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The pion multipoles of static Skyrmions with arbitrary baryon number
are discussed. It is shown that a monopole moment cannot occur. The
forces between separated Skyrmions are dominated by the dipole-dipole
interaction, in general, and this gives some understanding of the structure
of Skyrmions with baryon number up to four.

PACS numbers: 12.50. -d

Skyrme proposed a version of the non-linear sigma model to model both
pions and nucleons [1]. The pions are the quantized waves of the pertur-
bative theory and the nucleons are (spinning) solitons. The basic Skyrme
model has an SU(2)-valued scalar field U(t, ), and the action is constructed
from the (right) SU(2) Lie algebra-valued current R, = (8,U)U~. The
action (appropriately scaled) is

5= [de (3 T(RR) + H (R RARS R}, ()

where the metric has signature (— + ++).

There is chiral symmetry U — Uy U U; where Up, U1 € SU(2), but this
is spontaneously broken since one must choose a vacuum field U = const.
By convention, U = 1 is chosen as the vacuum, and this is invariant under
isospin transformations U — Up U U, 1 The Goldstone bosons of the
broken chiral symmetry are three in number - they are identified with the
pions. More precisely, one writes the Skyrme field as
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U=0c+im-T (2)

where 7 denotes the pion fields,  are Pauli matrices, and o is constrained
by 02 = 1—m-m. The vacuum is 0 = 1, ® = 0. If the « fields are small and
o ~ 1, then the action simplifies to § = — d*z 8, - 0*x, so the pions are
massless.

The classical field equation obtained from the action § is

8, (R* + 1(R.,[R",R*]}) = 0. (3)

This states that the current R* = R* + 1[R,, [R”, R#]] is conserved. There
is a further topological current

B* =

2472 etror TI(RVRURT) ’ (4)

where €#7°7 is totally antisymmetric, and €123 = 1. This is kinematically
conserved since 8, R, = (8,8, U)U~! — R, R, hence

OuBY = — e Te(R,R,RoR;) = 0.

The last equality holds because of the cyclicity of the trace and the anti-

symmetry of the e-tensor. The conserved charge associated with the current
B* is

B:/fzm (5)
and it is in fact an integer if U satisfies the boundary condition rlirxgo U=1.

(Here and below, r denotes |&|.) B is identified with the baryon number of
the field U.

For each integer B one can seek the static solution of the field equation
(3) of lowest energy. This is a classical model of a nucleus of baryon num-
ber B, and the starting point for a quantized model. For static fields, the
energy is

E= / &z {~1 Tr(R:R:) - % Te((Ri, Bj][Riy Bj))} (6)
and the field equation is |

d; (R: + §[R;,[R;,R])) = 0, )

where latin indices run from 1 to 3. We shall refer to the minimal energy
solutions, for B # 0, as Skyrmions (traditionally only the lowest energy
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solution with B = 1 was called a Skyrmion). They are known from nu-
merical calculations for all |B| < 6 [2]. The solutions for negative B are
obtained from those for positive B by replacing U by U™!; for B = 0
it is the vacuum. The solutions have remarkable symmetry properties.
The B = 1 Skyrmion is spherically symmetric; it is of the hedgehog form
U = cos f(r) + isin f(r) & - . The B = 2 Skyrmion is axially symmetric,
the B = 3 Skyrmion has tetrahedral symmetry, and the B = 4 Skyrmion
has cubic symmetry; the B = 5 and B = 6 Skyrmions have low symmetry.

Let Ep denote the energy of the Skyrmion of baryon number B. It is
believed that for all B, Eg < Egs/ + Egn where B', B" are any integers
such that B' + B" = B. A Skyrmion cannot therefore break up into smaller
Skyrmions without an input of energy. Theoretical and numerical evidence
does not contradict this inequality, although there is no proof. (There is a
fairly convincing unpublished argument, due to Castillejo and Kugler, but
it has a loophole).

The asymptotic field of a Skyrmion has 0 ~ 1 and n small. The field
equation linearises and reduces to V2w = 0. Solutions of this Laplace
equation have a multipole expansion, but the non-linear nature of the full
field equation implies that only the leading multipole, and possibly a small
number of subleading multipoles, are meaningful.

One might expect a Skyrmion could have a leading monopole term in
its asymptotic field

A
T~ —. 8
d7r (8)
Certainly there is no problem constructing a finite energy Skyrme field with
this asymptotic behaviour, although it cannot be very symmetric. However
the field equation forbids this asymptotic behaviour. To see this, consider
the integral

/ R; dS; (9)

S3(L)

over a sphere of radius L, with L — oo. The field equation (7) implies

that this integral vanishes, but the asymptotic behaviour (8) implies that

R;~ ~A.rz;/4rr3, making the integral —A - 7. So A = 0. (We have not

seen it pointed out before that a Skyrmion can have no monopole moment.)
A Skyrmion generically has a dipole as its leading multipole

Ctz;
43’

7% ~

(10)
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with C¢ the dipole moment matrix. We can use the symmetry of the model
to put this in standard form. By acting with a rotation and an isospin
rotation, we can reduce C? to a diagonal matrix

c1
c:‘=< e ) (11)
€3

since any 3 X 3 matrix can be expressed as O; D O3, where O; and O;
are rotation matrices and D is diagonal. In this standard form, the three
components of the asymptotic pion field are those of three mutually orthog-
onal scalar dipoles along the three Cartesian axes. Any hedgehog solution
of the field equation has ¢; = c; = c3. We denote these diagonal entries for
the B = 1 Skyrmion by ¢, whose numerical value is ¢ = 27.0. The B = 2
Skyrmion has ¢; = ¢ = 0 and c3 # 0, where the 3rd axis is the axis of
symmetry. The B = 3 Skyrmion is not everywhere of hedgehog form, but
it is asymptotically. The dipole moment matrix has the opposite sign, but
similar magnitude, to that of the B = 1 Skyrmion. From afar, therefore,
the B = 3 Skyrmion looks like a B = —1 Skyrmion (the anti-Skyrmion).
The B = 4 Skyrmion, by virtue of the way its cubic symmetry is realised,
has no asymptotic pion dipole. Its leading pion multipole is a quadrupole.
Suitably orientated this is

2 _ 42

!~ d(”zrs z3) :

2 d (23 - 21)
5

d (22 — 22
7r3 ~ = ( 1”‘5 2) (12)

7!‘ ’

for some constant d.

The interaction energy of two well-separated Skyrmions is determined
by their leading pion multipole moments. This in turn determines the forces
and torques the Skyrmions exert on each other. The formula for the inter-
action energy is the same as in electrostatics, except that it has the opposite
sign because the pion field is a scalar. Suppose two Skyrmions have non-
vanishing dipole moments C¢ and C’;‘, and their centres are separated by
the vector X. Their interaction energy is (3]

R
T 4w X5

This formula implies that for two B = 1 Skyrmions at fixed separation X,
the interaction energy is most negative if the second Skyrmion is rotated

(c¢ &2 1x? - 30202 X X;)- (13)
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relative to the first by = about an axis orthogonal to X. With this relative
orientation the energy becomes more negative as the Skyrmions approach
each other, and there is maximal attraction.

It is possible to arrange four B = 1 Skyrmions so that the force between
any pair is maximally attractive. One must locate the Skyrmions at the
vertices of a regular tetrahedron, say at

Mx =(L,L,L), X =(-L,-L,L),
®X=(-L,L,-L), WX=(L,-L,-L) (14)

and give them orientations so that the dipole moment matrices are, say

[ —C
[+ C
—C c
Ge = ( c ) , We = ( —c ) : (15)
—c -

The first and second Skyrmions, for example, are separated by the vector
(-2L,-2L,0), and the orientation of the second is obtained from that of
the first by rotating by = about the z3-axis. They therefore maximally
attract. A maximally attractive configuration of three B = 1 Skyrmions at
the vertices of an equilateral triangle is obtained simply by removing one
Skyrmion from the configuration above.

If a maximally attractive configuration of B = 1 Skyrmions relaxes, by
allowing the Skyrmions to approach each other, it will settle at the minimal
energy Skyrmion. In the process the net dipole moment doesn’t change
much. This helps us to understand the dipole moments of the Skyrmions
for B < 4. For notice that the configuration of four B = 1 Skyrmions
with positions and dipole moments as in (14) and (15) has total dipole
moment zero, since (D¢ +(2) ¢ +3) ¢ +(4) ¢ = 0. The net dipole moment
remains zero as the configuration relaxes to the B = 4 Skyrmion with cubic
symmetry. Similarly, if the first Skyrmion is removed, the three remaining
Skyrmions have net dipole moment

-~C
@0 +C) c4+@We = ( —c ) . (16)
-C

The configuration relaxes to the B = 3 Skyrmion whose dipole moment is
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(Oc Y ) (17)

where ¢' and ¢ are numerically similar. Finally, if the first and second
Skyrmions are removed, the configuration has net dipole moment

0
(3)C +(4) C = ( 0 ) . (18)
—2c

It relaxes to the B = 2 Skyrmion whose dipole moment is of the form

0
( 0 ) (19)
—2C"

where, again, ¢' and ¢ are numerically similar.

There is a rather simple-minded argument, which also helps us to un-
derstand how to orient B = 1 Skyrmions so as to minimize their energy.
Consider the asymptotic dipole field of N such Skyrmions. Let the i-th
Skyrmion be rotated by (¥R € SO(3) relative to the standard hedgehog
orientation, so that its dipole matrix is ¢ () R. The total dipole moment
is e ((I)R +@D R4 ..+ R) . The asymptotic pion field far from all the
Skyrmions is proportional to this, and the energy in the far field (integrated
over the region outside a large sphere) is proportional to

~\NT
¢ (VR+@ R+, +ME) (DR+D R+ +™MR) . (20)

This quantity can be expressed as

2 (3N2 _ %Z Tr ((i)R _ (J')R) ((i)R _ (j)R)T) (21)

i#]
using the fact that Tr(RRT) = 3 for any R € SO(3). To minimise (21)
we should attempt to maximise each term in the sum. It is easy to check
that if DR (DRT is a rotation matrix for a rotation by # about any axis,
. . . . T
then Ty ((‘)R - (J)R) ((')R - (J)R) = 4 — 4 cos b, and is maximized when
6 = m. For N < 4 it is possible to arrange § = = for all terms in the sum.
This is achieved with ¢ () R given by the four matrices in (15). The quantity
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(21) takes values c2N(4 — N). For N > 4 it is possible to make the quantity
(21) equal to c2N(4 — N) where N = N mod 4, by arranging groups of four
B =1 Skyrmions to have no net dipole moment, but we do not know if this
result is optimal.

We conclude with some remarks on instanton-generated Skyrme fields.
We recall that from any Yang-Mills instanton in IR*, one may generate a
Skyrme field in IR® by calculating the holonomy of the gauge potential along
all lines parallel to the (Euclidean) time axis [4]. A Skyrme field of baryon
number B is generated from an instanton of charge B. For more details
and examples, see Refs [5, 6]. An instanton-generated Skyrme field does
not satisfy the static field equation of the Skyrme model exactly (although
it may do so approximately), so we cannot use our earlier argument to
rule out a monopole moment; nevertheless, it has no such moment, as the
following argument shows. We first invert the instanton in the unit sphere
in IR*. Since an instanton can be extended to a regular gauge field on $4,
the inverted instanton, in a suitable gauge, has a finite field tensor at the
origin and is smooth there. After inverting the instanton, the Skyrme field is
given by the holonomy along circles passing through the origin and tangent
to a fixed line (the image of the time axis). The Skyrme field at large »
is given by the holonomy on a small circle, since the line through (0, ) is
mapped to a circle of radius 1/2r. The asymptotic Skyrme field depends
on the area of this circle and on the component of the field tensor in the
plane of this circle, which is approximately constant. In fact, ¢ ~ 1 and
7%(x) ~ mEfz;/4r3. Here E? is the electric part of the field tensor of the
inverted instanton at the origin, E}z;/r is the component in the plane of
the circle and 7/4r? is the area of the circle. The asymptotic pion field has
a dipole form, with dipole moment matrix C? = 72 E2. For the special case
of a Jackiw, Nohl, Rebbi instanton, this dipole moment has been calculated
in terms of the data defining the instanton. The formula is in the Appendix
of Ref. [6].

The instanton-generated Skyrme fields which are closest in energy to
the Skyrmions for B < 4 are now known [6], and their symmetries and
asymptotic fields are analogous. However, the numerical values of the dipole
moments differ somewhat, except for B = 4, where they vanish anyway.
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