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Selected results concerning the spectroscopy of bb quarkonia and the
semileptonic and leptonic decays of hadrons containing b-quarks are re-
viewed. Problems concerning the inclusion of relativistic corrections and
the interpretation of wave functions are pointed out.
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1. Introduction

Known particles containing heavy quarks can be divided into two large
groups: particles containing a heavy quark and a heavy antiquark, and
particles containing only one heavy (anti)quark. Baryons containing two,
or three heavy quarks are expected, but have not yet been seen. We shall
discuss some of the theoretical problems resulting from the comparison of
theoretical models with the data.

The quarkonia, i.e. mesons consisting of a heavy quark and a heavy an-
tiquark, have been successfully described in terms of fairly simple potential
models. We shall limit our discussion to the case of the bb resonances, be-
cause the internal motion there is to a good approximation nonrelativistic.
Consequently, they seem to be the best understood family of heavy quark
systems. A very good recent review can be found in Ref. {1]. In the following
section we shall summarize the theoretical ideas concerning the bb quarkonia
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and stress that their success is due to a strict adherence to the suggestions
of QCD. Models contradicting QCD find it difficult to explain the available
data. The remaining problem is that the results seem too good for the
nonrelativistic potential models being used. Thus, behind the successful
phenomenology there may be something deeper not yet understood.

The particles consisting of one heavy quark and some light stuff are more
difficult to describe. In the valence approximation the light stuff reduces to
an antiquark in the case of mesons and to two quarks, or a diquark, in the
case of baryons. The nonrelativistic quark model has had some success also
for such particles [2]; since the resulting velocities of the light quarks come
out relativistic, however, it is not considered very respectable. In Section
3 we shall show that relativistic effects are crucial for the understanding of
the semileptonic decays of such systems [3], even when the recoil velocity is
nonrelativistic. In Section 4 we shall present a discussion of purely leptonic
decays, which suggests that something is missing in our understanding of
the wave functions of the heavy quark-light antiquark systems [4].

Thus we begin with a case, where the simple wave function picture
starting with the Schrodinger equation is very satisfactory, we go over to a
case where the relativistic boost is very important and conclude with the
discussion of a case, where the wave function picture requires a modification,
but what modification is not yet clear.

2. bb quarkonia
2.1. Introduction

The first quarkonia — bound c¢ systems — were discovered about
twenty years ago [5, 6]. Almost immediately it was realized that such sys-
tems can be described using the Schrodinger equation with simple, more or
less QCD motivated, potentials. A good example is the Cornell potential [7]

V(v?'):—g—+kr+const. (1)

At short distances this potential is Coulombic, as expected from one gluon
exchange. At large distances it is linear, as expected for two quarks con-
nected by a colour string. The parameters a and k obtained from fits to the
experimental data are in reasonable agreement with %a s, expected for one
gluon exchange, and with the string tension. The trouble is that velocities
are large

(#%) ~ 3¢, (2)

where ¢ is the velocity of light. Thus the Schrodinger description is some-
what doubtful. On the other hand, relativistic descriptions of two-body
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interacting systems are controversial. In particular there is no reference
frame having all the most useful properties of the nonrelativistic centre of
mass frame.

The bb quarkonia discovered three years later [8, 9] consist of heavier
partons, which consequently have smaller velocities. For potentials of the
shape used for quarkonia (approximately logarithmic in the relevant range)
the average (#2) is roughly proportional to the inverse of the quark mass.
Thus for the bb quarkonia it is about three times smaller than for the cc
quarkonia, which makes the nonrelativistic approximation quite reasonable.
Since we want to begin with the simplest possible case, we shall concentrate
on these bb systems. For many years people were writing that the ¢f systems
will be the best nonrelativistic case, but today we know [10] that the t-
quark is sufficiently heavy to decay into a real W boson and a b-quark,
which makes it so short-lived that it has no time to form quarkonia. The
potentials proposed for the ¢¢ quarkonia were found to work well also for
the bb quarkonia, which was evidence for the flavour independence of the
forces between quarks. This independence is an important confirmation of
QCD.

Let us now list the observables for bb systems (further referred to as
quarkonia), which should be reproduced by the theory. We consider only
the simplest quantities, where the predictions require few phenomenological
assumptions.

The quarkonia with masses above twice the mass of the B meson are
broad and in order to obtain their mass distributions one has to perform
uncertain coupled-channel calculations. Therefore, we shall limit our dis-
cussion to the quarkonia with masses below 10.557 GeV. In this mass range
there are three S-wave vector particles denoted 7(15), 7(25) and 7(35)
and two P-wave multiplets denoted x(1P) and x(2P). A nonrelativistic
calculation cannot reproduce the splittings of the P-wave states and such
calculations give only the centres of gravity of the multiplets. Several other
particles are expected [11]: the pseudoscalar partners of the T particles (de-
noted 7,(nS)), the x(3P) multiplet, the 1 P; partners of the x multiplets,
two D-wave multiplets and one F-wave multiplet. Each of the D and F
multiplets should consist of two submultiplets differing, just like for the §
and P multiplets, by the relative orientation of the spins of the quark and
the antiquark.

The wave functions are not directly measurable, but some information
about them can be obtained.

o For the T particles the wave function at the origin, usually given as
|4¥(0)|2, can be obtained from the total width of the leptonic decay
Iy _,e+e-, or of the hadronic decays I'r _3gluons, OF of the radiative
decays I'r _y 4 2gluons- As we shall discuss further each of these methods
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has its difficulties, but some information can be obtained.

e For the x states by definition ¢(0) = 0, but information about the
derivative |'(0)| can in principle be obtained from the decay width
into hadrons (the decay into e*e™ is forbidden). In practice, since for
dimensional reasons the decay width is suppressed by a large factor
proportional to M 2, the decays necessary for this analysis have not
yet been observed experimentally.

¢ The matrix elements of the type (¢ |7]i)r), can be deduced from the
measured probabilities of electric dipole transitions between the x states
and the T states.

There were hopes to extract useful information from the study of the
strong decays of the type T/ — T"(x), but for the moment these decays
seem to be too complicated [1] and the effort is rather to predict their
probabilities. The discovery of the 7, particles should make it possible to
measure the matrix elements for the magnetic dipole transitions between
the 7n-s and the T'-s, which would supply additional valuable information
about the wave functions.

2.2. Masses

In order to characterize the success of various potentials in predicting
the mass spectrum of the bb quarkonia it is useful to use the parameter [1]

r

g = \/[(Mexp - M) — (Mexp - ]uth)]2 ’ (3)

where the horizontal lines denote averaging over the five data points. From
the theoretical point of view, using this quantity one eliminates the uninter-
esting constant term in the potential. From the experimental point of view,
one eliminates the overall scale error and thus significantly reduces the ex-
perimental uncertainties. In Ref. [1] the values of o for twenty-seven models
are compared. They range from 2.3 MeV for the most successful model of
Fulcher [12] to 27.5 MeV for the least successful model. Since the masses
of the quarkonia are about 10 GeV, the relative errors are between 0.02%
and 0.27%. The agreement is very good. The relativistic corrections to the
kinetic energy are expected to be of the order of (v?)%/(8¢*) ~ 0.1%, thus
the errors are smaller than expected. There may be something interesting
to discover behind this observation.

The potential used by Fulcher is

V(r) =0.159r — ;‘1-f(0.431r) , (4)
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where 0.159 and 0.431 are constants chosen so as to get the best fit and
function f(t) is defined by

T vt dln
s =1-1 [ o iRt (5)
0

42

This is a simple modification of the potential proposed by Richardson [13],
who, however, postulated an additional relation between the two constants
of the model. For large values of » this potential is linear with a reasonable
value of the string tension, just like the Cornell potential, but for small
distances

1

fl)~ - (6)

Thus the potential approximately takes into account the running of the
strong coupling constant with Aqgop = 0.431. The effect of the running

of a, is not very strong. Substituting for illustration the averages 4/(r?)
calculated for the various quarkonia by Buchmiiller and Tye [14] one finds
for T(15): a, ~ 0.61, for x(1P): a, = 0.70 and then a slow increase to
as = 0.73 for T(3S5). Nevertheless, this small effect improves the fit. This is
an observation, which we shall make repeatedly: following the suggestions
of QCD improves the fits!

3. Wave functions at the origin

It might seem that the value of the wave function at the origin, we shall
use |¥(0)|? to characterize it, can be modified by changing the potential for
small values of r and thus can be easily changed in any model. Actually
this is not true. As shown long ago by Schwinger [15] for a system of two
bodies of masses my and my, described by the Schrodinger equation with
an interaction potential V(r)

o0

L [ g2

[¥(0)* = (7)

4 my + mg

Thus the value of the wave function at the origin depends on the potential
and on the wave function in all space.
The electronic width of an T particle is given by the formula

16a,

3. T 0] - (8)

4 2
FT——»e"‘e‘ = é];—jr |1/)(0)|2 |:1 -
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The problem with this formula is that the first order radiative correction,
let us denote it —a, is large. For a typical value a, = !/; one finds a ~ 0.40.
Thus the correction factor given by the square bracket is about 0.60. The
higher order corrections, however, are unknown. Thus the correction factor
could be just as well /1 — 2a =~ 0.45 or 1/(1 4+ a) = 0.71. In order to avoid
this uncertainty one can [1] compare with experiment the ratios

- FT(nS)—>e+e“’

Ree(n) (9)

a FT(IS)—»e“"e‘

The radiative corrections are believed to depend little on the excitation of
the T particle and it is assumed that they cancel in the ratio. This approach,
of course, can give only the ratios of the values of the wave functions at
the origin. Besson and Skwarnicki {1] have compared the predictions of
seventeen models with experiment. For the other ten models from their list
the predictions have not been given by the authors. Out of the ten models
giving the best mass spectra seven give predictions for the ratios R. The
average error

[Ben — Bexp| ~ 4.7% (10)
Rexp

is close to the experimental uncertainty.

The simple perturbative description of the decays T — v + 2 gluons
is a reasonable first approximation, but it has been known to overestimate
the momenta of the photon and to require values of a; inconsistent with
those obtained from other sources [16]. The second objection may be con-
troversial, because in order to eliminate the factor |¢/(0)|* occurring in the
formulae one has to use either data on electronic decays or data on nonlep-
tonic decays. In both cases the relation between the data and the theoretical
formula used is uncertain. A possible way out of the difficulty has been re-
cently suggested by Consoli and Field [17], who propose to ascribe to the
two gluons masses (1.17 + 0.08) GeV. This number is chosen so as to get
a good average energy of the photon and thus the data could be used to
determine other quantities, e.g. the constant ;.

The perturbative description of the decays T —3 gluons also seems to
require somewhat unorthodox values of the constant a,. According to a
recent suggestion of Chiang Hiifner and Pirner [18] this can be remedied by
correcting for the fact that the three gluons are emitted at different points.

To summarize: the determination of the values of the wave functions
at the origin is in principle possible, but the corresponding formulae have
large uncertainties. The best we have for the moment are the ratios of the
wave functions determined from the electronic decays.
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3.1. Matriz elements (x|7|T)

The widths of the electric dipole transitions 7'(35) — v + x(2P) and
7(25) — v+ x(15), i.e. between quarkonium states, which would be de-
generate, if the potential were purely coulombic, are well reproduced by
eleven out of the twelve models given in the compilation [1]. The only fail-
ure is of interest here. It is by factors of about four, for a potential of the
form V(r) ~ r~#, where f is a small positive number. Such potentials [20]
and closely related logarithmic potentials {21] have been successful in cal-
culations of mass spectra and of electronic decay widths of quarkonia. On
the other hand they contradict QCD, which suggests potentials singular at
r = 0. The present result shows that they are inconsistent with experiment,
which is another argument in favour of QCD. Four of the papers consider
relativistic corrections. For the 7(35) — x(2P) transitions these corrections
are small, and since the nonrelativistic predictions almost exactly coincide
with the central value of the experimental result, do not affect the agreement
with experiment. For the 7(25) — x(1P) transitions they are of similar
size, but since the nonrelativistic predictions are systematically below the
experimental central value and the corrections are negative, agreement with
experiment slightly deteriorates.

For the x — 4 + T transitions the difficulty is that experimentally only
the branching ratios have been measured, while the theoretical predictions
are for the partial widths. The best one can do for the moment, is to
compare with theory only the ratio

I'(x(2P) — T(15))
I'(x(2P) - 1(25))°

This ratio is equal to the ratio of the corresponding branching ratios and
consequently is measurable. All the eleven models successful in the previous
cases give results higher than the experimental one. The factor is from about
1.2, which is within the experimental errors, to about 2.2. The relativistic
corrections are rather large and strongly model dependent. Even their sign
is controversial.

The transition 1(35) — v + x(1P) is the most difficult to describe,
because the wave function of the 7(3S5) changes sign at two values of r,
while the radial wave function of the x(1P) has the same sign in all space.
Consequently, the value of the radial integral is a result of cancellations
between numbers larger than the final result. As expected, the predictions
do not agree with each other. The ratio of the largest to the smallest
predicted width is about 120. One of the predictions agrees with experiment,
but it is difficult to take that very seriously. The relativistic corrections are
very large and very controversial.

(11)
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8.2. Relativistic corrections

From present experience the relativistic corrections in the physics of the
bb quarkonia seem to be usually small and controversial. They are probably
numerically important for at least some of the electromagnetic dipole tran-
sitions. There are, however, problems, where relativistic effects, in spite of
their small absolute magnitude, are the main factor. An important case is
the problem of mass splittings in the y multiplets. For each x multiplet one
writes

M; = M.y + aps — 0.4ar, (12)
My = My — ags + 2ar, (13)
My = Moy — 2ars - 4ar, (14)

where the subscript on the left hand side denotes the spin J of the x-
particle. Instead of the spin orbit term ajg and the tensor term ag one
often discusses the parameter

. M, — M,y B zaLs-— 1.2ar
T My - My, T aps+6ar’

(15)

which has smaller experimental uncertainties. Experimentally aps » ar >
0 for both x multiplets, while r(x(1P)) = 0.65 £+ 0.03 and r(x(2P)) =
0.58 + 0.01 [1].

Nonrelativistically one has ays = ar = 0. Thus in order to get any
results at all, one has to include relativistic effects. When going over to the
relativistic theory several problems arise.

¢ A fundamental theory of two-body interacting, relativistic systems does
not exist. Therefore, one has to introduce some phenomenology. The
question is how much and how.

o The nonrelativistic potential, even in the simplest versions of the rela-
tivistic theory, must be replaced by a vector piece and a scalar piece.
The question is how to perform this splitting.

e New spin dependent interactions appear. The question is how to choose
them. In phenomenological models they are usually somehow related to
the spin independent part known to some extent from the nonrelativistic
limit.

A generally accepted set of answers to these questions is not known,
thus we shall limit our discussion to a few remarks.

The gauge potential is of the vector type, therefore, terms like the
Coulomb term in the Cornell potential are ascribed to the vector part of the
interaction. Assuming that also the confining linear part of the potential is
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of the vector type, one finds that there are no bound states at all [22, 23].
Therefore, the confinig part of the nonrelativistic potential is put into the
scalar interaction. In the purely Coulomb case »r = 0.8. Inclusion of scalar
confinig interactions usually reduces r, but by itself gives a larger value of
r for the x(2P) states than for the x(1P) states. The fact that

Tx(2P) < Tx(1pP) < 0.8 (16)

suggests the presence of a scalar short range interaction, so that the smaller
X(1P) states are more strongly affected than the larger x(2P) states. This is
indeed what is predicted by QCD, when many gloun exchanges are included
[24].

4. Semileptonic b — ¢ decays
4.1. Introduction

Let us consider the decays Hg — Hlv, where Hg stands for a hadron

containing one heavy quark of type (. Examples are B Dtlip, B -
D*tiv, Ag — Aty and —Eg — D**ip. In the heavy quark picture, the
hadron H; behaves as a hydrogen atom behaves, when the proton absorbs
a 1 MeV photon. In hydrogen at this energy scale the binding energy is
irrelevant and the proton recoils as if it were free. This is calculable very
simply. If, however, we are interested in the probability of scattering the
whole hydrogen atom in its ground state, we must multiply the transition
amplitude for the free proton by the probability amplitude that the electron
cloud follows the recoiling proton. For large recoils this is a small number.
In general it is equal to the overlap (), v|A, v'), where |\, v) denotes the state
vector of an electron in the ground state of a Hydrogen atom moving with
velocity v. X is the helicity of the electron state (not just of the electron)
defined as the projection of the total angular momentum of the electron on
the direction ¥ — 7. It does not change under the boost converting |, v)
into |A,v"). This reasoning is well-known in quantum mechanics and leads
to the sudglen approximation. Further we shall exploit this analogy to find
the decay amplitude of Hy.

For simplicity we neglect the lepton mass. Then the kinematical limits
on the square of the mass of the lepton pair, further denoted g2, are

0 < ¢* < (Mpy — Mp.)? ~ (mp —m.)?. (17)
The differential decay width is

ar _
a_ .

M2 (18)
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In his formula the dots denote known kinematical factors and the over-
line refers to the averaging of the square of the absolute value of the decay
amplitude M over the angular distributions: of hadron H,. in the Hj rest
frame and of lepton ! in the rest frame of the lepton pair. The decay
amplitude besides the known factor GgV,;/v/2 is the product of two four-
vectors: of the leptonic current and the hadronic current. The leptonic
current %;y#(1 — 75)v, is well known. In the rest frame of the lepton pair
its components t, z, y, z are

—24/¢%(0, isin¢g + cosf cos @, icosp + cosfsin¢p, —sinb), (19)

where the spherical angles refer to the lepton momentum in a reference
frame, where the z axis is antiparallel to the momentum of Hy. Thus the
problem reduces to a determination of the hadron current. The matrix
elements of this current depend on the recoil velocity of H.. It is convenient
to use as parameter

w = vt . (20)

Kinematically, w is the Lorentz factor of the recoiling hadron H. as seen in
the centre of mass system of the decay, or equivalently in the rest frame of
Hy. Thus it is equal one for zero recoil and increases with increasing recoil.
The kinematical limits are

My, + My,

1<w< )
2MyyMy.

(21)

The decay process can be analyzed into several steps. Hadron H; with
spin Jg, and helicity A gy results from the coupling of the b-quark with spin
1/, and helicity A, with some light stuff with total angular momentum Jp,
and helicity A. This introduces the Clebsch—~Gordan coefficient

(TLy A3 5 A | T Erns ARp) - (22)

The b-quark decays as if it were free — here we use the analogy with the
hydrogen case discussed above — this introduces the factor

TE = TyP(1 = 7% Yus -

The free Dirac bispinors u, and u, are well-defined, because: in the heavy
quark limit the velocity of each of the heavy quarks is equal to the velocity
of the (heavy-light) hadron containing it and therefore known; the parity
is purely plus (no antiparticle admixture), because the gap between the
positive and negative energy states is very large in the heavy quark limit;
the helicity is known, because we have made the Clebsch—~Gordan expansion
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of the wave function of Hy and we ask for the final states with well defined
helicities of quark ¢. The light stuff has to be boosted from a system moving
with velocity v to a system moving with velocity v'. The overlap of the state
before the boost and the state after the boost is not known. It is only known
that since no interaction is involved in this boost, various conservation laws
hold. In particular the helicity A must be conserved. We shall denote this
overlap by

(A7, 7 L) (24)
and call the functions £, (w): Isgur—Wlse functions. This is the generally
accepted terminology for meson decays. For baryon decays the kinematical
factor is sometimes omitted. The Isgur—Wise functions for different decays
are, of course, in general different. In the last step, the boosted light stuff
and the ¢ quark recouple to form particle H. with spin Jy. and helicity
Apr.. This introduces the factor

(JL’A; %,ACIJHca'\HC>' (25)

The complete decay amplitude M can be expressed as a sum of products
of the factors presented above. Out of these only the Isgur—Wise functions
are unknown. Thus, the differential decay width can be in each case writ-
ten in terms of known terms consisting of Clebsch-Gordan coefficients and
kinematical factors, and of the Isgur-Wise functions. All the nontrivial part
of the decay dynamics is contained in the Isgur-Wise functions. Since the
spin projections of H. are under control, one can also calculate asymme-
tries, ratios of the longitudinal to transverse decays etc. We stress that
this discussion refers to the leading order calculation in the framework of
the heavy quark approximation. When corrections for finite masses of the
heavy quarks and the QCD corrections are introduced, the problem becomes
much more complicated. For our purpose, however, which is to show the
importance of the relativistic effects for the calculation of the Isgur—Wise
functions, the leading order calculation is enough.

4.2. Isgur-Wise functions

The number of independent Isgur-Wise functions is reduced by sym-
metries. Parity conservation for the overlap implies [25] that for a given
decay

E-x(w) = nusnac(—1)"He o, (), (26)

where 7y denotes the internal parity of hadron H. This relation implies in
particular that a single Isgur-Wise function is enough to describe not only
the decays of A,, where J;, = 0, but also the decays of the pseudoscalar
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mesons, where J;, = /2. Hyperfine effects are proportional to the magnetic
mornent, 2.e. inversely proportional to the mass, of the heavy quark. There-
fore, in the heavy quark limit they are negligible and in particular the same
Isgur-Wise function describes the decays B — DI¥ and B — D*Iv. The
static colour field does not depend on the flavour of the source. Therefore,
the state vectors of the light stuff in hadrons Hj are identical to those of
the corresponding hadrons H, [26]. In particular, in the case of zero recoil
the overlaps corresponding to the decays B — D, B — D* and all the
other quoted before as examples coincide with the normalization integrals
and equal one. By a similar argument, for pairs of particles like B and D**,
where D** denotes a P-wave excitation of the D system, the Isgur-Wise
function vanishes at zero recoil. Thus, the value £,(1) is known in many
cases.

There is also some general information about the w-dependence of the
Isgur-Wise functions. Since

E\(w) = {f T2 TN T, (21)

and the overlap cannot exceed one, we find [27]

) <y (28)

There is also a lower bound, but this involves coupling constants, which are
not directly measurable, though they can be indirectly estimated [28].

For the cases, where £,(1) = 1, one often discusses the real positive
parameter p? defined by

E(w) =1-p*(w~1)+O(w~-1)7. (29)

From the inequality quoted above p? > 1/;. This is known as the Bjorken
bound. Experimentally p? is very difficult to measure. One reason is that
there is no phase space for zero recoil decays, but in practice much more
important is a purely experimental factor: the most accessible are the de-
cays B — D*lv; the decaying B mesons are usually decay products of the
T'(4S5) resonances produced in ete™ collisions almost at rest; therefore, at
small recoils the D*-s are also almost at rest; the D*-s are identified by
their decays into Dr with the pion having a momentum of 40 MeV in the
rest frame of the D*; thus the experimental problem is to measure very slow
pions and this is very hard. Great progress is expected, when some asym-
metric B factory producing 7'(45) resonances with a known, reasonable
large momentum becomes operational.
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Let us concentrate on the parameter p? for the B — D* decays. Present
experimental estimates give typically values of p? between one and two [29].
A sum rule analysis [28] has given p* ~ 1.0 and a lattice calculation [30]
yields p? =~ 1.2. These two calculations refer to first principles. Any model,
however, which gives the state of the light stuff can be used to find the
state vector of the light stuff and consequently the overlap and the Isgur-
Wise function. A successful model could be expected to give also here a
good prediction. Therefore, it came as a surprise that the nonrelativistic
quark model, otherwise rather successful, gives [2] p? ~ 0.6. The question
arises: what is wrong with this particular application of the model. Today
it seems clear that the failure is due to the use of the Galilean boost when
calculating the overlap of the wave function for the B meson at rest and
of the recoiling D*. The wave functions of the mesons found in their rest
frames certainly are not exact, but by themselves would not produce an
error of this size. When the boost is made more relativistic, much better
results are obtained. Details of the model do not seem to be crucial here.
We shall describe a calculation [3] based on the MIT bag model modified
by fixing the heavy quark in the centre of the bag. Similar results can be
obtained by using the nonrelativistic quark model modified by including
some relativistic kinematics [31].

4.3. Modified MIT bag model

In the standard MIT bag model it is assumed that the colour field of the
valence quarks in a hadron produces a bubble (bag) of perturbative vacuum
in the much more complicated physical vacuum filling empty space. The
bubble is assumed to be spherical, with its size determined by the equilib-
rium of the external pressure of the physical vacuum and of the pressure
from inside exerted by the valence quarks. The valence quarks move freely,
or almost, within the bag. For mesons containing a heavy quark, which
moves slowly, a necessary modification is to fix the heavy quark at the cen-
tre of the bag [32, 33|, because the bubble has ample time to follow the
motion of the heavy quark. This model is certainly grossly oversimplified,
but it reproduces the spectroscopy of the particles with heavy quarks [34]
and it describes relativistically the motion of the light stuff — in this case
of one, or two, light valence quarks.

In spite of the relativistic description of the quark motion the model is
not explicitly covariant. For instance it is not clear how to boost a bag. For
a boost from rest to uniform motion with velocity ¥ parallel to the z-axis,
we include three factors.

¢ The Lorentz contraction of the bag, with the contraction along the 2
axis by a factor y7!, where v is the Lorentz factor corresponding to
velocity v.
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e The inverse Lorentz transformation of the space-time points

L_l({;)(t’ z, Y Z) = ("vz, z, Y, 72) s (30)

e The boost matrix for a Dirac bispinor. This is a Hermitian 4 x 4 matrix
S(9).

The effect of the first two items is that the wave function that fills the
spherical bag at rest, also fills the contracted moving bag. The effect of
the last two items has an analogue in the rigid rotation around the z-axis
of a vector in the (z,y) plane. Consider, for example, a vector (a.,0) at a
point with polar coordinates (r, ¢). After rotation by an angle a, the vector
at (r,¢ + a) will be the transform of this vector. This corresponds to the
transformation of the coordinates. The transformed vector has components
(az cosa,a, sina). This transformation corresponds to the multiplication
by the boost matrix §. The rotation, if any, contained in the action of the
boost matrix is known as the Wigner rotation.

The normalization of the wave function is unchanged by this boost. The
contraction of the integration volume, identical with the volume of the bag,
is exactly compensated by the boost factor. The overlap function for two
bags moving one with respect to the other depends on the reference frame in
which it is calculated. Following Lie-Svendsen and Hggaasen [35] we choose
the modified Breit frame i.e. the frame, where the velocities of the two bags
are equal and opposite (in the ordinary Breit frame the momenta are equal
and opposite). This leads to particularly simple formulae, because the two
bags are contracted equally. We checked that choosing the rest frame of one
of the mesons changes little the numerical results. In the modified Breit
frame the integrand of the overlap integral is

&1 (L1 (-9)(0,2)) ST (-)S()#(L 1 (9)(0, 7)) - (31)

Here ¥ is the velocity of the initial meson in the modified Breit frame. The
first observation is that

st(-a) = §(-v) = 57 (#). (32)

Thus the two boost factors cancel and there is nothing to compensate for the
contraction of the bag. This is one relativistic effect making the Isgur-Wise
function steeper. The second effect is that, while for ¥ = 0 the integrand
is positive definite, for ¥ # 0, the time is no longer the same for both bags
and in all the points within the integration region; consequently, the two
factors get z-dependent phases, which, moreover, do not cancel each other.
This gives a further reduction of the integral. A change of variables z' = vz
converts the integral over the contracted bag into an integral over the sphere
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B corresponding to the volume of the uncontracted bag and one finds for
the overlap

-1 z t z Z)ex i E,z
(-0 = - Z 280,200, Derp (22E,2) . (39)

Here E  is the energy of the light antiquark in the centre of mass frame of
the meson.

4.4. Discussion

The nonrelativistic formula for the overlap is [2]

(=000 = [ 8 (- ma)#(P), (34)

where ¥, denotes the recoil velocity of the D* meson in the B rest frame.
One recognizes the Galilean boost: the velocity (p/mg) of tire light antiquark
in the rest frame of the recoiling meson is the difference of the velocity in the
rest frame of the decaying meson and the velocity of the meson. Expanding
in a power series in the only non-zero component of the velocity v..; taking
into account the normalization of the function & and its spherical symmetry,
as well as the fact that in momentum representation ih(3/0p,) = z; we find,
using the relation between the overlap and the Isgur-Wise function and the
definition of the parameter p?:

(35)

Substituting typical values [2] my = 0.33 GeV and (r?) = (3GeV')Z, one
gets p2 = 0.6. The calculation was performed in the B meson rest frame,
but calculations in the modified Breit frame, or in the rest frame of the
D* meson, give the same result. Let us see now how the relativistic boost
changes this result.

The formula for the parameter p? is similarly obtained, except that the
expansion of the integrand is in powers of z. The result is

E3(r?)
3

The additional /4 results from the Lorentz contraction of the bag and the
change of m, into E; is typical for relativistic calculations. Substltutmg a
typical value E, = 0 5 GeV and keeping the previous estimate of (rZ) one

pPl=z+—5— (36)
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finds the estimate p? ~ 1.25. Substituting the values from the modified
MIT bag model, the result is p? ~ 1.24 [3].

This explains qualitatively the origin of the difficulty encountered in
the purely nonrelativistic quark model. The quantitative results of the bag
model [3] are also of interest. One finds that for the B, — D? transitions
p% ~ 1.625. This results from a competition between two factors: the B,
and D? are somewhat smaller than the B and D, which reduces p2. On the
other hand, however, the energy E, is bigger than the energy E;, because
the s-quark is heavier. This increases p? and is more important than the pre-
vious effect. Our predictions contradicted a prediction obtained using chiral
arguments [36], but has recently been confirmed by lattice calculations [37].
For A, — A, transitions the prediction is p? ~ 2.23. This large increase,
as compared to the meson case, results from the fact that for baryons the
overlap is, roughly, the product of overlaps for the two light quarks. One
can also calculate numerically the overlaps and consequently the Isgur-Wise
functions for finite recoils. In all the cases studied the numerical result could
be very well approximated by

£(w) = (w—z—ﬂ)+ . (37)

For B — D* decays: a = 2, b = 0.6. The resulting function agrees with all
the available experimental data.
A more fundamental problem is the estimate of the parameter

A= Mpg - Mg, (38)

which is very important in heavy quark effective theory. The value of this
parameter is poorly known. For B and D mesons it is usually chosen in the
range (0.3 GeV, 0.7 GeV]. In the modified MIT bag model, the mass of the
meson is the sum of the rest mass of the heavy quark and of the energy E, of
the light quark. Thus E, = A and formula (36), or in fact any model of this
type, can be used to estimate A. In particular putting (r?) = (3 GeV™1)2
and p? = 1.2 one gets A = 0.5 GeV, which is very reasonable. An interesting
question is, how reliable is this result? As seen from the comparison with
the nonrelativistic calculation, the crucial point is: is the boost performed
correctly? In the calculation all the binding energy was ascribed to the light
quark. This is at best an approximation. One would like to know, how to
boost a system of two interacting quarks. This, however, is a very difficult
question. The majority view is that even its analogue for the positronium
is unsolved. Perhaps the fact that one of the quarks is much heavier than
the other, makes the special case of interest here more tractable.
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5. Decay constants
5.1. Introduction

Let us consider the decay of a pseudoscalar meson P = (Q7), (or P =
(Qq), further we omit similar remarks) of mass Mp into a lepton of mass m;
and a massless antineutrino. Since we are interested in mesons containing
heavy quarks, our examples will be B~ and D~. A similar discussion could
be given for the mesons B; and D;. Since meson P has zero spin and
the antineutrino is right-handed, the lepton must be right handed and its
angular distribution in the P rest frame must be spherically symmetric. For
a given direction of the lepton momentum, the conservation of energy and
momentum fixes the momenta of both the decay products. Thus, all the
dynamics of the decay is contained in one constant, the decay constant fp,
which fixes the leptonic decay width. The corresponding formula is

G 2 m} ’ 2 2

I'piz==Mpmj (1- —| Vool fp- (39)

" My
Here V,q is the element of the Cabibbo-Kobayashi-Masakawa matrix. This
formula corresponds to the conventions, where fr, ~ 131 MeV. Caution is
necessary, because conventions, where fr is larger, or smaller, by a factor
/2 are also occasionally used. The decay constant is closely related to the
matrix elements of the hadronic weak current:

(O|Ju|P) = ifpp*, (40)

where p# is the four-momentum of P.

The leptonic decay is imagined as a two-step process. First the two
valence partons of the parent must meet. The probability for that to happen
is proportional to the square of the absolute value of the wave function of
the (Q9) pair at zero separation |1(0)|2. The second step is the annihilation
of the @ and ¢ sitting on top of each other. Thus

I'p_7 ~ |%(0)|* Papn, (41)

where the annihilation probability Pann, may depend on the partons ¢ and
g, but not on the structure of the meson. The structure of the meson affects
the decay probability only via the factor |¢(0)|?>. The decay constant is
proportional to the square root of the leptonic decay width and, therefore,
to |4(0)|. The usual formula [38] is

fp = \/ﬁlj/p%;]- (42)
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The numerical coefficient follows from a specific calculation, but the
proportionality to 1/4/Mp seems- difficult to avoid: Since the dimension
of the decay constant is MeV and that of the wave function is MeV3/2, a
mass is necessary to get the correct dimension of the right hand side. A
substitution of the heavy quark mass instead of the meson mass changes
little in the heavy quark limit. A substitution of the light quark mass is
contraindicated, because the decay constant should remain finite, when the
mass of the light quark tends to zero.

On the other hand the prediction

fB= V ﬁ—ifD ~ 0.6fp (43)

is very unlikely to be correct. Experimental data are not yet available,
except for the rather weak upper bound fp < 290 MeV following from the
limit for the decay width I'p_, .z given in [41], but calculations using QCD
sum rules [39, 28], as well as calculations on lattices [42, 43], suggest that

fB=Jp. (44)

More references concerning sum rule calculations can be found in Ref. [4]
and concerning lattice calculations in Ref. [44]. We shall comment on the
sum rule calculations latter. Concerning the lattice calculations let us note
that they are somewhat indirect [44]. Using the static approximation as
starting point one can (formally, i.e. forgetting about decays @ — Wyq
etc.) calculate the decay constants for very heavy mesons, much heavier
than the B. One finds the expected dependence fp ~ 1//Mp, but the
extrapolation down to the masses of B and D mesons gives unacceptably
high values. On the other hand, one can calculate the decay constants for
fairly light mesons with masses up to, perhaps, the mass of the D meson.
There the coupling constant increases with the meson mass. Using both
results one can postulate an interpolation formula

fp o 0.6GeV (1 B 0.8GeV) (45)

vVMp Mp

and use that to obtain fg. One could, perhaps, find this theoretical evidence
noncompelling, but a similar problem occurs for light mesons, where there
are experimental data. Van Royen and Weisskopf [38] found it impossible
to explain, without ad hoc assumptions, the experimental result fx > fr.
This became known as the Van Royen—Weisskopf paradox. Their solution
was to postulate that |4(0)| ~ /Mp. Today, however, we have the heavy
quark effective theory, which implies that the wave functions of the light
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stuff in the D meson and in the B meson are nearly the same. This is
being used when proving that the Isgur-Wise function equals one at the no
recoil point, and thus is confirmed by the successful determination of the
absolute value of the element V., of the Cabibbio—Kobayashi-Masakawa
matrix [45]. Consequently, the Van Royen-Weisskopf paradox remains a
paradox, probably closely related to the effect for the B and D mesons
we are interested in. It may happen that this problem is easier to solve
for the heavy mesons than for the light ones. For instance, another old
observation that the masses of the corresponding vector and pseudoscalar
mesons satisfy the relation M%, - M?, = const, whatever the flavours of the
quark and antiquark constituting the mesons, is easily understood in the
heavy quark effective theory, where the hyperfine splitting My — Mp is an
effect of order m51.

To summarize: it is very likely that estimate (44) is better than the
“obvious” estimate (43). In the language of lattice calculations the question
is: why the coefficient of the 1/Mp term is so large? In the language of wave
functions a proposal was the Van Royen—Weisskopf Ansatz; this, however,
seems inconsistent with the heavy quark effective theory. In the following
section we will show that the problem disappears, if one gives up the notion
of wave functions in favour of duality arguments. This is not a full solution
of the problem, but it is instructive.

5.2. Use of semilocal duality

The intermediate boson W on its mass shell is a purely vector particle
and consequently has three components. As a virtual particle mediating
weak decays in the GeV region, however, the W boson has a fourth, scalar
components, which we shall denote Wy. Let us consider the decay width
Dhagr for the weak decays of low mass Wy bosons into hadrons containing
the heavy quark Q, as a function of the square of the four-momentum g2
of the Wy. For definiteness we shall put b for the @ quark, but analogous
arguments apply to the ¢ quark. For ¢% < M}'; this function vanishes, be-
cause there is nothing to decay into. At ¢ = Mf; there is a sharp peak
and again the function drops to zero. For Wy masses above Mp + M, there
is a slowly rising continuum contribution and peaks corresponding to ex-
cited B states. A very different picture corresponds to the ¢ dependence
of the decay width Ipar¢ of the Wy of mass \/q_2 into a bu pair. This is not
something really measurable. We interpret it as the result of a calculation
including perturbative effects and the nonperturbative corrections as sug-
gested by the operator product expansion. The nonzero values start at the
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Wy mass equal my, + m,, i.e. below? the B mass, and from this point on
the function increases monotonically. Semilocal duality is the claim that
the two functions Ihaar(¢?) and Ipart(g?), though locally quite different,
become similar, when suitably averaged over the Wy mass.

This claim, if justified, has important implications: I} ,4, contains a
contribution from the decay Wy — B, which integrated over a small mass
range around ¢% = Mf, is proportional to the square of the decay constant
fB. Since I'par¢ does not involve fp, equating the two (averaged) decay
widths gives an equation for the decay constant. In this approach the use of
wave functions is eliminated. It is possible to calculate and compare the two
decay constants fg and fp. We shall show now that this program realized
in a very simpleminded way [4] yields a result consistent with (44). In the
following section we will briefly describe the much more sophisticated, but
corresponding to the same physical idea, way of handling of this problem in
the framework of sum rules.

5.3. Simple calculation

In order to use semilocal duality, one has to know the quark masses and
to choose an averaging prescription. Following Ref. [4] we choose

me = 1.47 GeV, my = 4.6 GeV. (46)

When calculating the decay constant, the necessary averaging should be
in the region q2 ~ M g We choose the simplest prescription and integrate
the decay widths v/¢2Ihadr(¢?) and /¢2T; bart(q?) from the threshold m}
( my = 0) to (mp + E.)?. The parameter E. should be chosen so large
that semilocal duality is applicable and so small that the integral of I} .4,
contains only the contribution from the B peak. The mass of the first
radial excitation of the B meson is not yet known, but a rough estimate
is possible. According to HQET, the mass gap between the first radial
excitation of the B meson and the ground state B meson should be close
to the mass gap between the first radial excitation of the D meson and the
ground state D meson. The mass of the radial excitation of the D meson is
not known either, but it is probably close to the masses of the known P-wave
excitations D and D3, i.e. to 2.45 GeV. Since the mass of the ¢ quark has
been chosen 1.47 GeV, this corresponds to E. ~ 1 GeV. Further we shall
introduce better estimates, but this one is roughly correct. The factor \/_qE
in the prescription for averaging is not very important numerically, but it
has been included, because it simplifies the formulae.

! In the sum rule approach the low quark masses corresponding to current quarks
are used.
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The hadronic integral does not depend on the parameter E.. A standard
calculation gives

Dhaar = CTfEME, (47)

where C is a known constant. For the partonic integral, we found the
approximation

E.\’ (T9)
_ 2 33 3 c 2
Ipart = §CmbEc ll + vy (m—b) -7 Es— . (48)
The constant C is the same as in I;,4,- The last term in the bracket is
the contribution of the quark condensate, which according to our present
understanding fils the physical vacuum. For a typical value

(7g) = —(0.23 GeV)?, (49)

this is a 10% correction for Q = ¢ and a 5% correction for Q@ = b. Equating
the two averages, reintroducing the general notation P and @ and rearrang-
ing, one finds that the equation for the decay constant with better than one
per cent accuracy can be written in the form

e _ 1372 (Mg 32 72 (qq) 3 ([ Ec ?
MPfP_ﬂ‘EC (Mp) 1 2 E? +88 mQ

(50)

In order to estimate the parameter E, necessary to find the ratio fg/ fp,
we shall use two methods. Let us consider first the static limit mg — oo.

One finds 1
(vVMpsp) =—(B2). (51)

Lattice calculations yield for the right hand side (0.6 — 0.7) GeV, which im-
plies EZ° = (1.5~ 1.7) GeV. This does not contradict our previous estimate,
because the parameter E. depends on the energy scale. Since in the high
mass limit the ratio mg/Mp = 1, we find

fB=10fp. (52)

As another estimate we use the values of the parameters found in sum rule
calculation at energy scales corresponding to the physical meson masses.
They are

EP ~1.08 GeV, (53)
EB ~1.30 Gev, (54)
A= Mp —mg =~ 0.70 GeV. (55)
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Substituting these numbers one finds

- fB=09fp. (56)

In the following section we present a short introduction to the method
of sum rules, which yields similar results from similar assumptions, but in
a much more respectable way.

5.4. More advanced calculation

In the sum rule approach to decay constants of pseudosclar mesons the
basic concept is the correlator

() = i / d*2e'9% (0T A5() AL (0))0) . (57)

where
As(z) = imqQgysQ (58)

is the pseudosclar weak current.

Further steps are analogues of the steps described in the previous sec-
tion. One has to calculate the hadronic and the partonic version of the
correlator, perform an analogue of averaging, compare the two expressions
and solve for the decay constant. The analogue of averaging is the use of
dispersion relations for g2 — —oo. For the hadronic version one obtains

00
2M4 1 Imﬂ-pert
Hgladr(qz) — JM'ZfL + - / ds —52._(.f2 — Sub. (59)
p—Qq—1i€ T $—q° —e
8¢

Note that the hadronic spectrum is much simplified here. The first term
is the contribution from the P pole and all the rest is approximated by a
perturbative expression from some threshold at s. to infinity. The position
of the threshold s, is a parameter to be adjusted. Note also the subtraction
terms denoted Sub, which are necessary to make the integral convergent.
The partonic correlator is written in th form

hnﬂgert(s)
S ————

s—q2 —ie

oo
IP*(¢?) = % / d — Sub + I£°™4(¢?). (60)

m

Q

The last term contains the condensates with perturbatively calculable coef-
ficients. Each condensate has dimension energy to some power. The higher



Structure of Particles Containing Heavy Quarks 1833

this power the smaller (probably!) the contribution. The first three con-
densates are: the (gg) condensate of dimension 3, which has already been
introduced, and the condensates of dimension 4 and 5:

(G uys G*P¥) % (0.441 GeV)*, (61)
9:(70,,G* q) ~ 0.8 GeV(qq) . (62)

In these formulae G denotes the gluon field. We shall not discuss the con-
densates any further.

Before equating the hadronic and the partonic expressions for the corre-
lator one usually takes their Borel transforms, .e. acts on both expressions
with the operator

: @) 4\
= - 6
Bu = Im Ty g ) (63)
where the parameter
2
M2 =_-L (64)
n

is held fixed. The subtraction terms, which are polynomials in ¢2, give zero
under this transformation and the equation for the decay constant takes the
form

1 o (1)

M? M2 )

Sc
/ ds Tm ITP*™(s) exp (_]\—4_52) + Bp Cond, (65)

m

1

T2

Q

where Cond denotes the contributions from the condensates. We do not
write here the final equation obtained after substituting explicitly the per-
turbative terms and the condensates, because it is rather long [39, 40]. A
careful analysis of the dependence of the various terms on the energy scale
and on the renormalization scheme is also crucial here. The estimate of
errors is very uncertain. Moreover, there are two parameters: M and s,
which have to be estimated from arguments based on common sense and
on the assumption that the solution should be stable, i.e. depend little on
these parameters. The result of all this analysis is that fg ~ fp. The
reason should be clear: semilocal duality is being used instead of the wave
functions of @¢ bound states. Typical results are fp =~ 170 MeV, fg ~ 190
MeV.
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