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A critical survey of recent developments in the description of exclusive
reactions is given. An approach to nucleon distribution amplitudes and
related properties is discussed, which makes use of QCD sum rules and the
renormalization group. The behavior of helicity-conserving nucleon form
factors in the spacelike region has been studied in detail, emphasizing the
importance of a self-consistent treatment of endpoint contributions via a
modified QCD factorization which takes into account Sudakov suppression
of soft-gluon radiation. None of the considered observables is inconsistent
with the data, although the leading perturbative contribution to the pion
and nucleon form factors is small, calling for rather large K-factors and/or
sizeable higher-twist contributions.

PACS numbers: 12.38. Bx, 12.38. Cy, 11.50. Li, 13.40. Gp

1. Preface

The prevalent theory of strong interactions at the microscopic level is
Quantum Chromodynamics (QCD). It is believed that QCD has within
it the power to predict the short-distance behavior of hadrons in terms
of quark and gluon degrees of freedom, as well as to provide a dynami-
cal explanation of quark confinement and the formation of hadronic bound
states. Lack of precise knowledge about the interquark forces at large sep-
aration and the mathematical intractability of the nonlinear structure of
the QCD dynamics preclude an ab tnitio analytical calculation of hadronic
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quantities. One has to resort to (more or less) plausible phenomenological
confinement mechanisms or use frameworks which are capable of simulat-
ing the nonperturbative regime of QCD either in the continuum, e.g., via
QCD sum rules {1], or numerically on the gauge lattice [2]. Although lat-
tice calculations in the strong-coupling domain are very promising [3], there
are conceptual and technical limitations; e.g., the properties of a single
proton cannot be determined properly at present. More.recent approaches
attempt to simulate low-energy QCD by effective Lagrangians, e.g., the
Nambu-Jona-Lasinio model (for a recent review, see [4] and references cited
therein), which implement chiral symmetry breaking and may, in principle,
be derivable from QCD, albeit a rigorous derivation via path-integral tech-
niques is still rudimentary. The perception of strong-interaction dynamics
at different resolution (energy) scales is illustrated in Fig. 1.
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Fig. 1. “Flow” of strong-interactions dynamics.

1. Introduction

The quantitative description of exclusive reactions, in which intact had-
rons appear in the initital and final states, involves the detailed calculation
of hadronic wave functions — uncalculable within a perturbative frame-
work. The theoretical basis in applying perturbative QCD is provided by
the factorization theorem [5], which enables the multiplicative separation of
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short- from large-distance interactions in a renormalizable way. In technical
terms, this means that the process can be described by a Wilson operator
product expansion (OPE) [6]. The c-number coefficient function (small-
distance interaction) corresponds to a (process-dependent) hard-scattering
amplitude which in leading order of the coupling constant is described by the
one-gluon exchange kernel, the justification being provided by asymptotic
freedom [7]. All information about the strong nonperturbative interactions
at large distances is contained in the matrix elements of appropriate opera-
tors, describing the initial and final hadronic states. At leading twist level,
these soft parts are represented by valence-state wave functions describing
the distribution in longitudinal momentum fractions, truncated from above
by a characteristic virtuality of the order of the factorization scale.

external probe
, 2 « . !\adron
-9, =Q°Cy &% : jets
o

hadron interaction

------- — | region

single intact
hadron

Fig. 2. Factorizition of short- and large-distance effects within QCD.

A convenient framework for describing exclusive reactions, based on
factorization and the renormalization group, is the convolution scheme of
Brodsky and Lepage [8] (see also [9, 10]). Within this scheme, the reaction
amplitude becomes the product (the convolution) of two or more factors,
each depending only on the dynamics specific for that particular momen-
tum (or distance scale). The nonperturbative information on the hadronic
quark structure is encapsulated in the distribution amplitude over longi-
tudinal momentum fractions z; (¢ = number of valence quarks), termed
&(z;,pu?), which is the integral over the transverse momenta k,; of the
hadron valence-quark wave function at resolution scale u? (see Fig. 2). In
a physical gauge (like the light-cone gauge, AT = 0 — extensively used
in [8)), it is the probability amplitude for the hadron to consist of valence
quarks with fractional momenta0 < z; <1, ) ;2; = 1 (ina p3 — oo frame)
moving collinearly up to the scale 2. The hadronic distribution amplitudes
are universal quantities, i.e., independent of the specific exclusive process
considered. Their extraction directly from experiment is still a prodigious
task, but may become feasible in the future [11, 12].
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On the other hand, the short-distance or large-momentum transfer sub-
processes are accounted for by the hard-scattering amplitude which is calcu-
lable within perturbative QCD. Contributions from higher Fock states with
additional gg-pairs and gluons are suppressed by powers of the momentum
transfer. The principal success of this scheme is the predicted power-law
fall-off behavior of elastic form factors at asymptotic (space-like) momen-
tum transfer [8]. However, where the transition to the asymptotic regime
takes place remains a point of controversy [13, 14].

3. On the nucleon distribution amplitude

For the discussion below, it is instructive to write the valence-quark
component of the proton Fock state with positive helicity:

1
1
[P +) = —=— /[dz] /[dzk_L]{st;, MEIIIS 4 Py M2I20S
vN.!
0

—(%32 + W231)M11_t2_a3}5a1a2a3’ (1)

where we assume the proton to be moving rapidly in the 3-direction, mean-
ing that the ratio of transverse to longitudinal momentum fractions of the
quarks is small, and the subscripts on ¥ refer to the order of momentum
arguments, for example, wm(z,h) = W(zl,ﬁll;zz,glz; zg,EJ_3). The
integration measures are defined as follows

1 1 1—2 1
/[dz] = /dzl / dzgfdzg §(1— 24 — 23 — 23) 2)
0 0 0 0
and s
2, 1. 1 2 z 2 2 2
[d2k)) = Tort) 5@ ;ku dky 1 d%k ) 2d%k 5. (3)

The three-quark state with helicities Ay, A2, A3 and colors ay, a2, a3 is given
by

1 - - -
[a s 21, k115 A1) Uay; 22, k12, A2)|dag; 23,k 13, A3) -

JE1%2%5
(4)

Since the orbital angular momentum is assumed to be zero, the proton

helicity is the sum of the quark helicities. The quark states are normalized
by

(€0t @ RN ga 3 240 B L) = 224(27) 28010 B30 8(2} — 2:)8(R; - ko).
(5)
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The nucleon distribution amplitude is defined by [8]

3 u?
2 —3vFB ~(3)
$eont) = () [IPRIUEED), (6)
where the logarithm in front of the integsra.l is due to wave function renormal-
ization, i.e., Z3 = lim,a_,, (ln ﬁ;) 77Fﬁ, 8 is the Gell-Mann and Low
function, and vy is the anomalous dimension associated with quark self en-
ergy. The physical content of Eq. (6) is that an external probe, for example,
an off-shell photon, “sees” only the distribution of quarks over longitudinal
momenta inside the nucleon, while its transverse size requires wavelengths
x 1/p, so that the distribution of quarks over transverse momenta is not
resolved.

The nucleon distribution amplitude is related to the following trilo-
cal matrix element of three-quark operators between the vacuum and the
nucleon, covariantly parametrized in terms of the scalar functions V' = (vec-
tor), A = (axial vector), and 7' = (tensor) with positive parity {15]:

(0l (21 )52 (22)d5(28) p) corasas =
LN [(BC)ap(15 N )4V (2i B) + ($15C)apNAlzi - P)
(P Cap(u1sN)4T(zi p)| . (1)

In (7), # = PuYu> Ouv = 2[7us 7], N stands for the proton spinor, C' de-
notes the charge conjugation matrix, and the proton state with momentum
p is notated |p). The dimensionful constant fn represents the value of the
proton wave function at the origin of the configuration space, i.e., at zero
interquark separation.

Because of the permutation symmetry between the two up quarks, the
functions V and T are symmetric and A antisymmetric in their first two
arguments. In addition, the requirement that the three quarks have to be
coupled to give an isospin 1/; state (the nucleon), yields the relation

2T(1,2,3) = V(1,3,2) — A(1,3,2) + V(2,3,1) - A(2,3,1).  (8)

Hence, it follows that Eq. (1) can be expressed in terms of a single indepen-
dent scalar function, e.g., [16] #n(z;) = V(z;) — A(z;), which transforms
under the two-dimensional matrix representation of the permutation group
and has the normalization

1
/ (de] Sny(zi ) = 1. )
(1]
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Although ¥(z;, k| ;), and hence #(z;, Q?), cannot be calculated within
perturbative QCD, an evolution equation with respect to the momentum

scale can be derived on the basis of the renormalization group equation
(RGE) {8], so that

1

{Q2 an 3CF }Q( nQ ) = Ta [dy] V(wzayz) ¢(yu Q ), (10)

0

where Cr and Cg are, respectively, the Casimir operators of the fundamen-
tal and adjoint representations of SU(3). The one-gluon-exchange kernel V'
at the Born level has been calculated in (8].

Any solution of this equation can be expressed in terms of the evolution-
kernel eigenfunctions ¢, and the asymptotic distribution amplitude [8]

Pas(zi) = 120212223 (11)

to read

2

#(24,0%) = 8us(2) 3 Bali)exp | [ Far(a() | ue), (12
n=0

2

where the projection coefficients

1
Bu(w) = 1 [ / 16 (2:)n (21, 17) (13)
0

depend on the nucleon wave function itself and are therefore uncalculable
within perturbative QCD. In contrast, its momentum-scale dependence is
RG-controlled and in leading log approximation one has

In —?—
Bn(Q?) = Bn(k) (ln_qca) (14)

A%¢p

The eigenfunctions {$,} and the asymptotic wave function $,s [17]
are completely determined by perturbative QCD. In the case of the meson,
$as = 3/4(1 — (%) with { = 21 —z2, and the system of multiplicatively renor-
malizable (conformal) operators is represented by the Gegenbauer polynomi-

als C3/ 2(( ) [18], which are orthogonal with respect to the weight (1 — ¢2).
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Within this basis, the anomalous dimension matrix diagonalizes and the
corresponding eigenvalues can be calculated in closed form (19, 20].
The nucleon case is more complicated because the orthogonality condi-
tion
1
/[dz] 21222384 (2:)81(2:) = N 165 (15)
0

is insufficient to determine the polynomial basis uniquely. This is because
the orthogonalization of polynomials depending on two (or more) variables
via a generalization of the Hilbert—Schmidt method has no unique solution.
A polynomial basis orthogonal with respect to the weight w(z;) = z1z223 is
provided by the Appell polynomials [18]. Hence, it is convenient to expand
the nucleon eigenfunctions {$,} in terms of these polynomials [8]:

. n+m=M
$r(zi)= Y cknFum(5,2,2521,22). (16)

n,m=0

However, the explicit construction of nucleon eigenfunctions beyond poly-
nomial order M = 2 becomes increasingly tedious and the corresponding

eigenvalues
3Cr CB)
n = Py + ’ 17
2 (2ﬂ 5 (17)

(where 7, are the zeros of the characteristic polynomial that diagonalizes the
evolution kernel) of the anomalous dimension matrix are no longer rational
numbers. In recent meetings [21-23], we reported on a calculation {24] of
{$,,} which makes use of symmetrized Appell polynomials

jimn(zl’ 33) = ']f[fmn(xl, 33) + fnm(zlaz3)] ’ (18)

(where + refers to m > n and — to m < n) of up to maximum degree
M =9. The a.dva.nta.ge of this basis over the ordinary one is that the integral
operator V = j [dy] V(zi, yi) commutes with the permutation operator P13
and thus becomes block-diagonal within a particular polynomial order for
different symmetry classes (S, = 1) of eigenfunctions. Then it is possible
to analytically diagonalize 1% up to order 7. For every order M, there are
M + 1 eigenfunctions of the same order with an excess of symmetric terms
by one for even orders. The total number of eigenfunctions up to order M is
#max(M) = 12(M + 1)(M + 2) and the corresponding (M + 1) eigenvalues
are obtained by diagonalizing the (M + 1) x (M + 1) matrix. The pattern
of three-quark anomalous dimensions up to order M = 9 is shown in Fig. 3.
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Fig. 3. Pattern of nucleon-kernel eigenvalues (three-quark anomalous dimensions)
up to order M = 9. There are 30 symmetric and 25 antisymmetric eigenfunctions
under the permutation P;a, shown in comparison with the eigenvalues of the meson
kernel.

It turns out that the system of eigenfunctions {#;} satisfies a commu-
tative algebra subject to the triangular condition |O(k) — O(1)| < O(m) <
O(k) + O(1) :

$(z:)i(z:) = Y Fiidm(z:) (19)
m=0

with structure coefficients F}} defined by

1
F' = N, / [d2] 2123(1 = 21 — 23)Bm(zi)Ba(z)di(z:) . (20)
0

These structure coefficients are symmetric, i.e., F{} = Fji'. Furthermore,
F,?k = Ng/Nj. The utility of this algebra for concrete applications will be
discussed elsewhere. The eigenvalues v, of the diagonalized evolution equa-
tion coincide with the anomalous dimensions of multiplicatively renormal-
izable I, /, baryonic operators of twist three (recall that twist = dimension
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— spin). Because they are positive fractional numbers increasing with M,
higher-order terms in (12) are gradually suppressed.

An orthogonalized basis including a total of 55 eigenfunctions (polyno-
mial order M = 9) together with the associated normalization coefficients
and anomalous dimensions has been constructed in [24]. A compedium of
the results up to order M = 4 is given in Table L.

Orthogonal eigenfunctions &,(z;) = 3, af, z¥z} of the nucleon evolution equa-
tion up to polynomial order M = 4 in terms of the coefficient matrix af; with
ay; = Saaj,, and a3, = 0 for all n. The numerical results for n > 12 have been

TABLE I

obtained with a much higher numerical accuracy than shown in the table.

n M Sn Tn Mn Na

0 0 1 & -1 120

1 1 -1 2 2 1260

2 1 1 ¥ 1 420

3 2 1 38 : 756

4 2 -1 e z 34020

5 2 1 B 5 1944

6 115-+/67 =(=7e4vo7) 4620 (485+11 v07)

3 1 162 24 97
7 3 1 115407 79+/07 4620 (48511 v67)
162 24 o7
8 559—a801  —(—379++4801) 27720 (33607—247 v4801

3 -1 810 120 4801

9 3 _1 55043801 3794/4801 27720 (33607+247 v4801)
810 120 4801

10 4 346— /1081 —(-256+v1081 198560 (7567—13 v1081)
-1 408 60 1081

1 4 _1 346+yi081 256++/1081 106560 (7567+13 v/1081)
405 60 1081

12 4 1 0.70204 3.23876 1

13 4 1 0.80651 3.94397 1

14 4 1 0.93589 4.81727 1

1785
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TABLE I continued

n ago ato a%o a1 a3o
0 1 0 0 0
1 0 1 0 0 0
2 -2 3 0 0 0
3 2 -7 8 4 0
4 0 1 -4 0 0
5 —17 ¥ 14 0
6 1 —6 4“?/57 3 (31;¢§7) -5 (1::@)
7 1 -6 4107 3 (31+v/97) -5 (17-v97)
4 4 16

601 4801
8 0 1 -3 0 60144801
601—+/4801
9 0 1 -3 0 €01—v/4801
379 1081

10 0 1 -5 0 -
—+/1081
11 0 1 -5 0 sro-yioal
12 153.37061 —1380.33552  5232.86956  5006.42414 —8063.85349
13 | 332.500864 —2992.50778 9240.51876  17166.06044 —11695.76593
14 | -137.11538  1234.03849 —1843.05428 —12981.41464  —587.61051

TABLE I continued

n az a%o a3 G2

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 -5 !318”1972 0 0 0
=5 (31+V/97)

7 s 0 0 0
59—+/4801

8 59-+/4801 0 0 0
59++/4801

9 v 0 0 0

10 61— /1081 ~{159++/1081) —(81-+/1081) 0

8 10 8
1 61++/1081 —(159—v/1081) —(81+v/1681) 0
8 0 8

12 —9178.44426 4345.63139 4926.80699 8503.27454

13 —31471.11081 5068.49438 19489.65169 23962.91822

14 23799.26017 1382.85660  —10302.90296  —26992.71442
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The nonperturbative input enters Eq. (12) through the coefficients
B, (p?) which represent nonperturbative matrix elements of appropriate
three-quark operators (in the Fock—-Schwinger gauge z,A4, = 0) interpo-
lating between the proton and the vacuum. Their determination involves
correlators of the form [16, 25, 26|

1(rr2nam)(g, z) = i / dtz e H(QIT (05" (0)05 () 12)(2 - ¥ )y
=(z-q) n1+nz+n3+m+31(n1nzn3,m)(q2) , (21)

where z is a lightlike auxiliary vector (z% = 0) and the factor (z-7).,., serves
to project out the leading-twist structure of the correlator. The computa-
tion of the Wilson coefficients on the quark side of the correlator amounts
to the perturbative evaluation of diagrams involving quark/gluon conden-
sates [16]. It yields the theoretical side of the sum rule. The hadronic (phe-
nomenological) side of the sum rule is obtained by saturating the correlator
by the lowest-mass baryon state(s) via a dispersion relation. Reconcilia-
tion of the two sides of the sum rule with respect to the Borel parameter
(which resembles momentum) determines the margin of permissible values
for a particular moment (for more details, see {16, 29]). The three-quark
operators in Eq. (21) are typified by the expression

3 n;
0(n1n2'n3) — (Z .p}—(n1+n2+n3) H (iz . a_i_) O(Zi . p)lz,-=0 ) (22)

i=1
Their matrix elements
(010‘(Yn1n3n3)(0)lp(p)> = fn(z-p)mrtmtnstin O (ninana) (23)

are related to the moments

1
O (mimans) _ /[dz]x?‘m?zz;“O(z],:cg,:c;;), (24)
0

where O(z;) stands for one of the amplitudes V', T', A, or linear combinations
of them. Because of the linear momentum conservation, z1+z2+2z3 = 1, not
all the moments at a given order M = nj +nz +n3 are linearly independent.
For instance, at order M = 3 there are 20 moments out of which only 10
are strict. Which combinations are actually taken, depends on the choice
of the polynomial basis in which the eigenfunctions are expressed. In the
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present work, we follow (8] to use as such the powers of the mononomial

z1z23. Then
1

04
#7 = [1ds] 2} 2 o} En(en ). (25)

0
As we first pointed out in [21-23], it is possible to derive a closed-form
expression of the expansion coefficients B,, in terms of strict moments, an

expression which enables the analytical calculation of these coefficients to
any desired order of polynomial expansion:

Bn(l‘z) VN,
vVN. 120 ;

afy; 8009 (?) . (26)
1,j=0

The projection coefficients a?j and the normalization constants N, up to or-
der M = 9 have been calculated in [24]. Those up to order M = 4 are shown
in Table I. The utility of Eq. (26) is twofold. First, as we shall see below,
the moments of hadron distribution amplitudes are not accurately deter-
mined. Thus, without the ezplicit relation between expansion coefficients
and strict moments, one has to perform a simultaneous and self-consistent
fit to the moment constraints, which becomes increasingly tedious as the
moment-order grows. Second, as already stated above, the orthogonaliza-
tion procedure of polynomials with more than one variable is not unique.
This means that in order to compare expansion coefficients B,,, obtained in
different approaches, they ought to be normalized. Without the knowledge
of the normalization constants N,,, the values of B,, are of no significance.
However, having derived Eq. (26), the knowledge of the normalization used
in different approaches becomes superfluous. The coefficients B,, can be
self-consistently computed on the basis of the strict moments only which
are universal quantities, modulo normalization. (Recall that, following [16],

é(ooo) 1.) All these advantages will become apparent below.
The link between B,, and the strict moments of $ is exemplified below
(see also [27, 28]).

Bi(1?) _ 1260 [¢(100) Q(OOI)] ‘

120 ut’
420
2 (000) (100) (001)
Ba(i*) =T [220° - 38" - 36§ ] ]“2,
Bs(1?) _I_Z% {2§(ooo) .w(mo) 715(001) + 845(200)
+483°V + 88| |

n
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34020 4 4
2y (100) _ x(001) 4 ,(200) A, % -(002)
120
14 14
+?¢§3°°) + 14800 4 ?qug”)] (27)
”2

Note that By is fixed to unity by the normalization of &5 (cf., Eq. (9)).
Furthermore, note that in the present work the notations of [29] are adopted,
which imply that B; has the reversed sign relative to [8] and is given by

420
Ba(w?) = 1oy [80°0 - 34553‘“’] |,L2 . (28)

Useful constraints on the nucleon distribution amplitude are obtained
implicitly by restricting its first few moments within intervals determined
from QCD sum rules adapted to the light-cone [16, 25, 26].These are eval-
uated with the aid of correlators of the type (21) at some self-consistently
determined normalization point go = pp of order 1 GeV (see, e.g., [29])
at which a short-distance OPE can be safely performed and quark-hadron
duality is supposed to be valid. The original Chernyak-Zhitnitsky (CZ) ap-
proach [16] has been rectified in the analysis of King and Sachrajda (KS) [25],
and has more recently been extended to provide sum-rule constraints for the
third-order moments by Chernyak, Ogloblin, and Zhitnitsky (COZ) [26].
The new set of moment sum rules comprises 18 nontrivial terms with re-
stricted margins that comply with most of the previous results [16, 25], but
disagree with those derived on the lattice for the lowest two moments [30,
31).

The constraints on the moments have been used by several authors [16,
25, 26, 32] to (re-)construct model amplitudes for the nucleon which, being
the product of a fitting procedure, do not necessarily satisfy all sum-rule
requirements. We reiterate that only the knowledge of Eq. (26) makes it
possible to determine analytically a genuine solution (if any exists) to the
QCD sum rules. Of course, the problem of determining an unknown (even
non-negative) distribution from a finite set of moments has no unique solu-
tion (see, e.g., [29]) and references cited therein). Operationally, this means
that the expansion in terms of eigenfunctions is truncated after taking into
account bilinear combinations of longitudinal momentum fractions (two-
quark correlations) and assuming that still higher-order terms are of minor
importance, if properly included. Indeed, it was shown in [33] that de-
liberately incorporating in the decomposition of the distribution amplitude
Appell polynomials after the second order renders the expansion ambiguous,
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leading to either unphysical form factors or, if the right magnitude of the
proton magnetic form factor is inputted, to unphysical oscillations of the
distribution amplitude at small z-values. In the same work it was appreci-
ated that imposing a “smoothening” criterion on such candidate solutions,
is tantamount to reducing the third-order contributions to small corrections
of the second-order solutions. This indicates clearly that the truncation at
the second order is justifiable, since the shape of the corresponding ampli-
tudes is a characteristic property of the entire series and that the errors
(and amount of cut-off dependence involved) are of subleading importance.
In some sense such a procedure resembles the optimization of the renormal-
ization scheme dependence which aims at minimizing the next-to-leading
order corrections, according to the principle of minimum sensitivity [34].
Physically, this truncated representation of the distribution amplitude can
be thought of in analogy to a holographic image that is not destroyed when
cut into smaller pieces (corresponding to a lower order of truncation) but
becomes rather less sharp [27].

The moments of the amplitude &, in terms of the coeflicients B, up
to order M = 3 are displayed in Table II.

TABLE II

Moments of the nucleon distribution amplitude ¢(,:,""’"’) = QE’G] in terms of the
expansion coefficients B, up to order M = n; + ny +ng = 3.

k
k QIN] Moments
000
o | 8 B,
(100)  7By4+B;+B;
1 &y 5
(010} 7Bg-2B
2 - 3N S The
(001) 7By-B;+B;
3 L ¥ 3
4 ¢(200) 108 By+27 B;4+27 B,+9B3—Bs—B;
N 756
5 Q(OZD) 18 Bg—-9 B3+ B3 +B;
N 126
6 $(002) 108 By-27B,427B;49B,+B,-B;
N 756
7 | $110) 72Bo49B,-9B;-3B;4B4-38;
N 756
8 ${101) 36 Bo+9B,-3B,+2 By
N 378
9 $011)  72By-9B,-9B,-3B;-B,-3B;
N 756
10 §(300) 87120 Bg+20040 B, 429040 B;+17424 B;—1936 B, 1936 B;—33 B4—33 /87 By
N 1219680
—33 B7+33 /97 By+146 Be+2 /4801 By +146 Bo—2 /4801 By
1219680



A Modern View on Ezxclusive Reactions ... 1791

TABLE II continued

k
k Q[N] Moments
11 | #'939) 185 Bo—110B3+23 By+22 By+Be+By
N 2310
12 gp(003) 87120 Bo— 29040 B, 429040 B;+17424 B;+1936 B,—1936 By
N 1219680
—33 Bg—33 /97 Bg—33 By4+33 /97 B,—146 By—2 /4801 By 146 Bo+2 /4801 B,
1219680
13 455310) 5940 B+1320 B;+88 B, —440 By+15 Blge-g:fz\?'_lBj‘}-IS Br—3y/97B7—12B3—12B,
14 45(201) 130680 Bo+1452c} B;443560 B; 8712 By-968 B,110648 By
N 3650040
—231 Bg+33/97.Bg—-231 B;—33 V87 By 174 Bs—6 V4801 By—174 By+6 /4801 B,
3659040
15 égzo) 495 Bg+55 B; 165 B;—11B3+11 Bs—11B;—3B,~3By+ By + B,
13860
16 ¢(102) 130680 Bp—14520 B;+43560 B,—8712 B,4968 B,+10648 By
N 3659040
—~231 Bg+33 /07 Bg—231 By—33 /07 By 4174 Ba+6 /4801 B, 1174 By~ 6 /4801 By
3650040
17 | #'921) 495 Bo—55B8,-165 By~11 By—11 B4—11 B;s—3 Bs—3 B7—By—By
N 13860
18 45;?12) 5940 By —1320 B; —88 B, —440 By +15 Bg+3 /87 Be+15 By—3+/97 8,412 B3+12 B,
166320

The profile of the model amplitudes CZ, KS, COZ is similar and shows
a strong asymmetry in the distribution over longitudinal momentum, with
an up quark carrying most of the nucleon’s momentum, whereas the other
two quarks are “wee” (see [27]). Significantly, all these amplitudes predict
a rather large ratio of the nucleon magnetic form factors |G3,|/G%, < 0.5.

An alternative nucleon distribution amplitude was proposed by Gari
and Stefanis (GS) {32], which was motivated by the possibility of analyz-
ing the form-factor data under the assumption that the electron-neutron
differential cross section o, is dominated by G%, whereas G7%; is asymp-
totically small, or equivalently that |FJ'| < |F}| at all Q% values. This
model, which cannot match the sum-rule requirements in the allowed satu-
ration range [29], predicts a different, though still asymmetric, longitudinal
momentum balance than models of the CZ/COZ-type. In particular, it
seems to indicate [29] strong two-quark correlations (diquarks [35]) inside
the nucleon.

On the phenomenological side, all discussed models concur in predicting
the right normalization and evolution behavior of the magnetic proton form
factor [27, 29, 36], in fair agreement with the latest high-QZ SLAC data [37].
On the other hand, the quality of the current neutron data [38, 39] cannot
provide conclusive evidence towards either one of these options.

The relationships between form factors for various exclusive reactions
involving nucleons were explored in {29, 40] in which it was pointed out that
the leading electromagnetic N — A% transition form factor G}, [41] and the
neutron magnetic form factor G, are intrinsically anti-correlated via the
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nucleon distribution amplitude. As a result, one of those form factors tends
to be large when the other is small. Nucleon distribution amplitudes of the
CZ-type lead to an almost vanishing G}, whereas the GS one gives |G}/ of
the same order of magnitude as G},. The first behavior would explain why
the data on the ratio of the multipole amplitudes Fg,/Fyy, yields a value
compatible with zero. In contrast, the second one conforms to what one
typically sees experimentally for other nucleon-resonance transitions [42].
These results were obtained by modeling the A distribution amplitude in
an approximate way, namely, as being the symmetric part of the nucleon
distribution amplitude. However, when more realistic model amplitudes
for the A [43, 44] are used [45, 46], the sign of G}, calculated with the
GS-amplitude, turns out to be negative.

Substantial information about the nucleon’s internal structure can be
extracted from exclusive decays of heavy quarkonia into pp. Recently, decays
of several charmonium states have been measured by the E760 Collaboration
at Fermilab with a remarkable degree of accuracy [47]. It was pointed out
in [48] that the GS model leads to a prediction for the 3§; — pp decay width,
which is, at least, 50 times smaller (depending on the value of a, actually
used) than the experimental value. Thus, none of the models discussed
so far is best for all the data while reasonably complying with the QCD
sumn-rule constraints.

However, physical intuition suggests a way to resolve these problems.
The idea is the following. Suppose that COZ-type and GS-type solutions
are not mutually ezcluding options for modeling the quark structure of the
nucleon, but rather complementary to each other. This would imply that
they are different facets of a more fundamental structure which is capable of
unifying both types of models into a single one. We have shown in Ref. [45]
that such a solution indeed exists and it turns out to be something of a
hybrid between the COZ-amplitude and the GS one; thus the “heterotic”
solution (Fig. 4). (“Heterosis” means increased vigor due to crossbreeding.)

To put this model in perspective, it predicts results in agreement with
the data for a number of exclusive processes without resorting to any ad hoc
tuning of the model parameters, like Aqcp or a, from case to case. As a
result, it provides the possibility of analyzing the form-factor data under the
assumption that asymptotically |G};|/G%, < 0.1, as in the case of the GS
model, while the agreement with the QCD sum-rule requirements [26] on
the moments of #,y up to order three has almost the same overall accuracy
as in the case of the COZ model. It is remarkable that up to the second
order, the heterotic amplitude satisfies the KS moment constraints better
than the COZ amplitude (Table IIT). This is particularly important because
the KS results have been independently verified by Carlson and Poor [43]
and also by Bonekamp [49]. Furthermore, the calculated decay widths and
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Fig. 4. Heterotic conception of the nucleon distribution amplitude: the heterotic
model amalgamates the two previous types of models into a new structure with
distinct geometrical characteristics by inherently combining their best features.

branching ratios for the decays of the charmonium states 36,,3P;,and *P,
into pp are in excellent agreement with the data [50].

TABLE III
Moments M = n; + nz + ns < 3 of the heterotic nucleon distribution amplitude in com-

parison with previous models and the QCD sum-rule constraints of Chernyak, Ogloblin,
and Zhitnisky [26], and King and Sachrajda [25].

(nimans)  COZ-SR KS-SR  ipinans) glpinans) gnanans) glnatans)
(000) 1 1 1 1 1 1

(100) 0.540 —0.620 0.46 — 0.59 0.5721 0.5790 0.6269 0.5500
(010) 0.180 — 0.200 0.18 — 0.21 0.1837 0.1920 0.1371 0.2100
{001) 0.200 - 0.250 0.22 - 0.26 0.2442 0.2290 0.2359 0.2400
(200) 0.320 — 0.420  0.27 - 0.37 0.3380 0.3690 0.2879 0.3500
(020) 0.065 — 0.088  0.08 — 0.09 0.0661 0.0680 0.0321 0.0900
(002) 0.090 — 0.120  0.10 - 0.12 0.1696 0.0890 0.0079 0.1200
(110) 0.080 — 0.100  0.08 — 0.10 0.1386 0.0970 0.1080 0.1000
(101) 0.090 -0.110 0.09 - 0.11 0.0955 0.1130 0.2309 0.1000
(011) —0.030 — 0.030  unreliable -0.0210 0.0270 —0.0029 0.0200

(300) 0.210 — 0.250 0.2101 0.2445 0.1281 0.2333
(030) 0.028 — 0.040 0.0392 0.0381 0.0169 0.0573
(003) 0.048 — 0.056 0.1392 0.0485 —0.0515 0.0813
(210) 0.041 — 0.049 0.0789 0.0587 0.0463 0.0593
{201) 0.044 — 0.055 0.0490 0.0658 0.1135 0.0573
(120) 0.027 — 0.037 0.0504 0.0243 0.0278 0.0300
(102) 0.037 — 0.043 0.0372 0.0331 0.0836 0.0320
(021) —0.004 — 0.007 —0.0235 0.0056 —-0.0127  0.0027
(012) —0.005 — 0.008 —0.0068 0.0073 —0.0241 0.0067

What’s more, a whole spectrum of solutions conforming with the exist-
ing sets of sum rules [25, 26], all theoretically acceptable, was determined



1794 N.G. STEFANIS

in [28, 51]. This is achieved by recourse to a “hierarchical” treatment of the
sum rules [28, 45, 51] that accounts for the higher stability of the lower-level
moments relative to the higher ones [29] and does not overestimate the sig-
nificance of the still unverified constraints [26] for the third-order moments.
Thus for each moment my (k = 1,...,18), we define

X = (2 (o) + X ) [1 — O(my — ME™O(MP™ — my)]  (29)

with )
X)zc,(a) = min(|MP™ - my|, my - M;rcmxi)Nk_la (30)
where N = {M,’c“i“[ or |M***|, whether mj, lies on the left- or on the

right-hand side of the corresponding sum-rule interval (x2,, = 3 x3) and

100, 1
2
Xk,(b) = { 10, Ii

9

<3
<9 (31)

The purpose of this parametrization (expressed in Eq. (31) in terms of arbi-
trary penalty points) is to ensure that third-order contributions should only
refine the initial second-order representation of the distribution amplitude,
and aid to suppress solutions with unphysical oscillations. Again we take
refuge in the fact that we are formally dealing with a truncated expansion
and we have to minimize the effect of unestimated higher-order corrections.

Fig. 5. Two-dimensional view of the “hierarchical” x? criterion. Only the CO2Z
branch of the “fiducial orbit” is shown.

Depending on the degree of matching with the corresponding sum rule,
a solution found this way appears as a local minimum of the underlying x?2
criterion (Fig. 5). A compilation of the spectrum of solutions, determined
in [28, 51], is given in Table IV.
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TABLE IV
Theoretical parameters defining the nucleon distribution amplitudes discussed in
the text.

Model B B; By By Bs d{deg] R x?  Symbol
Het 3.4437 1.5710 4.5937 29.3125 —0.1250 —1.89 0.1040 33.48 .
Het' 4.3025 1.5920 1.9675 —19.6580 3.3531 24.44 0.4480 30.63 .
lolo VALY 3.5268 1.4000 2.8736 —4.5227 0.8002 9.13 0.4650 449 W
cozZer 3.2185 1.4562 2.8300 —17.3400 0.4700 5.83 0.4881 21.29 +
COZ 3.6750 1.4840 2.8980 —6.6150 1.0260 10.16 0.4740 2464 U
oA 43050 1.9250 2.2470 —3.4650 0.0180 13.40 0.4870 250.07 ¢
KS** 3.5818 1.4702 4.8831 31.9906 0.4313 —0.93 0.0675 36.27 o
KS/COZ°™ 3.4242 1.3644 3.0844 —3.2656 1.2750 9.47 0.4530 5.66 o
KSeP 3.5935 1.4184 2.7864 —13.3802 2.0594 13.82 0.4820 40.38 o
KS 3.2550 1.2950 3.9690  0.9450 1.0260 2.47 0.4120 116.35 {
Gsert 3.9501 1.5273 —4.8174  3.4435 8.7534 80.87 0.0950 54.95 A
Ggmin 3.9258 1.4598 —4.6816 1.1898 8.0123 80.19 0.0350 54.11 V
GS 4.1045 2.0605 —4.7173  5.0202 9.3014 78.87 0.0970 270.82 A
Samples

0 3.3125 1.4644 3.1438 —1.0000 0.8750 7.67 .441 4.63 +
1 3.2651 1.4032 3.5466  2.8685 1.7954 8.94 405 511 +
2 3.4026 1.4917 3.0629  7.3430 0.6719 875 .385 16.07 +
3 3.7225 1.5030 3.6592 10.7265 1.5154 9.29 .355 17.78  +
4 3.8407 1.4968 3.2142 14.4093 0.8757 10.49 .325 19.41 +
5 3.6544 1.4000 3.0993 15.5614 —0.1329 6.35 .305 18.15 +
6 3.8607 1.4000 3.2375 19.8571 —0.1635 6.32 .255 20.57 +
7 3.9783 1.4000 3.2706 22.4194 —0.4805 5.29 .225 21.69 +
8 4.1547 1.4000 3.3756 26.1305 —0.5855 5.02 .175 23.52 +
9 3.4044 1.5387 4.3094 25.5625 0.0625 .01 .153 30.80 +

Remarkably, it turns out that these nucleon distribution amplitudes can
be organized across an “orbit” in the plane spanned by the Appell decom-
position coefficient By and the physical parameter R (Fig. 6), which is the
ratio of the nucleon magnetic form factors: R = |G%,|/G%,. This dynamical
arrangement of sum-rule solutions ranges from COZ-like amplitudes (large
R) to the novel heterotic solution (small R). The “metamorphosis” of so-
lutions from one end of the orbit to the other end can be rigorously traced
by interpolating solutions (notated “samples”). In the course of this analy-
sis [28, 51], optimized versions with respect to the sum rules of all previous
models have been determined. These amplitudes, denoted by the super-
script “opt”, are shown in Fig. 7. The important point, formally, is that
this series of solutions can be continuously parametrized by a parameter,
we termed “hybridity” angle, which is defined through the inner product

-l

where x;(i) = (GS°P,7) and k(i) = (COZ°Pt, ), and the index i denotes
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collectively one of the nucleon distribution amplitudes listed in Table IV.
The hybridity angle is based on the observation that COZ°Pt and GS°P! are
almost orthogonal to each other with respect to the weight of the nucleon-
kernel eigenfunctions w(z;) = $,5(2;)/120. (Their normalized inner product
yields 0.1607, which corresponds to an angle of 80.8°.) It provides a measure
to quantify the mixing of geometric characteristics of amplitudes associated
with different types of (asymmetric) momentum balance. Its utility lies in
the fact that it relates amplitudes to each other, even if they do not belong
to the “fiducial orbit”. Turning to GS-type amplitudes, they correspond to
local minima of x2 at considerably lower levels of accuracy and constitute an
“island” which is separated from the “fiducial orbit” by a large x? barrier.
(For more details, we refer to [28, 51] and previous talks mentioned in the
references.)

0.5 ! Y T - : T T T T -:
T N8 COZ branch ]
a5 04 fHet A ]
(DE i CO} e fiducial
[ | &« * orbit ]
~ 031} "#& fcluster / ) s ]
cs #« KS/COZ branch . ]
O 027 v o ]
0.1t . 0 GS Het\%)
[ " island ]
0.0 F PSR SN VY W S SN S SN ST SES S S S SH S S Y S

-20 -10 O 10 20 30

B

4

Fig. 6. Pattern of nucleon distribution amplitudes matching the COZ sum-rule
constraints (crosses) and such to a combined set of KS/COZ sum rules (open cir-
cles). The inset at the lower left expands the vertical scale between 0.455 and 0.495
(corresponding to the By interval [—10, 0]) to exhibit the close agreement between
the “fiducial orbit” and a variety of proposed amplitudes with third-order Appell
polynomials, not included in our analysis. Significantly, those model amplitudes
which appear as isolated points are exactly the ones which possess unphysical fea-
tures, namely, either in the form of spurious oscillations, or because they violate
the RGE leading to a wrong QCD evolution behavior of form factors (see [28]).
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Closing this section, we note that, following similar ideas of “heterotic-
ity”, we have combined the sum-rule approaches of Refs [43, 44] to derive
an optimum distribution amplitude for the A*(1232) isobar [46]. This
amplitude, though similar in shape to the Carlson-Poor (CP) model ampli-
tude [43], satisfies all sum-rule constraints derived by Farrar et al. (FZOZ)
(44] while slightly violating only one of the (independent) CP-constraints
(Table V). The profiles of our Delta distribution amplitudes plus those of
Refs [43, 44] are shown in Fig. 8. The corresponding expansion coefficients
B2 are given in Table VL.

TABLE V

Moments n; + n3 + ng < 3 of model distribution amplitude for the A*-isobar
in comparison with the sum-rule constraints of Carlson and Poor (CP) [43] and
Farrar, Zhang, Ogloblin, and Zhitnitsky (FZOZ) [44]. The numbers in parentheses
are those given by FZOZ.

Moments Sum rules Models
(n1nang) Ta(FZOZ) CP FZOZ heterotic FZOZ°rt
(000) 1 1 1 1 1
(100) 0.310-0.35 0.350 0.325 (0.32) 0.321 0.325
(001) 0.350-0.40  0.300  0.350 (0.36)  0.357 0.350
(200) 0.140-0.16 0.160 0.150 0.140 0.156
(002) 0.150-0.18 0.123 0.160 0.151 0.154
(110) 0.070-0.1 0.101 0.080 (0.07) 0.078 0.071
(101) 0.090-0.13  0.089  0.095 (0.1) 0.103 0.098
(300) 0.060-0.09 0.085 0.083 (0.085) 0.073 0.090
(003) 0.060-0.10 0.060 0.085 (0.081) 0.071 0.078
(210) 0.025--0.04 0.039 0.030 (0.025) 0.027 0.026
(201) 0.040-0.06 0.035 0.037 (0.04) 0.040 0.040
(102) 0.035-0.06 0.031 0.037 (0.039) 0.040 0.038
Va(CP)
(001) 0.330-0.37 0.350 0.325 0.321 0.325
(002) 0.140-0.18 0.160 0.150 0.140 0.156
(101) 0.072-0.12 0.095 0.088 0.091 0.085

The amplitude notated FZOZ°P* — though compatible with the sum-
rule constraints — seems to be in disagreement with the available data
(see next section). This amplitude was obtained by demanding that the
transition form factor G}, calculated with the optimized version of the COZ
nucleon distribution amplitude, is positive. This makes it apparent that
optimum agreement with the (existing) sum rules does not automatically
entail best agreement with the data, as we have stressed in [21].
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Fig. 7. Profiles of nucleon distribution amplitudes, commonly discussed in the
literature.

TABLE VI

Expansion coefficients for A-isobar distribution amplitudes derived from QCD sum
rules within a truncated expansion of eigenfunctions. Note that B® = 1 by nor-
malization and that only eigenfunctions symmetric under z; « z3 contribute, i.e.,
B = B2 =0. As in the nucleon case, the notation of [29] is adopted.

Models
Expansion coefficients cp FZOZ heterotic FZOZePt
B 0.350 —0.175 --0.2499 —0.1750
B 0.4095 1.071 0.3297 1.4117
B 0.1755 —0.486 —1.6205 —1.6200

4. Phenomenological applications

Having acquired a reliable set of nucleon distribution amplitudes, we
are able to discuss concrete applications.
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Fig. 8. Profiles of model distribution amplitudes for the A+t-isobar, derived from
QCD sum rules. '

The charge and magnetic form factors of the nucleon are “classical”
observables to provide insight into the underlying quark-gluon substructure,
as well as to connect to experimental data. To lowest order perturbation
theory, the hard-scattering amplitude is the sum of all Feynman diagrams for
which the three quark lines are connected pairwise by two gluon propagators
(Fig. 9). This allows the quarks in the initial and final proton (neutron) to
be viewed as moving collinearly up to transverse momenta of order u. Then
it is quite easy to show that Ty ~ (as(Q?%))?/Q*, wherein a,(Q?) is the
running coupling constant of QCD in the one-loop approximation.

The Pauli form factor F; and hence the electric form factor Gg can-
not be calculated within such a hard scattering scheme, since they both
require helicity-flip transitions which are not possible for (almost) massless
quarks in the collinear approximation. These form factors are dominated by
sizeable higher-twist contributions and their calculation demands additional
nonperturbative input [52]. Taking the + component of the electromagnetic
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Fig. 9. Lowest order hard-gluon exchange needed to turn over the spectator quarks
in the nucleon, viewed in the Breit frame.

vertex, the helicity-conserving part of the form factor is represented by

1 1

GM(Q%) = / [de] / [d=")| Fn ()2 8* (2", )T (e ' Qo )& (2o 1), (33)
0

0

where for the sake of simplicity the renormalization and factorization scales
have been identified. To go beyond perturbation theory, nonperturbative
diagrams involving quark-gluon condensates have to be included. (For a
review we recommend [53].) To leading twist (twist three), these additional
diagrams include operators with dimensionality d > 0, giving rise to power
corrections. Their contributions are incorporated in corresponding Wilson
coefficients in the OPE, which in our case depend on the moment order
M = nj + ny + n3. Those of order M = 3 have been calculated in [26];
they have yet to be independently verified. Using these values and the
analytical expressions derived in [29], the proton and neutron form factors
can be calculated in terms of the expansion coefficients B,,. The results for
all considered models are shown in Fig. 10 in comparison with existing data
(see [37) and previous references cited therein). Note that the Q2Z-evolution
of the coefficients B, has been neglected and that an average value a,(Q?)
outside the integral in Eq. (33) has been used (peak approximation). Here
and below the values Aqop = 180 MeV [54] and |fn| = 5.0 X 1073 GeV?
[25, 26] are used.

Since there are no direct data on G}, beyond, say, 5 GeV2, it is virtually
impossible to extract experimental values for the neutron form factors in a
model-indepedent way. Therefore, we show in Fig. 10 the theoretical pre-
dictions along with G},-data, extracted under the proviso of two extreme,
albeit reasonable assumptions:

(i) assuming that the electric neutron form factor is at least of the order
of the magnetic one (open circles), and
(i) assuming G% = 0 (black dots).
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Fig. 10. Comparison with available data of the magnetic form factor of the proton
and the neutron for different model distribution amplitudes.

Using the heterotic amplitudes for the nucleon [45] and the A*-isobar
[46], a similar good agreement with the data was found (Fig. 11). A re-
cent re-analysis of the high Q2 SLAC data by Stuart et al. [55] shows that
the “heterotic” predictions are consistent with the data within the error
bars, even in the simple peak approximation (lowest solid line). A refined
treatment given in [46], which includes QCD evolution effects (dashed line),
shows that the decrease of the form factor is consistent with a power-law
behavior modified by logarithmic corrections due to anomalous dimensions,
in agreement with perturbative QCD.

One observes from Figs 10, 11 that at low Q2 the agreement between the
calculated form factors and the data rapidly deteriorates because perturba-
tion theory becomes increasingly inapplicable and the one-loop parametriza-
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Fig. 11. Transition form factor ypA™, calculated with the heterotic distribution
amplitude for the nucleon and various A1 distribution amplitudes in comparison
with existing experimental data (see [46]). The dashed-dotted line shows a calcu-
lation [46] which takes into account a dynamical gluon mass to saturate a, at low
Q*. Predictions from previous nucleon distribution amplitudes are indicated at the
right margin. The open circles denote the data from Stuart’s [55] analysis. Note
that for all curves the value |fa| = 11.5 x 1073 GeV? from [43] has been used.

tion of a,(Q@?) becomes inadequate. It is clear that in this regime the per-
turbative predictions should not look like any data, since the true nucleon
distribution amplitude receives contributions from all twists (e.g., higher
Fock-space components), contributions which are not accounted for in the
formalism.

The last application we consider in the present work deals with exclu-
sive decays of charmonium states to pp. Such decays are sensitive to the
nucleon distribution amplitude and hence may serve to discriminate pro-
posed model distribution amplitudes. Calculations of charmonium decays
have been performed by many authors (for references see [45]). Our own
calculations follow those of Chernyak, Ogloblin, and Zhitnitsky [48]. We
consider first the 3P states with J = 1,2. The branching ratio for the
decay of the x.; state (JPC = 11%) into pp is given by

4
3Py — pp 0.75 1672 | fn
BR N —— == Mi} 34
(3P1—>a.11) In ¥ 729 | M? 1 (34)
where M = 2m. =~ 3 GeV and A = 0.4 GeV (the last value from [56]). The

nonperturbative content of (34) is due to fy and the decay amplitude for
the process 3P; — pp, denoted My, which involves &. Inputting

EN(zi) =Pas(zi)[(Bo + B2 — 5B3 — 5B5) + (B1 + Bs)(z1 — z3)
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+ (—332 + 7B3 + 7B5):c2 + (4B3 + 14B5)131'.’C3
+(8Bs — 3By + Bs)el + (8Bs + $B4 + 32 B5)z3] (35)

in connection with Table IV, the decay amplitude M; for each model is com-
puted with an elaborate integration routine which properly takes account
of contributions near singularities [24]. The results for different model dis-
tribution amplitudes are compiled in Table VII.

TABLE VII

Exclusive charmonium decays into pp for a variety of nucleon distribution ampli-
tudes. The data are taken from [47]. The numbers in parentheses are those given
n [48]. The poor accuracy of these values effects the superiority of our computa-
tional algorithms.

Models MCP, — pp) = My M(P; = pp) = M, M(Sy — pp) = Mo

heterotic 99849.6 515491.2 13726.8

CZ 28310.4 (0.63 x 10°) 246052.8 (2.87 x 10°)  7545.6 (0.72 x 10*)

CcozZ 53625.6 (0.88 x 10°) 298123.2 (3.4 x 10°)  8758.8 (0.79 x 10*)

COoZz°®! 55137.6 289728.0 8499.6

GS 26366.4 232632.0 928.8 (0.7 x 10°%)

Gs°r! 19915.2 230659.2 986.4

Gs™i® 17193.6 210729.6 964.8

KS 94723.2 (1.35 x 10°) 416937.6 (4.84 x 10°)  11484.0 (1.15 x 10*)

asympt. 20086.6 (0.2 x 10°) 43099.2 (0.43 x 10°)  1517.4 (0.14 x 10*)

Observables BR(:};—::E%) BR(:%:—:?;%) I'(®S1 — pp)
in % in % [eV]

heterotic 0.77 x1072 0.89 x107? 138.37

CzZ 0.06 x10~2 0.20 x1072 41.81

COZ 0.22 x10~2 0.30 x10™2 56.34

COZz°®* 0.23 x107? 0.28 102 53.07

GS 0.05 x1072 0.18 1072 0.63

GSs°r! 0.03 x1072 0.18 x 1072 0.71

Gs™in 0.23 x107? 0.15x1072 0.68

KS 0.69 x10~2 0.59 1072 96.84

asympt. 0.03 x10~2 0.01 x1072 1.69

E760 (0.78 £ 0.10 3 0.11)x 1072 (0.91 4 0.08 £ 0.14)x10™% (180 % 16 + 26)

The analogous expression to (34) for the x.2 state (JPC = 2+7) has

the form

3 —
BR(M> ~ 0.85(wa,)* 16

3P2—>all

In
M2

729

M3, (36)

which is Eq. (20) of [48] with an obvious minor correction. The results for
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the branching ratio of this process, shown in Table VII, have been calculated
with as(m.) = 0.210 £+ 0.028 (see third paper of [56]).

Similar considerations apply also to the charmonium decay into pp of
the level 3§; with JPC = 1=~. The partial width of J/4 (i.e., xc0) into
pp is defined by

1280 lf¢l

M2

where f, determines the value of the 3 6,-state wave function at the origin.
Its value can be extracted from the leptonic width I'(3S; — ete™) =
(5.36 + 0.29) keV [50] via the Van Royen-Weisskopf formula. The result is
|fp| = 409 MeV with m;,,, = 3096.93 MeV. Then, using the same values
of parameters as before, we obtain the results shown in Table VII. One sees
from this table that the agreement between the predictions of the heterotic
model and the recent high-precision data of the E760 experiment at Fermilab
is excellent in all considered cases.

In a completely analogous way, one can calculate exclusive decays of
(helicity-conserving) charmonium states in AA. Theoretical predictions
for the branching ratios and partial decay widths of the Delta distribution
amplitudes discussed above are given in [46].

5. Recent theoretical developments

Although there has been a rather high level of phenomenological success
in the description of various exclusive reactions, as discussed in some detail
above, severe criticism has been raised by Isgur and Llewellyn-Smith [13],
and Radyushkin [10] concerning the endpoint contributions to form fac-
tors and related observables. Specifically, it has been argued that most of
the contributions to the pion and proton magnetic form factors are aris-
ing from the endpoint regions of the z integration, implying a concomitant
breakdown of ordinary factorization and rendering a perturbative treatment
useless. The dominance of endpoint regions becomes even more pronounced
when asymmetric distribution amplitudes for the hadrons are used, as those
derived from QCD sum rules. Indeed, excluding these regions, the pertur-
bative contribution is reduced to only a few precent. This led the above
authors to conclude that perturbative QCD becomes applicable at such
large momentum transfer that there is actually no chance for experimental
verification in the foreseen future.

However, recent theoretical developments due to Li and Sterman [57,
58] based on RG techniques [59], enable the rigorous treatment of the end-
point regions of exclusive reactions by taking into account Sudakov-type
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form factors [60] that resum gluonic radiative corrections. As a result,
soft-gluon exchanges between the colored lines during the hard scattering
are suppressed by rapidly decreasing exponential factors which control the
probability of soft-gluon radiation. Technically, this is achieved by retain-
ing in the denominators of the hard-scattering amplitude the transverse
momentum dependence of virtual particles. This introduces (after Fourier
transformation) a transverse separation scale b, which plays an important
role in rescaling the argument of the running coupling constant a, when-
ever the virtuality of the gluon propagators (which involves the longitudinal
momentum fractions z;) becomes small. Moreover, as b, increases, the Su-
dakov exponential factors decrease, reaching zero at b; = 1/Aqcp. Thus,
potentially dangerous a, singularities are cancelled by Sudakov corrections
providing a well-defined expression for the form factor. In the pion case, this
is automatically accomplished by the interquark separation so that always
when a Sudakov exponent depends on z — 0, the other one dependson1—z
and drops rapidly to zero [57], without having to saturate a, via additional
phenomenological parameters, e.g., an effective gluon mass. Fig. 12 shows
such a calculation which also includes the intrinsic k, -dependence of the
pion wave function [61] for which a Gaussian form is assumed. The curves
shown were evaluated for two different models of distribution amplitudes:
the asymptotic wave function [17] (dotted line) and the Chernyak-Zhitnisky
one [53] (solid line). The main conclusion to be drawn is that the pertur-
bative contribution is self-consistent at experimentally accessible values of
momentum transfers, although its magnitude is too small compared to the
data.

As regards the proton form factor, the situation is more complicated
because several transverse scales are involved and therefore a careful IR
regularization is required. Recall that the IR cutoff is the factorization
scale below which OPE becomes a poor approximation. It is understood
that genuine nonperturbative momenta are implicitly accounted for in the
proton wave function. In order to ensure IR protection, we have considered
in [62] optional IR cutoff prescriptions and found that in order to avoid
infinities, while still using the MS scheme, one has to set all transverse
interquark separations equal, and use the maximum one as the appropriate
IR cutoff scale (“MAX?” prescription):

5 = max{bl,bg,b;;} = I-)l = bz = 133 . (38)

The quantities i)l are IR cutoff parameters, naturally related to, but not
uniquely determined by the interquark separations b;, so that different
choices are possible. The particular advantage of our approach is that it
not only suffices to protect the amplitudes from becoming singular, but it
also yields a perturbative contribution to the form factor which saturates,
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Fig. 12. The pion form factor in the spacelike region including Sudakov effects and
those due to the intrinsic k -dependence of the pion wave function [61], evaluated
for Aqcp = 200MeV2. The data are taken from [65].
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Fig. 13. Leading perturbative contribution to the proton magnetic form factor cal-
culated within the modified convolution scheme, which takes into account gluonic
radiative corrections via Sudakov-type form factors. The shadowed strip indicates
the range of predictions derived from the set of nucleon distribution amplitudes
shown in Fig. 6 and Table IV. The solid (dashed, dotted) line corresponds to the
COZ (heterotic, COZ°P!) distribution amplitude.

t.e., that it is rather insensitive to distances of order 1/ Aqcp, thus rectify-
ing Li’s previous analysis. This means that the form factor accumulates its
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main contribution in IR-safe regions. In particular, approximately 50% of
the results are acquired in regions where a? < 0.54 for momentum trans-
fers starting at 6 to 10 GeV2. The theoretical predictions for G%,, for the
set of nucleon distributions accross the “fiducial orbit” and including QCD
evolution, are shown in Fig. 13 (shaded band). Similar results have been
obtained for the neutron [63). Comparison of Figs 10 and 13 shows that the
general effect of including Sudakov effects is a considerable reduction of the
leading perturbative contribution. This effect is enhanced when the intrin-
sic k| -dependence of the nucleon wave function is also taken into account.
Full results and a detailed discussion of the numerical studies may be found
in {62, 63].

6. Conclusions

We have reviewed a large body of exclusive reactions which relates to
testing the validity of perturbative QCD, in particular factorization theo-
rems, and the universality of nonperturbative hadron distribution ampli-
tudes modeled on the basis of QCD sum rules. For instance, within the
standard convolution scheme, the heterotic model successfully correlates a
wide variety of unrelated observables to the data without tuning free pa-
rameters from case to case and without using additional phenomenological
constraints. This agreement is non-trivial in the sense that there exist no
other theories or models which fit the data nearly as well.

We have seen that IR sensitive contributions from endpoint regions are
controllable within a modified convolution formalism which takes account
of soft-gluon effects via Sudakov-type form factors leading to suppression
of soft-gluon radiation at large quark separations. This Sudakov suppres-
sion provides sufficient IR protection of the perturbative treatment, ensur-
ing its applicability at momentum transfers of present-day accelerators, at
the expense that the magnitude of the leading perturbative contribution
is reduced. Incorporation of confinement-size effects due to an intrinsic
k, -dependence [52] leads to further reduction. In light of these facts, we
conclude that perturbative higher-order corrections giving rise to a rather
large K -factor of the order of 2, as found for other large-momentum transfer
processes [64], may be important. On the other hand, the sensitivity to the
IR factorization scale is perhaps an indication for the importance of still
unestimated higher-twist terms in the OPE. The examples presented in the
last section may hopefully serve as an incentive to pursue further this course
of investigations.
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