [24]: this is analogous to the Cabibbo-
Marinari [28] heat-bath algorithm, which updates the SU(3) link variable
by updating some of its SU(2) subgroups. A cooling step in this method
consists of multiplying the link variable with a matrix V from a diagonal
SU(2) subgroup,

Uu(z) = VU,(2), (19)

where V is chosen in such a way that within this class of transformations
the action is locally minimized®. Within a cooling step, we minimize in
all three diagonal subgroups, in random order. We also check after each
minimization step that the condition (17) is fulfilled.

2 Strictly speaking, smearing is not a cooling procedure, however, the behaviour
of lattice configurations under smearing is very similar to cooling.

3 This matrix can be found analytically and the calculation is approximately as
time-consuming as a normal Metropolis sweep.



1666 S. OLEINIK

We performed a series of experiments to reveal similarities and differ-
ences among these three cooling/smearing variants (more details can be
found in [29]). Summarizing the results in brief, we should stress the fol-
lowing points:

1. Independence of observed effects on the cooling variant. With suitably
chosen parameters § and ¢, Eqs (17), (18), the observed physical effects
did not depend strongly on the cooling method. In most tests § = 0.15
and ¢ = 0.1 were used, but rather substantial changes of both parameters
changed the cooling process only slightly. E.g. in the Cabibbo-Marinari
variant even an order of magnitude decrease of § influenced only the first
few cooling steps. Similarly, in this variant it was rather unessential whether
one minimized in three diagonal SU(2) subgroups in a random manner or
in some ordered one (e.g. 1-2-3).

2. Different efficiency of cooling variants. The speed of cooling, on
the other hand, was a distinctive feature of the three methods. With the
Cabibbo-Marinari cooling all measured configurations reached (close to)
integer values of topological charge quite quickly, in 5-10 steps, in both other
variants almost 100 cooling steps were mostly needed. The typical behaviour
of Q under cooling and smearing is shown in figure 1, for two configurations
with @ = £1. The efficiency of the Cabibbo—Marinari cooling was the main
reason why we used this particular variant in all our production runs (see
below).
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Fig. 1. Behaviour of the topological charge of two thermalized pure SU(3) con-
figurations at 8 = 5.6 under cooling/smearing (topological charge was obtained
using the plaquette definition of charge density): (a) Cabibbo~Marinari cooling
with § = 0.15, (b) smearing with ¢ = 0.1.

3. Relative stability of cooling. The cooling process was essentially inde-
pendent of the start configuration. This fact is nicely illustrated in figure 2,
where the energies of configurations are shown after 0—5 cooling steps, for
both our pure gauge simulations. The energies decrease with cooling, but
for a given cooling step cluster around well-defined average values.
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Energles of configurations (beta=5.8)

Energiles of configurations (bets=5.8)
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Fig. 2. Energies of individual pure-gauge configurations at 8 = 5.6

after 0-3 and 5 cooling steps. (Scales are different in both figures.)
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Fig. 3. Real vs. imaginary parts of average Polyakov lines for measured pure-gauge

configurations.

4. Cooling does not destroy confinement, at least during first 0(10) steps
of the Cabibbo—Marinari cooling. An order parameter of confinement for
pure gauge theory is the average value of the real part of the Polyakov loop

N
L(# = 3T [] Us(7,9) -
t=1

(20)
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In the confinement phase this value was always consistent with 0 within
errors during cooling, while in the deconfinement phase it was non-zero
and grew with the number of cooling steps to 1. Thus cooling not only
preserves the (de)confining character of configurations, but in fact makes
differences between both phases more visible. This is illustrated in figure 3.
The “Mercedes-star” plot typical for the confinement phase of pure gauge
theory with unbroken Z3 symmetry is clearly seen already after 5-10 cooling
steps; in the deconfinement phase the Z3 symmetry is broken and only one
corner of the “star” is occupied.

5. Cooling indeed removes renormalization factors. Before cooling topo-
logical charges measured using the plaquette or hypercube definition were
different and rather small. The difference between Q(P) and Q(H) is caused
by different renormalization factors Z(P)(8) and Z(H)(B), Egs (15), (16).
It disappears after the first few cooling steps, see figure 4. Also, after
O(10) cooling steps all charges group around values (approximately) given
by Q@ = n Qq1, withn =0, 1, ..., and the “unit” charge @Q; slightly smaller
than 1 (this number depends on S and the lattice size [30]).
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Fig. 4. Q(P) vs. Q(H) at 8 = 5.6: (a) before cooling, (b) after 5 cooling steps.

4. Flux tubes in topological-charge distributions

Finally I come to the central part of my lecture. I will present (a subset
of ) our results on topological contents of lattice gauge-field configurations in
both the confinement and deconfinement phase. We performed three runs,
simulating QCD with 3 colours, on an 8° x 4 lattice, with periodic boundary
conditions. The parameters of the runs were:

e RUN 1: without dynamical quarks, with standard Wilson action, 8 =
5.6 (confinement phase);
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e RUN 2: without dynamical quarks, with standard Wilson action, § =
5.8 (deconfinement phase);

e RUN 3: with 3 flavours of (Kogut—-Susskind) quarks, standard Wilson
action for gauge fields, all three quark masses equal: mga = 0.1, § = 5.2
(again confinement phase).

In each run we made 100000 iterations and measured observables of
interest after every 50th iteration. Each of this subsample of 2000 config-
urations was subjected to 50 cooling steps, using the “Cabibbo-Marinari”
cooling method of Ref. [24]. In Section 4.1 I summarize results from pure-
gauge simulations (RUN 1 and 2), Section 4.2 contains first results from our
full-QCD run (RUN 3).

{.1. QCD without dynamical quarks

Our simulations were performed at two values of the coupling constant
B, one corresponding to the confinement phase and the other to the decon-
finement one.
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Fig. 5. Topological charges of measured pure-gauge configurations obtained using
the “plaquette” definition of the topological-charge density.
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We have already stated that cooling quickly removed differences be-
tween topological charges of lattice configurations measured using the pla-
quette or hypercube definition. I will therefore in most cases discuss results
obtained using the former choice. Figure 5 shows how the originally small
non-integer values of charges cluster around approximately integer values af-
ter 10 cooling steps at # = 5.6 and already after 5 cooling steps at 5 = 5.8.
A least-square fit gives a value of the “unit” charge Q; ~ 0.8 at § = 5.6
and Q; ~ 0.7 at 8 = 5.8. The probability distributions of various integer
values are shown in figure 6.

° Top. chaige p etnad 8} Top. charge L (bats=3.8}
4 r T ¥ v T 4 AS 4 1 ¥ T T *
Cooling step 16 —— [} Coolingsteps —
03 |
08
0s
0.28 o8
8 o2 ]
S o
0.18 04
o1 F
82
005
0 0 — 1
-+ -3 2 ] 4 1 2 3 4 < -3 2 -1 4 1 2 3 4
Q Q
(2) (b)

Fig. 6. Probabilities for various values of the topological charge (in units of Q; ~ 0.8
for = 5.6, @, ~ 0.7 for 8 = 5.8).

From the above figures one can already deduce the first essential differ-
ence between the confinement and deconfinement configurations. In both
phases the = 0 sector dominates, but in the confinement phase also higher
charges are quite probable (in more than 70% of configurations), while in
the deconfinement one Q # 0 appears only very rarely. Polikarpov and

Veselov [31] suggested to plot In [p(Q) + \/p(Q)] as a function of Q%. A

linear dependence is a sign for a Gaussian distribution. Figure 7 plots our
results after 10 cooling steps at 8 = 5.6: the data are clearly consistent with

a linear decrease of In [p(Q) + 4/ p(Q)] with Q2.

What now happens if a static quark or a static quark-antiquark pair
is present? The time propagation of a static quark at finite temperature
T (= 1/N:a) is described by the Polyakov loop L(7), Eq. (20). To obtain
the local distribution of the topological-charge density around single quarks
and around a meson with quark-antiquark separation d we calculate the
correlation functions
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Infp(Q) +- sqrt{p(Q))], plaquette definition (baeta=5.6)
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Fig. 7. In[p(Q) £+ +/p(Q)] vs. Q2 after 10 cooling steps at 3 = 5.6. (Units on the
vertical axis are arbitrary.)
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Fig. 8. Squared topological-charge density around a static quark after 0, 5, and 10
cooling steps at 8 = 5.8 (deconfinement phase).

(L(0)g*(r)) (21)

and

(L(0)LY(d)g?(r)), (22)

respectively, and normalize them to the corresponding vacuum expectation
values (if they are not equal to 0). We take the square of the topological-
charge density in Eqgs (21), (22), the simplest choice leading to nontrivial
correlations.
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In the confinement phase one expects (L(0)g?(r)) = 0, since a single
quark is a forbidden state. This expectation was confirmed by our mea-
surements.

In figure 8 we show the square of the topological-charge density around
a single static quark in the deconfinement phase after 0, 5, and 10 cooling
steps, for both definitions of the density. We see a suppression of the density
close to the position of the quark source. Results from both definitions of the
density agree perfectly after a few cooling steps. The agreement is far from
obvious, since the topological-charge densities in figure 8 were calculated
at different distances for both definitions. This is due to the fact that the
plaquette definition gives topological-charge density in a lattice site, while
the hypercube one rather in the center of the hypercube (in a site of the
dual lattice).

In figure 9 distributions of the topological-charge density (squared)
around a meson are presented for both phases of pure SU(3), after 5 cooling

Topological-charge density in a static meson
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(b) 5 cooling steps, d = 3

* More formally one can argue that the operator of topological-charge density is
Z3 symmetric, while the Polyakov loop is not. Since Z3 symmetry is unbroken
in the confinement phase, the average (L(0)g*(r)) must be zero.
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(c) 5 cooling steps, d = 4
Fig. 9. Squared topological-charge density around a static quark-antiquark pair at
B =56and 3 =5.8.

steps at distances d = 2, 3 and 4. The suppression in the vicinity of sources
is again clearly visible, the effect is stronger in the confinement regime.
The difference between both phases is most striking at the largest sepa-
ration, d = 4. The valley of suppressed topological-charge density in the
confinement phase reflects the formation of a flux tube between the static
quark-antiquark pair. In the deconfinement phase, no flux tube is visible.

4.2. QCD with dynamical quarks

It is expected that qualitative features of colour confinement are the
same in QCD without and with dynamical quarks. However, the effect of
dynamical quarks has to be taken into account in any realistic calculation.
The account of dynamical quarks and non-zero quark masses is also im-
portant for understanding the connection to other physical phenomena like
chiral-symmetry breaking.

The topological susceptibility is one of the quantities for which the
introduction of quarks plays a vital role. In a theory with fermions one
expects the topological susceptibility to be proportional to (a power of ) the
quark mass, namely [32]

xn~ ﬁ('l-"p) 3 (23)

2
s
in the chirally broken (confinement) phase, while
X~ m:f , (24)

in the chirally symmetric deconfinement phase (ny is the number of light
flavours of quarks with mass m,). Therefore one can reasonably expect that
though the effects due to topology may be qualitatively similar in full QCD
to pure-gauge QCD, the magnitude of observed effects will depend on the
presence of dynamical quarks and their masses.
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Topological chasge, p (beta=5.2) T charge, (beta=5.2)

sl Coollng step 0 *
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L] so0 1000 1500 2000 [} 500

1000 1500 2000
# of Resations/50 # of kerations/50

(a) (b)
Fig. 10. Topological charges of measured configurations in the run with dynamical
quarks.

Top. charge probabilities, plagqusits definition (beta=5.2)
4

Cooling step 10 —
0.35 | 1
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p(Q)
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Fig. 11. Probabilities for various values of the topological charge at 8 = 5.2.

log[p(Q) +- sqrt(p(Q)}], plaquette definition (beta=5.2)

ety Cooling step 10: minus » |
plus +

>

Q2

Fig. 12. In[p(Q) £ /p(Q)] vs. Q? after 10 cooling steps at 8 = 5.2. (Units on the
vertical axis are arbitrary.)
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Topological-charge density in a static meson

B=52,np=3,mga=0.1

(c) 5 cooling steps, d = 4
Fig. 13. Squared topological-charge density around a static quark-antiquark pair
at 0 =05.2.
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The parameters of our RUN 3 with dynamical fermions were chosen in
such a way so that we could compare results with that of our RUN 1. The
physical length scale of the lattice is similar in both simulations, and both
correspond to the confinement phase.

The results are indeed very similar. The reader should e.g. compare
figure 5(a), 5(b) with figure 10 or figure 6(a) with figure 11. The probability
distribution of various topological-charge values is again Gaussian, though
somewhat broader (figure 12).

The essential difference between pure SU(3) results and those from sim-
ulations including dynamical fermions is comprised in figure 13. Again a
suppression of topological-charge density occurs in the whole flux tube be-
tween the quark and antiquark, but the situation changes at the largest
separation, d = 4. In the middle of the tube the suppression is weaker
than in the pure-gauge case. This we consider an indication of flux-tube
breaking due to a creation of a virtual (dynamical) ¢g pair. A similar ef-
fect was observed earlier also in colour field distributions around a static
quark-antiquark system, see [12].

Though our results from the first run with dynamical fermions are
promising, a word of caution is necessary. Our value of the quark mass
is still rather high and not realistic. The mass dependence of the observed
effects would be of immediate interest. We plan to study this problem in a
near future.

5. Concluding remarks

The flux-tube picture has undergone a series of tests in lattice QCD.
With present-day lattice techniques and computer power one is already able
to observe flux-tube formation over distances as large as 2 fin [13]. One of the
important pieces of strong-interaction models thus becomes fully established
from first principles of QCD.

Results of our work, obtained on a rather small lattice with a modest
computer, cannot bring more than qualitative support for phenomenolog-
ical models. That is also the reason why our data can hardly be used to
discriminate between various models.

Nevertheless, we find quite interesting that the existence of flux tubes
reflects itself not only on physical quantities like the energy or action den-
sity. We have demonstrated that even the topological observables “feel”
the flux tube connecting the static quark and antiquark. This is another
confirmation of the idea that the media “inside” and “outside” the tube zre
different and differ even in their topological properties.

To identify gauge-ficld configurations that determine properties of the
QCD vacuum and drive the flux-tube formation in the confinement phase
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of QCD remains a challenging task, both in the continuum and the lattice
version of the theory.
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