Vol. 25(1994) ACTA PHYSICA POLONICA B No 34

FLUCTUATIONS IN THE FRAGMENTATION
PROCESS*

R. BoTET

Laboratoire de Physique des Solides, Batiment 510, Université Paris-Sud
Centre d’Orsay, F-91405 Orsay, France

AND

M. ProszAaiczZAK

Grand Accélérateur National d’Ions Lourds (GANIL), BP 5027
F-14021 Caen Cedex, France

(Received December 20, 1993)

In this review, we present some general framework of sequential frag-
mentation, as provided by the newly proposed Fragmentation-Inactivation
—Binary model, and to study briefly its basic and universal features. This
model includes as particular cases most of the previous kinetic fragmenta-
tion models. In particular, we discuss how one arrives in this framework to
the critical behaviour, called the shattering transition. This model is then
compared to recent data on gold multifragmentation at 600 MeV /nucl.
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1. Introduction

For the description of many physical processes, involving complex sys-
tems, physicists try to use simple, averaged quantities. Indeed, in thermo-
dynamics, fluctuations around the thermodynamic mean value obey gen-
erally the Gaussian law and they are small in large systems. In proba-
bility theory, the sum of large number of independent Gaussian variables
XN = a1 + az + ... + an, where (a;) = a and (a;2) = o is itself dis-
tributed according to the Gaussian law and in the limit of large N, relative
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fluctuations in the distribution of Xy are small! Actually, non-Gaussian
distributions are quite common in nature and, moreover, numerous exam-
ples exist showing that strong local fluctuations at various scales may exist
even in large, macroscopic systems. These include hydrodynamic instabil-
ities and turbulent flow in a classical incompressible fluid, distribution of
luminous matter in the Universe, energy distribution of cosmic rays, mul-
tiparticle distributions in ultrarelativistic collisions of leptons, hadrons and
nuclei, self-exciting magnetic fields in a conducting liquid, localization in
disordered media and many others. In these and many other similar situ-
ations the average quantities, even though well defined, do not provide a
sensible characterization of a studied system.

The structures in the random medium take the form of the “peaks
and beach” structures in which the rare, high intensity peaks, localized
randomly in space and time and concentrating the majority of the mass
of the distribution are separated by large size, low intensity regions. The
rare fluctuations (high intensity peaks) make then the main contribution
to the mean moments of the distribution and the ratios of the moments
over high and low intensity regions respectively, grow exponentially both in
Z and t. This peculiar behaviour of statistical moments in comparison with
the Gaussian relation is called sometimes the intermitiency. In terms of
the Fourier analysis, intermittency is characterized by both a slow decrease
of the contribution from higher Fourier harmonics and an anomalous phase
relations among them which lead to the appearance of individual high peaks.

Recently, it was proposed to apply the intermittency analysis to the
studies of the fragment-charge distribution following the decay of hot nu-
clear residuum and the scale-invariant fluctuations have been found in the
collisions of heavy-nuclei at E/4 ~ 1 GeV [1]. The origin of these fluc-
tuations in nuclear fragmentation are not yet clear but it was shown that
they provide new observables which could help to distinguish between dif-
ferent fragmentation mechanisms. Below we discuss the possible origin of
this phenomenon in cluster fragmentation processes using the newly pro-
posed Fragmentation-Inactivation-Binary (FIB) model [2] which includes,
as particular cases, most of the previous kinetic fragmentation models. In
the latter model we give basic equations and discuss the phase diagram, in
particular the critical behaviour and the critical fluctuations associated to
it.

2. Time—evolution of a random quantity

Random quantities of the multiplicative type arise quite naturally in
various evolutionary problems. Let us consider a typical evolutionary equa-
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tion of the unstable type:

dX
7{ = U(t; T)X1 (1)

where U(t; 7) is a Gaussian process ( (U)r = 0,(U?), = o%. The solution
of Eq. (1) is of the multiplicative type [3]:

¢ N=t/r ir
X(t) = X (to) exp / U =esr ] (exp[ / U(t')dt']) (@)
to =1 G-1)r
and
N=t/r , it N=t/r
En=6=In X (t) ~ Z ( / U(t')dt')s Z m=m-+nt...+9N.
=1 t=1

(3)
The CLT ensures that the distribution P(£y) is Gaussian. The general
solution of the Eq. (2) has a form of a product of a large number of random
quantities and is an intermittent quantity characterized by the moments:

2 0.2
(e7(e) = (x2(e = )y exp (25 ) (4)

They grow exponentially with time and this growth rate is faster the higher
is the rank of the moment. In other words, the relative fluctuations grow
and may become very large at large times t. Moreover, X (t) is distributed
according to a log-normal distribution. Analogous features to those dis-
cussed above for the solutions of Eq. (2) can be found for the linear scalar
equations with diffusion and a random breading which are often used to
describe the kinetics of chemical and nuclear reactions [4].

Obviously, not all evolutionary equations yield as their solution the
intermittent random quantity. For example, the evolutionary equation of
the type: dX/dt = U(t;T) gives the solution which in the limit of large t
approaches the Gaussian random variable [3].

2.1. Dynamics of an incompressible fluid

Turbulent flows of the incompressible fluid are characterized by their
intrinsic instability and unpredictability. Any small perturbation at a given
instant of time leads to a strong distortion of the flow pattern. The pecu-
liarity of the turbulent flows is in its ability to transfer momentum and heat
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among extremely different scales. This process is associated with the large
non-statistical fluctuations. In principle, the statistical mechanics of the
incompressible flow in the turbulent regime, could be build up on the basis
of the Navier—Stokes equations. Unfortunately, all analytical approaches
encounter the closure problem, i.e. the dynamical equations for the fluid
correlation functions of a given rank are coupled to the higher order cor-
relation functions. Consequently, the closure of the infinite hierarchy of
equations for the correlation functions at any given order introduce in the
chaotic (turbulent) regime an uncontrollable error in the description of the
flow and its properties. The real progress in understanding the mechanism
of the chaotic energy (momentum) transfer could be achieved by noticing
that the process deals with the hierarchy of structures (“eddies”) at dif-
ferent scales [5]. In this picture, the turbulent energy transfer is given by
a self-similar cascade process of “eddy” breaking down, in which there is a
transfer of energy to smaller and smaller scales (“eddies”) until the fragmen-
tation is stopped by the dissipation. This semi-phenomenological approach,
in which the energy cascade is given in terms of multiplicative processes
with a phenomenological fragmentation function, turned out to be an ex-
tremely successfull model of the chaotic energy transfer among the “eddies”
in the turbulent flow. It is obvious, that the fragmentation function in this
theory should be related to the nature of singularities of the Navier-Stokes
equations, developing at high Reynolds numbers. Unfortunately, nobody
was able until now to explain this relation.

2.2. Instabilities in the motion of nucleon in the random medium

A standard tool in describing the nuclear dynamics in the low en-
ergy domain is the Boltzmann-Uehling-Uhlenbeck (BUU) model or the
Boltzmann-Langevin (BL) model. Whereas the first model is well suited
for the description of nuclear processes involving small fluctuations around
the average, the latter type of models is in principle capable of describing
large fluctuations as well.

One may try to justify BUU or BL equations by relating them to the
BBGKY hierarchy of the kinetic equations for N-particle distribution func-
tions. In this case, BUU and BL type of models are obtained by closing
the hierarchy at the level of the two-particle correlation functions and by
selecting a special form for the two-particle collision integral. In the low
density limit and under the condition that the flow of the one-body density
is laminar, one may reasonably hope that the restricted framework provided
by BUU or BL transport equations, yields a correct approximation of the
exact equations for the N-body density matrix. However, in the strongly
chaotic domain the approximate equations may be insufficient as the error
grows exponentially, and so is the loss of the information about the studied



Fluctuations in the Fragmentation Process 357

system. Hence, in the chaotic regime the BBGKY kinetic equations, on one
hand, cannot be replaced by the closed system of equations for the low rank
correlation functions and, on the other hand, the reduced set of equations
(BUU, BL, etc. ) cannot be solved accurately.

Simulations of the BUU or BL equations for energetic heavy-ion col-
lisions show that these equations develop various instabilities resembling
those known before in the Fermi liquid theory (spinodal instability [6]) and
in the theory of rotating uniformly charged liquid drop with a surface tension
[7]. As a result, the complicated, unstable and non-analytical flow of the
particle distribution appears. In BL approach these instabilities are further
magnified by the coupling of the random fluctuating force to the particle
trajectories which leads to the intermittent type of instabilities of the par-
ticle trajectory in the phase space. In the early stage of the collision when
the particle density piles up, the probability for the three and more particle
collisions are not negligible, and the foundation of the Boltzmann type of
equations becomes questionable. This is the so-called transient regime of
the collision [8, 9] when the large amplitude fluctuations in the phase-space
develop and determine the “catastrophic” phenomena such as the copious
fragment production. In this regime many of the quantitative aspects of
the BUU and/or BL simulations are not reliable and one has to look for the
semi-phenomenological approach, as in the case of the fluid dynamics in the
chaotic regime. For the description of the nuclear multifragmentation such
a semi-phenomenological approach, the Fragmentation-Inactivation-Binary
(FIB) model [2], has been studied recently.

3. Fragmentation-Inactivation-Binary model

By “sequential fragmentation”, we mean the disaggregation of an ini-
tially connected system vie a sequence of individual break-up events. Ac-
cording to the considered case, this sequence will be either temporal, i.e.
each individual event occurs at a definite time, or topological, which means
an incomplete ordering of the set of events. Let us now consider a bi-
nary sequential fragmentation of the cluster labelled N. This fragmenta-
tion is drawn here (see Fig. 1) as a topological sequence and all the pos-
sible informations are not available. For instance, we know that i appears
after N but we cannot decide if ¢{ has appeared before or after (N — 1).
The associated temporal sequence should give the time t; when cluster
N — i+ (N —{) as well as the times tz, when ¢ — k + (i — k), and
t3 when (N — i) — j + (N — i — j). Obviously, there is a larger amount
of information in the temporal sequence. Contrary to the geometry of the
clusters, the size-distribution provides a collective description of the system.
In other words, one unique break-up event may be quite complicated and
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specific of the microscopic physics governing this splitting, but after the sys-
tem has undergone a large number of such breaks, most of the microscopic
details are smoothed out.

Fig. 1. Schematic representation of a topological sequence of the binary sequential
fragmentation of the cluster labelled (.

To put the above ideas into practice, some general assumptions must
be done:

o There are several individual break-up events in each sequential frag-
mentation 1.
o Each individual break-up can be simulated by a “black-box”.

This latter hypothesis is indeed non-trivial and we give now some de-
tails. One defines the fragmentation kernel F;;, which is a positive probabil-
ity function giving the mean probability of the break-up event: (i + j) —
(i) + (7) per unit of time. Note that the existence of such a probability
function is a mean-field hypothesis. The notation (i) means one cluster of
generalized size ¢, i.e. a vector with any conservative additive quantities
(e.g. the mass, the momentum, the energy,...) as the components. To sim-
plify the form of the subsequent equations, we restrict the basic process to
a binary fragmentation.

Stop of the fragmentation occurs when all fragments are inactive. We
assume that once a given cluster is inactive, it cannot break-up again. This
is a low-density approximation in the sense that the activity cannot be
brought from outside, e.g.by fragment-fragment collisions. One defines then

! This hypothesis is opposed to an instantaneous multifragmentation where all
the final fragments are generated at the same time.
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the inactivation kernel I}, (I > 0), which is the mean probability per unit
of time of the occurence of the inactivation event: (k) — (k)*, with (k)*
being an inactive cluster of generalized size k. With these low-density mean-
field assumptions, one can now write the basic equations describing the time
evolution of the size distribution of the fragmenting system.

3.1. Basic equation

Let us define the state of the system by a set of two vectors: 71,7 where
m = (my, ma,...) is the list of the number of active monomers, dimers, etc.,
and i is the same but for inactive clusters. At the beginning of the process,
we have: M = uN, where #) has zero components, except 1 at_the nth
place, and 7 = 0. At the end of the same process, we have: 7 = 0 and we
wish to know what 7 is. The initial condition will be denoted by subscript
N when needed.

The Marcus equation gives the change in the probability wy (7, 7i; t) to
get one state 17,7 at the time ¢, as:

{m,7};t) =

ZFij[(mi+j + Dwn({(...,mi — 1, .. ,mj — 1,..,migj + 1,...),7}; 8)
i,j
— mitjwn({m,7}; t)]

+ Y Lel(m + Dwn({(-ome +1,.0), (s e — 1,0 58)
k

- mpwn({m, i}; t)] (5)
In each bracket [ ], the first term corresponds to the gain term and the
second one to the loss term, due to the events of the type either: (i +j) —
(£) + (§) or (k) — (k)*. The probability, during the time dt, of such
events is Fjjm;y;dt and I,m,dt, respectively. In this form, Eq. (1) is
rather complicated, because of the explicit dependence on various states of
the system. It can be rewritten in a more convenient form with the help of
the generating function:

8w N

-

wN(z’ yvt) = Z wN({m’ n}’ ) :‘Tn (6)

m,i

where Z™ means the product: z;™1z,™2... and the sum runs over all the
states. After some algebraic manipulations, one finds:

k-1
awN Z, ¥ t) = Xk: (ZIF'; k—*t(zlzk—t - zk) + Ik( Y — Zk)) (z’ Y )
(7)
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which is now an ordinary first-order differential equation on a 2N 4 1-
dimensional space, with the boundary conditions Wwyn(Z,%;0) = zn. A
similar equation for the aggregation problem has been derived by Marcus
[10].

From Marcus equation, one may derive a set of equations for the average

values: 5
- ON ,= =
me(N5) = 3 wn({ @ thmi = 51 Te), (8)
™,7

where M (NN;t) denotes the average number of clusters of size k, for an
initial condition N at time t. In this way one obtains the master equations:

dm _ _
d—tk(N;t) = —Fpmp(N;t)+2 > Fiipmi(N;t)
i>k+1
dn
E&(N; t) = I (N;t), (9)
where we have denoted:
k—1
S =1 + E Fi—i. (10)
=1

Per unit of time, one has in average Iy} clusters of the size & which
become inactive, 7; clusters of size k£ which disappear by fragmentation
and 2 ), Fj;_im; clusters of size k£ which appear by fragmentation of
i>2k+1

larger clusters ( the factor 2 comes from the distinction between F;; and
Fj; in the definition of the fragmentation kernel). Comparing with the
Marcus equation, one has lost a considerable amount of informations since
the master equations work with the average values. On the other hand, the
master equations have the great advantage to be easy to solve. Because
of their linearity, they can be solved numerically by downward iterative
integrations for every choice of kernels and initial conditions.

Another equations can be written following a very different way, in-
vestigated by Esipov et al. [11]. Let us look at the first event of the se-
quence: it is either a fragmentation (N) — (%) 4+ (IV — %) or an inactivation
(N) — (N)*. Suppose that this first event was a fragmentation at a time
t;. We may then consider one state {m, i} at a given time ¢ for the initial

condition %, and another state {r'r‘z,, 1'1"} at a time t — ¢t for the initial con-

! U4
dition N — 7, with the constraints: m = m + 7 and i = +# . This
leads to the following equation:
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wn({, A}; t) = 6( — @n)d(R)e" TN

— g - 1 - e—¢Nt
+ In§(m)é(7i — in)
+ E /Ft N-— s[
=1 it : =7
n +n
[
x wi({ 7 };t — wn_i({7 7 it — t)e FN? ]dt’ .1

It is interesting to notice that this fragmentation is a random multiplica-
tive process, since the probability wy on the rhs of Eq. (11) is equal to
some linear functional of products like w;wpn_;. These sorts of random
multiplicative processes are widely studied because of their anomalous fluc-
tuations [1, 12].

4. Scaling laws and the phase diagram

The above model without inactivation (I} = 0), which we shall call the
standard model, has been studied extensively [13]. The main surprise has
been the discovery that for certain fragmentation kernels, smaller clusters
break up at increasingly rapid rates. This leads to an apparent loss of the
total mass due to the formation of a “zero-size” particles phase as soon as
t > 0. This “shattering” second-order phase transition we shall also recover
in the FIB model.

In the standard model (I} = 0), there is no possibility to obtain non-
trivial limit size-distribution as t — o0o. On the contrary, the FIB model
leads to interesting asymptotic size-distribution. The master and cascade
equations can be readily written in this case and their main properties have
been given elsewhere [2]. Note just that the composed particle first moment
N¢ = 1- 71 /N plays the role of an order parameter when the total mass
becomes infinite. When the probability Iy/#n that no event occurs tends
to 1, then No — 1 and this is called the co-cluster phase since there.
remains a large cluster of size of order N. On the contrary, when this
probability tends to 0, the parameter N is smaller than 1 and this means
that a finite ratio of the total mass is converted into finite-size clusters:
monomers, dimers, etc. . This is the shattered phase and the asymptotic
(N — o0) value of N¢ coincides with the total mass as defined in the
continuous model.
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4.1. The infinite cluster

The average size of the largest fragment (Znax) N in the system of size
N is not easy to handle. However, the recurrent inequality can be derived by
the following reasoning. The first event is either inactivation of the cluster
of size N (i.e.Zmax = N), or its fragmentation into clusters i and N — 1.
The cascade beginning with the cluster of size i leads to the largest cluster
of the average size (Znyax)i. Obviously, (Zmax)N 2 (Zmax)i, because there
may be a larger cluster in the branch beginning with the N — i-cluster. The
same reasoning can be done for the N — i-branch and we can write:

N-1

I F;N—i
(Zmax)N > N— ?,V + Z Max (Zmax)n(zmu)N } ;:J (12)

=1

with (Zmax)1 = 1. Suppose now that the ratio (Z,ax) N/N behaves like a
positive constant ¢ when N — oo. Replacing (Zmax)n by oN in Eq. (12)
leads to the relation:

N/2 .5 11
o Z {1+ 221:] xF‘!N'-t} . (13)

NIy

It is easy to show, that when a and # are not in the shattering phase then
the rhs of Eq. (13) tends to 1. This means that, in the average, almost
all the mass is concentrated in one big cluster. For this reason, we call
this phase the oo-cluster phase. In the shattered phase, ¢ < 1 because
(r1)N + (Zmax)N < N, t.e. the co-cluster phase and the shattered phase
cannot coexist. We have been unable to determine the upper bound for o
and values of o in different phases must be found numerically. We have
found numerically, that in the whole shattered phase ¢ = 0 and, more
precisely, (Zmaz)N/N decreases in this phase as a power-law of N. A
typical example is shown in Fig. 2.

4.2. Few remarks on the choice of the fragmentation kernel

Discussing the phase-diagram of FIB model, we have assumed the ho-
mogeneous fragmentation function. For some models, one has a precise
idea of the form of this fragmentation kernel either by an exact deriva-
tion, or numerical simulations or yet by physical arguments. One canonical
example is the percolation on the Bethe lattice for which one can deduce
[15): F;; o (i5)~3/? with the proportionality constant being a function of
i + j. Fragmentation of the percolation cluster in the ordinary 2D perco-
lation at a critical point, has been investigated numerically [14] and the
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Fig. 2. The average size of the largest fragment (Z,,ax) normalized by the initial
size of the system N, is plotted vs. N for the FIB model at a = 2.5, 8 = ~3.5 (on
the transition line) and a = ~2.5, 8 = —3.75 (in the shattered phase).

(#,7)-dependence of the fragmentation kernel deduced from these studies is
similar to the solution for the Bethe lattice [15].

Let us now analyze the process of fragmentation due to the spinodal
instabilities of the Fermi liquid associated with the density fluctuations. The
dispersion relation for long-wavelength density fluctuations is w? = c,2¢?,
where ¢, is the sound velocity and ¢ is the wavenumber. For ¢,? < 0, the
modes have imaginary frequencies and their amplitudes grow exponentially
with a growth rate I' = —iw. The typical mass fragment produced by this
instability is: 2 «x g~3 and hence the growth rate of an unstable mode is:
I' x —i7n~1/3, In a given volume there are A/# of such instabilities and
hence the effective growth rate is I'.g « —in~%/3. The factor by which
a mode can grow during the time it stays in the unstable region is: v =
exp [ I'.gqdt and typically the fluctuation requires a growth exponent y ~ 3
to disrupt the system [6]. Assuming that I.g is approximately constant
in time, the necessary time to disrupt the system is ¢ o I.g~ . Hence,
the fragmentation probability function for a binary process becomes: F;; o
2@ 4 j2% with a = —2/3, i.e. the homogeneous additive kernel. One should
stress that the form of F;; does not depend on whether we take collision
limit or collisionless limit of the Fermi liquid [6].

{.3. The average mass distribution:
The multiplicative fragmentation kernel

If both fragmentation and inactivation kernels are homogeneous func-
tions of the sizes, one expects scaling laws under the critical conditions.
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Let us assume the multiplicative fragmentation kernel, e.g.: F;; x (i5)%
(see Fig. 3), and the inactivation kernel I; in the form: I; = I;k#. The
transition line is defined here as: f =2a+1ifa> ~2and f = a—-1if
a < —2. In fact, one finds that the size-distribution in the whole shattered
phase behaves like a power law when the size of the clusters is intermediate
(1< k< N)[2]: )
g N —2a-3

N~ % . (14)
Note that the exponent of this power law is independent of the strength I3
of the inactivation and is always larger than 2. On the transition line, the
size-distribution is still a power law:

my(N) N7

N k‘r b (15)
but the exponent 7 is the solution of the equation:
2B(a+r,a+1)=I + Bla+ 1l,a+1), (16)

and B is the Euler-beta function. This exponent is an explicit function of
I, and is always smaller than 2. There is, of course, no such power law in
the oo-cluster phase.

E .
ik-i ‘

ik-i

a<0

k
Fig. 3. The sketch of the fragmentation probability function F;; of the FIB model.

4.4. The average mass distribution:
The additive fragmentation kernel

If the fragmentation kernel is a homogeneous additive function of the
size, e.g.: Fij .i—,(i“‘ + 722) and the inactivation kernel is I} = I} k5, then
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the transition line is found at: 8 = 2a+1if2a > -2 and g = a -1 if
2a < —2. The size-distribution in the whole shattered phase behaves like a
power law and the exponent of this power law is the solution of the equation:

'(r+p-1)=I(t+8-2a-2)I'(2a+2), (17)

where I' is the Euler-gamma function. On the transition line, the size-
distribution is still a power law but the exponent 7 is now the solution of
the equation:

r(r) _ T-1 I
Fr+2a+1) (r+2a)(2at2) " TRatD)

(18)

No such power law is found in the oo-cluster phase. These results are of
course very similar to the multiplicative case.

4.5. The mass-mass correlation functions and intermittency

Fluctuations in the fragment-size distribution can be studied using the
scaled factorial moments (sfms) 1, 12]. In FIB model they can be conve-
niently defined using the derivatives of the genetrating function (6). The
critical phenomenon of the shattering phase transition is accompanied by
the intermittent fluctuations at the transition line [2] (see Fig. 4) 2. One can
argue, that everywhere outside the transition line the sfms should disappear.
For that let us insert a trial function for probabilities wp:

oy ()™ (n)"k
i) = 10 TT (Tl O ) (19)

ng!

into the Marcus Eq. (7). If m,, are close to the average value (m;), then:

;‘Z{ Z(m) > F. (20)

i4i=k

It is clear from this equation that whenever the system is away from a
critical state then the probabilities wy(1%, i; t) are given by a product of
Poisson distributions and hence the sfms vanish.

In small systems, for which one cannot speak about a phase-transition
in the usual sense, the intermittent pattern of fluctuations could be the only

2 The situation is somewhat less clear in the co-cluster phase. In this case, a
large part of the total mass is concentrated in one big cluster and , hence, the
sfms are calculated for very small effective systems.
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Fig. 4. The normalized scaled factorial moments F3(M) of the fragment size distri-
bution are shown for selected exponents a and 3 at the transition line of the FIB
model (N = 256): a« = —1/2, B8 = 0,1, = 2\/xI'(27/20)/I'(37/20) (open points),
a=0,8=1,I = 3/37 (open squares), a = 1,8 = 3,I; = 137/8778 (black points)
anda = 2,8 =35, I; = 28709/8738730 (black squares). For all these cases r = 1.85.
The case alpha = 0,3 = 0,I; = 1 in the shattered phase is shown for comparison.

°

sign of a critical phenomenon. We have also studied the size-dependence of
these fluctuations. For a = 0,8 = 1,I; = 1, the calculations yield in the
large N limit: Fz(M) ~ log N — % log %, where NV is the total mass of the
system and M is the number of divisions of the total mass. Normalizing
F;(M) by the value of Fo(N) ~ log N gives:

F(M) 1 2logM

F;(N) 3 3logN '

(21)

Hence, the spectrum of fluctuations as measured by sfins, is a power-law
F,(M) ~ M’? with the intermittency exponent f, which weakly (logarith-
mically) depends on the system size N. In other terms, one may conclude
that the natural scaled variable appear here to be log M/log N instead of
log M.

It is tempting to compare this result to Parisi-Frish multifractal model
[16] of fully developed turbulence. In a fluid at high Reynolds numbers R,
the scaled energy spectrum loge/log R is a universal function of the scaled
wavelength log A/ log R [16]. Since the Reynolds number is proportional to
the total size L of the fluid, the good variable is log A/ log L, quite analogous
to log M/log N in the FIB model. Recently, a similar result was obtained
by considering the dependence of the strength of the fluctuations on the
low-density cut-off in the random cascading picture of the multiparticle
production [17].
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4.6. Fragment-charge correlation data of ALADIN

The Au-fragmentation data of ALADIN have been successfully repro-
duced by choosing the kernels at the critical line of the FIB model [18].
Different choice of parameters a, 3, I;, corresponding to different tempo-
rary evolutions, turned out to give the same results for the multiplicity
spectra, providing the critical exponent 7 (7 = 1.85) of the power-law fit
of the fragment-mass distribution is kept fixed [18]. In this case the fluc-
tuations in the fragment-size distribution, as measured by sfms, exhibit an
intermittent pattern for all those “equivalent” parameters a,3,1; .

In Fig. 5, we compare results of the FIB model with the ALADIN data
for the collision of Au nuclei at 600 MeV/u on Cu target (triangles). In
Fig. 5a, the average charge of the largest fragment (Zy,x) produced in the
break-up process is plotted as a function of the composed particle first mo-
ment Ng. Fig. 5b shows the average multiplicity of the intermediate mass
fragments of charge 3 < Z < 30. Finally, Fig. 5¢ exhibits the average value
of the quantity y2 = MM,/ M;2, where M; are the conditional moments:
M; =%, #;Z;* and the sum runs over all fragments of charge Z; and multi-
plicity 7i; except the largest fragment and the particles of charge Z = 1. The
agreement between the results of FIB model and the data is good for small
and intermediate values of No with some deviation for No — 1 which
corresponds to quasi-fission or evaporation events typical for low excitation
energies. To account for these low energy quasi-fission and evaporation pro-
cesses, one would have to select another parameters of the kernels. However,
in order to attain the simplicity of the model we restrict the fitting by taking
one “universal” parametrisation of the kernels, independent of the value of
N¢.

The fluctuation pattern changes with N¢, as it should, since splitting
events in different classes in N, for given exponents a, 3, is equivalent to
replacing original kernel functions by the effective ones which, in general,
are not scale-invariant. Anyway, the experimental intermittency indices are
very well reproduced by the FIB model, providing an additional indication
for the shattering phase transition in the nuclear multifragmentation at
E/A = 600 MeV [18].

4.7. The time behaviour

The existence of “equivalent” parametrisations of the fragmentation
and inactivation kernels, for which the same asymptotic multiplicity distri-
butions are obtained but which correspond to very different temporal evo-
lutions, requires the investigation of the time-behaviour of the FIB model.
The quantity $; in Eq. (9) has a meaning of the inverse of a characteristic
time. The time-evolution of the number of inactive fragments is given by
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Fig. 5. The average charge of the largest fragment (Z,n,.) (a), the average mul-
tiplicity of the intermediate mass fragments (M;xr) (b) and the average value
of 73 (¢) are plotted as a function of the composed particle moment N¢ for the
experimental data of ALADIN [20] (triangles) and for the FIB model (full line).
For more details see the description in the text.

Eq. (9). Eliminating the number of active fragments, these equations can
be written in the compact form:

N
Frir_
S (Nit) = ~Bum(Nit) + 20 Y, —r=Eau(Nse) + INS(N — k) (22)

i=k+1  °
with the initial condition: #ix(N;t) = 0. Taking only the first term on the
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rhs one obtains:
N
Ae(Nit) = ) Iibj (1 - exp(~#;t)) (23)
i=k
with the coefficients given by the backward recurrent relations:
bnN=1/8N

2 j
bjk = P 7 Z Fp i—rbji fork<Nandj>k
k I i=k+1

N
b= — Z Fri & th Z bjk fork< N (24)

s-k+l j=i j=k+1

Note that b; 1’s depend on N. For our purpose, more interesting will be the
evolution of the total mass of the inactive clusters:

N
< kys_
N,(N;t) = g:l(-ﬁ) a(N;1). (25)
The temporal evolution of this quantity follows from Eq. (17) and equals:
dﬁa(N; t) _
a
N k—1 .\ 8 s s
_ 1 I; k k

e 303 rus (2(5) 7~ () ) - (%) #]-

(26)

It is easy to see that the value of the derivative of N.(N;t) at t = 0 equals
Iy, i.e. the inverse of a characteristic time of the fragmentation process.
The successive time derivatives at t = 0 correspond to characteristic values
of the successive powers of the inverse time, namely'

1= Z Z( ) Iibs ks (27)

3~1k~

Iy = ZﬁJ E( ) Ikbg,lea (28)
=1 k=1

IN? +Z(IN 25 ) L) Py k-Zsf,’Z( ) Inbje, (29)

=1 k=1
= (30)
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Eq. (23) is particularly important as it gives a direct access to the inac-
tivation kernel. This is important because for identical asymptotic distri-
butions, one may be able to get an access to the time behaviour which is
mainly governed by the inactivation kernel.

5. Conclusions

Strong random fluctuations exist in a number of physical problems con-
cerning the evolution of systems. Origin of these fluctuations is not universal
and the theory explaining their appearance is not yet completed. Never-
theless, in a number of transport problems, the origin of structures and
strong fluctuations is ultimately related to the randomness of the environ-
ment which is the scene of the transport. We have shown that in this case
the evolution of the system can be often described by the effective evolution
equations of the unstable type. These stochastic equations have generally a
multiplicative structure.

In this work, we have discussed the origin of intermittent pattern of
fluctuations in the fragment-size distribution using the FIB random cascad-
ing model for homogeneous kernels at the transition line. The precise form
of the fragmentation functions entering in FIB model have to be deduced
from the experimental data and/or from the analysis of the non-analytical
instabilties of the dynamical equations. The FIB model belongs to a dif-
ferent universality class than a 3D percolation as manifested by different
values of the critical exponent 7. Nevertheless, the critical behaviour for
both models is associated with the scale-invariant fluctuations which are
well exposed by the scale dependence of sfms.

Scaling laws are rare and very usefull. They both provide a skeleton of
a quantitative theory of the studied process and help to define appropriate
global variables of this theory. The language of thermodynamical reduction
of nuclear many-body problem, which is so customary to us, is doubtful for

the description of dynamical formation of intermediate mass fragments in
HI collisions.

In the above discussion of FIB Model, we have considered the mass
fragmentation, but the extension to other variables such as the energy-
momentum is possible. Similar evolution equations appear in various field
theory models describing jet fragmentations before their transformation into
the observed hadrons [19]. The possibility of applying FIB model to the de-
scription of spinodal instabilities remains exciting subject for future studies.
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