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Composition of the neutron star matter above nuclear density is dis-
cussed within various models of superdense matter. Weak interaction pro-
cesses, leading to neutrino cooling of dense, hot neutron star interior are
reviewed. Neutrino emissivities of hot dense matter are shown to depend
dramatically on the composition of matter. Cooling scenarios for young
neutron stars, under various assumptions concerning the composition of
the neutron star interior, are presented.
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1. Introduction

Neutron stars are the final products of thermonuclear evolution of mas-
sive stars of mass 28Mg (Mg = 1.989 x 1033 g — mass of the Sun).
Neutron stars are also expected to be produced, under specific conditions,
in the gravitational collapse of white dwarfs.

Both the theory of stellar evolution, as well as astronomical observations
indicate, that a typical neutron star massis ~ 1.4 M. However, theoretical
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calculations show, that the neutron star mass can be larger, up to some
maximum value of M.y ~ 2—2.5 Mg. Typical radius of a massive neutron
star is expected to be ~ 10 km. These estimates imply, that the baryon
number density in the neutron star interior can significantly exceed the
saturation density of nuclear matter, ng = 0.16 fm—3. We expect that the
maximum density in the interior of neutron star can be as high as ~ 8—10 ng
(for an introduction to the physics and astrophysics of neutron stars, see
[1])-

Neutron stars were observationally discovered in 1967 as radio pulsars.
Since then, they were observed as X-ray pulsars and X-ray bursters. Neu-
tron star constitute unique cosmic laboratories, in which the theory of dense
matter can be confronted, through astrophysical scenarios, with astronom-
ical observations.

Neutron stars are born as very hot objects, with internal temperature
exceeding 10'° K. Even then, however, the constituents of the superdense
interior of neutron star with n > ny form strongly degenerate Fermi gas.
In the simplest model, in which the neutron star matter is approximated
by the free Fermi gas of neutrons, the neutron Fermi energy is Ep, =
58(n/no)2/ 3 MeV, and kT <« Ep, even for the newly born neutron star,
with T ~ 101° K. In view of this, the structure and composition of the
interior of neutron star can be calculated neglecting thermal effects.

Since its formation, neutron star cools by radiating neutrinos and pho-
tons. Thermal neutrinos can be detected on Earth only during the first
few tens of seconds after the neutron star birth; their flux and mean energy
decrease very rapidly with time. On the contrary, the photons emitted from
the surface of a neutron star at a distance of a few kiloparsecs (1 kpc= 3260
light years) can be detected by the X-ray detectors on the satellites orbiting
around Earth, as long as the surface temperature does not fall below some
10® K. However, while the photons are the carriers of information about the
surface temperature, the temperature itself is determined by the neutrino
emission from the neutron star interior. During first 10° — 10° years of the
neutron star life, neutrino cooling dominates over the photon one.

Neutrino emissivity of dense matter with n > ng, which typically con-
stitutes more than 95% of the mass of a massive neutron star, depends in a
dramatic manner on the composition of the matter (percentage of neutrons,
protons, electrons, hyperons etc.). In view of this, observational “measur-
ing” of the surface temperature of a neutron star of a known age can yield
precious information about the properties of matter at ultrahigh density.

In the present paper we restrict ourselves to non-exotic phases of super-
dense matter; we do not consider hypothetical phases resulting from pion
condensation or deconfinement of quarks. There seem to be at least two
arguments in favor of this limitation. Firstly, no experimental evidence for
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pion condensation has been found in “terrestrial” nuclear physics. Secondly,
it is quite probable, that the low temperature deconfinement of quarks oc-
curs at the densities higher than maximum ones encountered in the neutron
stars.

In Section 2 we present results of calculations of the composition of
superdense matter, composed of baryons and leptons. Weak interaction
processes in dense matter are discussed in Section 3, where we calculate
also the neutrino emissivity of hot, dense neutron star matter. A significant
part of Section 3 is devoted to the description of very recent progress in this
field, which took place in 1991-92. In Section 4 we present cooling scenarios
for young neutron stars, under various assumptions on the composition of
the neutron star interior. Theoretical cooling curves are confronted with
existing X-ray observations. Finally, Section 5 contains conclusions.

2. Composition of matter at supranuclear density

At the baryon density ny, > np, = 0.1 fm 3 nucleons cannot be localized
in nuclei and matter can only exist as a homogeneous, superdense plasma of
baryons and leptons. At the densities close to n), matter consists mainly of
neutrons, protons, and electrons — the elementary constituents of ordinary
“terrestrial” matter; at n,>ng, the lepton component of matter will include
some admixture of muons. This is the simplest model of neutron star matter,
valid at not too high a density. This model will be described in some detail
in Sec. 2.1. However, at higher density, say, at n;, > 3ng, the composition
of matter may be expected to be more complicated. In particular, it may
be a baryon matter, containing not only nucleons, but also hyperons. Such
a mode] of dense matter will be discussed in Sec. 2.2.

2.1. Nucleon matter: the npe and the npep models

The simplest model of the dense matter at n, > ny, is the npe plasma,
composed of neutrons, protons, and electrons of number densities ny, np,
and n., respectively. Electric neutrality implies n, = n., and so it is suitable
to use two independent variables: baryon (in this case: nucleon) density,
np, = Ny + np, and the proton fraction, z = ny, /ny,.

For such a model, the energy per nucleon, E, is the sum of the nucleon,
Ey, and the electron, E,, contributions, E = En + E.. The energy density,
¢, which includes the rest energy of matter constituents, is related to E
by € = Ej njmjc2 + ny E. Many-body calculations of asymmetric nuclear
matter with realistic hamiltonians show, that Fx can be, to a very good
approximation, written as

Ex(nb, 2) = ENxin(nb, z)+ Vo(np) + Va(np)(1 — 22)% . (2.1)
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Here, EN kin is the free Fermi gas contribution to En,
Exin = $Bro(m) [/ +(1-2)*?] , (2.2)

where Epy = h?/(2m) (312nb)2/3 = 58.4(np/ng)?/* MeV is the Fermi
energy of a free Fermi gas of neutrons, of density n;. For simplicity, we
neglect the difference between proton and neutron masses, and put m =
939 MeV.

The validity of formula (2.1) means that the strong interaction contribu-
tion to Ey is to a very good approximation quadratic in the neutron excess
parameter a = (ny — np)/np = 1 — 22z ([2, 3]). The formula (2.1) tells us,
that the quantity Fy, which is par ezcellence a function of two independent
variables, n), and z, has a very simple and universal z dependence, and its
overall structure is determined by two functions of ny: Vp and V5.

For small a, the energy per nucleon can be approximated by the first
two terms of the expansion in a,

En(np, a) = Eo(np) + S(np)a’ , (2.3)

where S is the symmetry energy of nuclear matter, which is determined by
V-, alone,

1 (O0%En 1
S = '8" (‘—a—zz—) =12 = mEFo(ﬂb) + Vg(nb) . (2.4)

While the absence of odd powers of a in expansion (2.1) is a direct
consequence of charge symmetry of nuclear interactions, the fact that the
quadratic approximation for the interaction part of Eyn is very good up
to a = 1 (or 2 = 0) is a non-trivial property of the nuclear hamiltonian.
Actually, this property leads to a significant simplification of the problem
of the determination of the composition of the neutron star matter.

Under usual conditions, neutron star matter is — to a very good ap-
proximation - in equilibrium with respect to weak interaction processes. In
the case of the npe model these processes are:

n—pte +7, (2.5)
pte —n+tuv,. (2.6)

More precisely, under usual conditions the timescales of the beta reactions,
(2.5), (2.6), are much shorter than those related to the processes of the
neutron star evolution.

Equilibrium with respect to beta processes, which establish the compo-
sition of the npe matter, implies a relation between the chemical potentials
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of matter constituents. This relation can be obtained by minimizing the
energy density, under the condition of charge neutrality, with respect to z.
This gives

Hn = pp + pe - (2.7)
Here p; = (66/6nj)nk¢nj is the chemical potential of species “;”, and in-
cludes the rest energy.

Relation (2.7) deserves a comment. Under prevailing conditions, neu-
tron star matter is transparent to neutrinos, which leave neutron star. Their
instantaneous number density in matter is negligible, compared with those
of matter constituents (baryons, leptons). The neutrino interaction with
matter constituents can be neglected. Therefore, under prevailing condi-
tions neutrinos do not contribute to the thermodynamic quantities of the
neutron star matter.

Using Eq. (2.1) we obtain

#n — pp = Epo(ny) [(I ~z)?/3 32/3] + 4(1 - 22) Va(ny,) - (2.8)

At the densities under consideration, electrons are ultrarelativistic (u. >
mec?), so that

pe = ke (312nbz)1/3 = 331.4 (znp/no)'/® MeV , (2.9)

where we used the condition of charge neutrality, n. = npz. At given ny,
the beta equilibrium condition determines the equilibrium proton fraction,
Zeq(np), as a solution of Eq. (2.7),

Ero(ny,) [(1 —z)33 — 32/3] + 4(1 - 2z) V3(nyp,) = ke (37r2n|,:¢:)1/3 .
(2.16)
The value of z.q is thus determined by the ¥3(ny,) function [or, equivalently,
the nuclear symmetry energy S(np)], and does not depend on the quantity
Vo(nb).

The threshold density for the appearance of muons in dense matter, n, e
is slightly greater than ny. At m, = ny, the electron chemical potential
is equal to the muon rest energy, y. = m,c? = 105.7 MeV, so that for
np > ny, the reaction n — p + g~ + 7, becomes energetically allowed:
the npeu phase of matter is then energetically preferred over the npe one. .
The muon fraction 2, = n,/ny,. In the presence of muons, the charge
neutrality condition reads z = z. + z,. The condition of equilibrium with
respect to weak interaction processes,

R——pt+u +¥, (2.11)
p+p” —n+ty,, (2.12)
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leads to pe = u,. Consequently, the equilibrium values of z, z, z, can be
determined from:

Ere(m) [(1 - 2)/° = 227%] 4 4(1 - 22) Vy(my) = e (3x2mp2c) '
| (2.13)
he (3'2“‘,ze)ll3 - {mic‘l + hzc'z {3?27%2#]2/3}”2 , T =2 + z(“z .14)
As in the case of the npe matter, the equilibrium composition of .the
npep matter is determined solely by the V(ny, ) function [or, equivalently,
by the symmetry energy, S(m,))].
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Fig. 1. Equilibrium proton fraction in the npep matter versus baryon density.
Labels cotrespoad to differeat models of dense matter. References: a, b [3); ¢ [4];
d [5; ¢ [6]. FFG: free Fermi gas model.

The density dependence of the nuclear symmetry energy is rather poorly
known, and this results in a large uncertainty in the composition of the
npep matter above re. In Fig. 1 we give the plots of the equilibrium proton
fraction, versus baryon density, for several many-body theories of dense
matter. For the sake of comparison, we show also results obtained for the
free Fermi gas model of the npep matter. .

We see that the proton fraction is determined essentially by the nuclear
interaction term, and turns out to be strongly model dependent. Curves ¢, d,
e, obtained within relativistic models of dense matter {4-6] show monotonic
increase of £ with density, in contrast to curves a, b, obtained for non-
relativistic nuclear hamiltonians {3]. The proton fraction for the models a,
b is, to a large extent, determined by the three-nucleon interaction term in
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the nuclear hamiltonian {3]. The three-nucleon interaction term tends to
increase the proton fraction as compared to the case of the purely two-body
interaction.

2.2. Baryon matter: the general case

At sufficiently high density, it is energetically advantageous to convert
some nucleons into hyperons.

Let us consider the composition of the npey matter as a function of
increasing baryon density, n},, assuming a very crude free Fermi gas model
for all constituents. The first hyperon to appear is the lightest one, A. The
threshold for the appearance of A is n¢(A4), determined from the condition
pn = mpc? = 1116 MeV. For the free Fermi gas model one gets ny(A4) =
0.62 fm 3.

The inclusion of the nucleon-nucleon (N — N) and nucleon-hyperon
(N — H) interaction lowers significantly the value of n¢(A). Typically, for
relativistic mean field theory models of dense matter n¢(A4) ~ 2 — 3ng 7).
Depending on the assumed model of the baryon-baryon ( B — B) interactions,
the hyperon with lowest threshold density can be ¥~ (mg- = 1197 MeV)
or A (see below).

At ny, > ny(A) the energy of the npeu matter can be lowered by
converting some nucleons into A via weak interaction processes, e.g., via
p+e” — A+ v.. Above the ¥~ threshold, the relevant reaction will be:
nte” — X7 4+ v,.. It is clear, that the hyperonisation of matter will lead
to a relative decrease of the electron fraction (see below).

In general, the compaosition of the baryon matter, composed of leptons
(index j1, =e,s,...) and baryons (index jg = n, p, 4, £,...) is determined
from the conditions of the charge neutrality and that of thermodynamic
equilibrium. This is a straightforward generalisation of the procedure for
the npe matter, described in Section 2.1. Consider a mixture of leptons and
baryons, at T = 0 and a fixed baryon density ny,. The energy of a unit
volume of matter, ¢, is then a function of the densities n;. However, the
number densities n; are subject to constraints of charge neutrality and of
fixed baryon density:

Y nigi=o, | (2.15)
]

Z“in =mny . (2.16)
s

The calculation of the minimum of ¢ with respect to the set of n;, sub-
ject to conditions {2.15), (2.16), can be then replaced by the calculation
of the minimum of ¢ = € + a ) ;njqg; + B, njy, where n; are treated
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as independent variables, and a and f are the Lagrange multipliers, to be
determined from the conditions (2.15) and (2.16). The resulting relations
between the chemical potentials of leptons are:

G = 1 Hjp = e
Gy, = 0 Hj, = 0,
Gy, = +1 Kji, = —He - (2.17)

At the densities under considerations leptons can be approximated by free
Fermi gases, and therefore only ¢ = —1 leptons can be present in cold matter
(i.e., e, ™). The relations between the chemical potentials of baryons read:

gig = —1 Hig = Hn + He »
s = 0 Hjp = Hn »
Qg = +1  pjp = p . (2.18)

One sees, that the first hyperon to appear is ¥~ or A, that ¥~ will appear
before ¥°, and that the last hyperon from the X triplet to appear in dense
matter is .

The existing models of the multicomponent dense baryon matter are
even less reliable, than those of dense nucleon matter. This results not only
from the deficiencies of the many-body theories of dense baryon matter,
but also from the lack of knowledge of the N — H and H — H interaction.
Typically, the N — H and H — H interaction model is derived using some
symmetry arguments, within a specific model of hadronic structure (based,
e.g., on the quark model — see, e.g. [8]) and/or constrained by experimental
data on hypernuclei [9]. The calculations based on the nonrelativistic B — B
potential, in which the ground state of matter has been determined using
a simplified version of the variational principle, were done in [10]. More
recently, the equation of state and composition of dense baryon matter have
been calculated using relativistic mean field theory model. The interaction
of baryons has been described there by the exchange of the neutral scalar and
neutral vector mesons, pions, and rho mesons [5-7, 11]. The parameters of
the model have been adjusted to the saturation properties of nuclear matter,
as well as to the existing data on hypernuclei, and on the hyperon-nucleon
interaction. The ground state emergy of the system has been calculated
using the self-consistent mean field approximation, introduced originally by
Walecka [12].

In Fig. 2 we show the fractions of leptons and baryons in dense, cold
matter, calculated by Glendenning [7], using his “case 2” baryon Lagrangian.
For this model, the hyperon couplings to meson field have been reduced as
compared with the nucleon and isobar couplings. The threshold for the
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appearance of hyperons is about 2ng, the first hyperon to appear is X —.
At np, ~ 1 fm™? dense matter is a real “baryon soup”. One should stress
large uncertainty, resulting from the lack of knowledge of the N — H and
H — H interaction. This is seen when comparing Fig. 2 with Fig. 3, which
shows the results of [7] obtained using his “case 3” baryon Lagrangian, with
universal couplings for all baryons. Notice, that in both cases the A isobars
and pions do not appear in the matter at the densities considered.
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Fig. 2. The equilibrium baryon and lepton fractions as a function of baryon density,
for “case 2” model of [7].
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Fig. 3. The equilibrium baryon and lepton fractions as a function of baryon density,
for “case 3” model of [7].
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3. Neutrino emissivity of dense hot matter

All results, discussed in Sec. 2, were obtained neglecting thermal effects,
and assuming, that matter is at T = 0. Under such conditions, matter is in
its ground state, and neutrino emissivity of matter vanishes. Consider the
simplest B processes involving nucleons,

B-: n—pte +i,

3.1
B+ : pte —n+v.. (3.1)

Baryon matter is a strongly interacting many-body system. However, we can
still speak about individual “neutrons” and “protons”, and their energies
and momenta, as long as we replace them by the corresponding “quasipar-
ticles”.

Quasiparticles are elementary objects, which are useful in describing
the low lying excited states of the degenerate, strongly interacting Fermi
liquid (see, e.g., {13]). For instance, simplest version of beta decay of a
neutron in dense nuclear matter is equivalent to the particle-hole excitation
(neutron-hole proton-particle). A notion of a quasiparticle is useful, when
the corresponding states are formed by creation and annihilation of quasi-
particle states close to the corresponding Fermi surface; only then quasi-
particles have a sufficiently long lifetime, and can be considered as objects
of a reasonably well defined energy and momentum. While “bare” nucle-
ons are strongly interacting, the quasiparticles form a “weakly” interacting
Fermi gas. Many of the notions referring to the non-interacting Fermi gas
can be used to describe the gas of quasiparticles. In particular, the Fermi
momentum for nucleon-quasiparticles corresponding to a real Fermi liquid
of density n; is, neglecting thermal corrections, the same as for the free

Fermi gas of the same density: pp; = h(n;37%)'/3. In what follows, we
will, for the sake of simplicity, omit the prefix “quasi” when speaking about
neutrons and protons in dense neutron star matter.

Consider the f— process at T = 0. The conservation of energy requires,
that & = Ej, be equal to the energy of the final state, & = Ep, + E. + E,,.
Decaying neutron occupied a state within the neutron Fermi sphere, so that
E, < Epp = pin. On the other hand, all momentum states within the Fermi
surfaces for protons and electrons are occupied, so that the Pauli principle
implies Ep > Epp = pp, Ee > Epe = pte. However, in the beta equilibrium
Hn = Pp + pe, 0 that & = & cannot be satisfied. Inclusion of interactions
with other quasiparticles does not help. Consider more complicated reaction
n+n— n+p+e + 7. Once again, the Pauli blocking in the final state
implies zero rate.

Let us consider now the effects of finite temperature of matter. In such
a case, the Fermi surface is no longer “sharp”: within a shell of the thickness
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~ kT around p,, the neutron states are only partially occupied, and the
condition & = & can now be fulfilled. Clearly, the energies of the neutrinos
emitted in the beta processes are at most E, ~ kT, but the rate of the
emission is finite.

Neutron stars are born as very hot objects, with initial temperatures
~ 101! K. Except for a short period just after their birth (shorter than 1
hour) they are transparent to neutrinos, which leave neutron star, taking
away its thermal energy. Beta equilibrium of matter implies the equality
of the rates of the 8+ and 8- reactions, I'(8+) = I'(8-), and the rate of
neutrino emission is thus I',(8) = 2I'(8—). Neutrinos leave neutron star
interior at the velocity of light (in contrast to photons, which diffuse slowly
through the stellar interior, to be eventually emitted from the neutron star
“surface”), and thus the beta processes, Eq. (3.1), can represent a very
efficient sink for the thermal energy of the star.

The pairs of reactions such as (3.1) were first considered by Gamow
and Schoenberg as early as in 1941 [14], who discussed a more general
case (A, 2) — (A, Z+1)+ e + 7, (A, Z+ 1)+ e~ — (A, 2Z)+ v..
Gamow and Schoenberg pointed out, that such pairs of reactions in hot
dense stellar matter, at the late stage of stellar evolution (e.g., red giant
stage ) could be responsible for very efficient thermal energy loss, leading
eventually to stellar collapse. In their paper they refer to such processes
using a mysterious name of “Urca processes”. The name was in fact that
of a casino in the Urca district of Rio de Janeiro (closed down in 1955). As
Gamow explained afterwards, they introduced this name to commemorate
the casino, in which they first met, and also because the Urca process results
in a rapid disappearance of thermal energy of the star, similarly to the rapid
disappearance of money of gamblers in the Casino da Urca [15].

The Urca mechanism for the neutrino emission results from the charged
current processes of the standard Weinberg-Salam-Glashow (WSG) theory
of weak interactions ( see, e.g. [16]). The WSG theory predicts also the ex-
istence of neutral current weak interactions, which could lead to production
of neutrinos in the nucleon Bremsstrahlung processes,

n+n—n+nt+v+v,
n+p—n+ptvtv,
ptp—pt+tpt+itv, (3.2)

where v is neutrino of any flavor (e, , or 7).

Neutrino emissivity of hot and dense neutron star matter, resulting from
both charged current and neutral current reactions, will be discussed in the
subsequent subsections.
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3.1. Baryon matter: nucleons

Let us consider simple npe model of neutron star matter. Each of the
constituents separately is a Fermi liquid in thermodynamic equilibrium,
with chemical potential u; (t=n, p, e). We assume, that matter is strongly
degenerate (Eg; > kT, i=n, p, e). Neglecting thermal corrections, the

Fermi momenta are py; = £ (352 n,)ll , where n; is the number density.

Our calculations will be done under a simplifying assumption, that all
constituents of dense matter form normal Fermi liquids. While this is true
for electrons, neutrons are most probably superfluid, and protons are most
probably superconducting above nuclear density, for temperatures below
T, ~ 10° K, with energy gaps in the excitation spectra A ~ kT.. There-
fore, our results will be valid for T > T.. Effects of superfluidity and/or
superconductivity will be discussed in Section 4.

Due to strong degeneracy of the npe liquids, the energy conservation
implies, that the momenta of the particles participating in the Urca re-
actions be restricted to the vicinity of the corresponding Fermi surfaces.
Actually, the moduli of p; can differ from pr; by ~ kT'/c, and the neutrino
momentum p, ~ kT /c. Under usual conditions, prevailing in the neutron
star interior, pp; > kT /c.

The momentum conservation in the Urca process S—, (3.1) requires,
that p, = p, + p. + p, . Putting all momenta at the corresponding Fermi
surfaces, and negleeting the neutrino momentum, we see, that momentum
conservation in the §— process can be satisfied only if the triangle inequality
is valid: prn < prp + Pre. For our model this corresponds to pp, < 2pp.
and thus ny /ng, > 2y = Yo = 11.1%. Only in such a case B processes in
their simplest form (called “direct Urca” process) are kinematically allowed
in degenerate npe matter.

For more than 26 years since the classical paper of Chiu and Salpeter
[17], who were first to consider the Urca process as an efficient mechanism for
neutron star cooling, it was believed, that at the baryon densities, prevailing
in the interiors of neutron stars, the equilibrium proton fraction, z = ny /ny,,
is so low that the simple “direct Urca processes”, Eq. (3.1), cannot proceed.
This standard assumption was corroborated by the simplest free Fermi gas
model of the npe plasma, for which z < 0.01 at n ~ ny - much less, than the
threshold value z,i; (see Fig. 1). The paper of Boguta [18], who pointed
out that for some models of the npe matter proton fraction could be quite
large, was unnoticed by the neutron star theorists. It view of this, the
standard assumption was, that the beta equilibrium is maintained through
the modified Urca processes,

n+n—nt+pte +7
n+pte —n+n+vr.. (3.5)
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The participation of an additional “active spectator” nucleon in the neutron
decay or electron capture reactions is necessary to allow for the simultane-
ous conservation of energy and momentum in the degenerate neutron star
matter, in which neutron, proton and electron Fermi momenta are assumed
to violate the inequality pr, < prp + pre [1, 17).

Recently, it has been shown that for numerous models of dense nucleon
matter the momentum condition pp, < prp + pre is actually satisfied at
a sufficiently high n;, allowing thus for the direct Urca processes in the
neutron star matter: n — p+ e~ + U, p+ e~ — n+ v, [19]. As it will
be shown, this would dramatically increase (by many orders of magnitude)
the neutrino emissivity of the neutron star interior [19], implying therefore
a very rapid cooling of young neutron stars.

The rate of energy loss of a unit volume of the npe matter, implied by the
direct S— process, and resulting from the emission of 7., can be calculated
using Fermi’s golden rule, and taking proper account of the statistical factor
in dense npe medium. For simplicity, we will omit all the % and ¢ factors.
We get then

- dp, d*pe dst
Qudirf=) =22 | ey Ev ./ @2r)? (2x)3 2r)?

X |Mdu'.ﬁ| J(En E E EV)

X 6(pn —Pe — Pp _?u)
X fn(En)[l - fP(EP)][l - fe(Ee)] . (3'4)

Here, | Mgy;, p|2 1y Espm | Mgir g|? is squared transition amplitude for
the direct B process (3.1), averaged over initial and summed over final spin
states, f;(E;) = {1 + exp[(E; — u:)/kT]}~?, and E, = p,c is the neutrino
energy.

For the strongly degenerate npe matter, the expression for Q,(dir.3-),
Eq. (3.4), can be calculated analytically using standard methods of the the-
ory of normal Fermi liquids (see, e.g., [13]). Neglecting neutrino momentum
in §(P; — Pr) and in |My;, g%, one obtains a fortunate decoupling of the
angular and dp integrations. Restricting then to lowest order in thermal cor-
rections, we make a replacement d3p; = m;pridEdp;, where p = p/p, and
where m?* is the quasiparticle effective mass at the corresponding Fermi
surface. After angular integration, we are left with angular average of
| Mgir 5|2 = G& cos? B (1+ 393 ), where GF is the weak coupling constant,
8c = 0.239 is the Cabibbo angle, and g4 = 1.261 is the axial vector cou-
pling constant. In the c.g.s. units, we have Gp = 1.436 x 10~4° erg cm™3.
Keeping only the leading terms in T, and putting back all the A, ¢ factors,
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we get [19]:

457x
20160

myms;
Gi cos? 0o (14 343) — phe

W(M’)“@. , (3.5)

Qv(dir'ﬂ_) =

where @, = 0(prp + PFe — PFn) is the threshold factor [6(z) = 1 for =z >
0, and is zero otherwise]. The effective masses are defined by pr;/ m; =
(dE;/dp)p=pg;-

It should be stressed, that the numerical factor in Eq. (3.5) was obtained
assuming the vacuum value of the weak interaction matrix element. The
effective weak interaction matrix element is expected to be modified by
the strong interactions in dense matter. We expect, that these effects will
somewhat reduce the value of Q, (but by less than a factor of 10) [19].

The specific power of temperature (sixth) in formula (3.5) deserves a
comment. It results from the integration over energies, restricted to the
shell of a thickness ~ kT. Every integration over degenerate species (npe)
gives then a factor of T, which yields T3. Integration over neutrino phase
space gives an additional factor T3, E, yields T, while the delta function
of the conservation of energy removes one T factor. This leaves an overall
T® factor.

The total luminosity from the direct Urca processes, Eq. (3.1), is
Q. (dir.Urca) = 2Q,(dir.f—). Inserting numerical values of all factors, we
get [19]

» L J 1/3
Q. (dir.Urca) = 4.0 x 10%7 T Tp :cen—b (T9)6 [ON 8 , (3.6)
m 3
n Mp ng cm? s

where Ty = T/(10° K), and the electron fraction z, = z. The astrophysical
significance of the above equation, which implies very rapid neutrino cooling
of a young neutron star, will be discussed in Sec. 4.

Let us notice, that Q,(dir.Urca) exceeds, by orders of magnitude, the
neutrino emissivity of hypothetical, exotic phases of dense matter, such as
pion condensate or deconfined quark matter [19]. The emissivities from
these exotic phases of matter have similar 7% temperature dependence, as
Q. (dir.Urca), and therefore lead to an enhanced cooling of dense matter, as
compared to that resulting from modified Urca and nucleon Bremsstrahlung
mechanisms. In fact, before 1991, such an enhanced cooling was believed to
be a signature of presence of exotic phase of matter inside neutron star!

It is interesting to note, that the formulae (3.5)—(3.6) were first pub-
lished as recently as in 1991. The widely accepted view before 1991, resulting
- as it seemed - from genuine properties of neutron star matter, was that
direct Urca processes do not occur in npe matter (see, e.g., [1]). The reason
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for this was a too low proton fraction in the matter. In such a situation, the
only allowed charged current neutrino processes in the npe matter were the
modified Urca processes, involving “an active spectator” nucleon [17]. Let
us consider the modified 3— process, with a participation of an additional
neutron [first line of Eq. (3.3)]. The neutrino emissivity from this process
can be calculated using the same techniques as those used for the direct
process. Omitting for simplicity all the &, ¢ factors, we obtain

Q. (mod.f-) =
dspy E dspe dapnl dspnn dspp
(2x)° / (27)3 (21r)3 (27)3 J (27)* J (2x)°

X leod.ﬂP 6(En + Ey— Epn — Ep - E, - Ey)
X 6(pn + Put — Pe — Pur — Py — pv)
X fo(En)fa(Bw)[1 = fo(Ep)ll - fa(Enn)l[1 - fe(Ee)] - (3.7)

where [Mpoa.612 =14 Y spin | Mnoa.pl? is the squared transition amplitude,
averaged over spins of initial states and summed over spins of the final
states. In view of the participation of an additional neutron, both transition
amplitude for the beta process and the phase space integration are more
complicated than in the case of the direct beta processes. In particular,
a large uncertainty arises from the approximate treatment of the nuclear
interactions between the nucleons in the initial and final state. Nuclear
(strong) interaction enters in a crucial manner into the transition amplitude
for the weak interaction process: Mp,,q. 3 vanishes for a non-interacting
nucleon gas. We will use the transition amplitude My;,,4.5 calculated, using
the methods of the Fermi liquid theory, by Friman and Maxwell [20]; for
a critique of their approach see Migdal et al [21]. Rewriting the results of
Friman and Maxwell [20] in a generalized form, we get an explicit formula:

e\ 3 1/3
Q. (mod.Urca) ~ 10? (ﬁ) e (z,'i) (To)® —£_. (3.8)
Mg/ Mp no cm? s

The additional T2 factor results from the presence of an additional (degen-
erate) neutron in the initial and final state. It should be stressed, that the
value of the numerical prefactor, and the density dependence of expression
(3.8) may be a very poor representation of reality [21]. In general, we ex- -
pect a rather large uncertainty resulting from the lack of knowledge of the
(strong) nucleon-nucleon interaction in high-density npe matter, as well as
from the deficiencies and approximations of the many-body theory of dense
matter.

One notices a huge difference between the neutrino emissivities from
the direct Urca, Eq. (3.5), and the modified Urca process, Eq. (3.8). If

2r4
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T > Zerit, then for ny, ~ 2 — 3ng Q,(dir.Urca)/Q,(mod.Urca) ~ 10° Tg_z.
For # > 2.yj, the modified Urca process should be treated as a negligibly
small correction to the direct Urca one. This result can be understood
using the phase space arguments. Two additional degenerate neutrons,
appearing in the modified Urca process, lead to an additional phase space
factor of (T/Trn)?, where Tpy, is the characteristic Fermi temperature of
the neutron component, Trn, = Epn/k. At np ~ 2 — 3ng, we have T, ~
102 K, so that Q,(dir.Urca)/Q, (mod.Urca) ~ (Tpn/T)? ~ 10° T, 2, which
is consistent with results of detailed calculation. It is clear, that the presence
of a core with z > z;;; in the interior of neutron star would have dramatic
consequences for the rate of the neutron star cooling.

The presence of muons in the neutron star matter leads to two modifi-
cations with respect to the simplest npe model. Let us consider the npeyu
model. At a given ny,, the equilibrium value of z will be higher than in
the case of the npe matter, while z, will be somewhat smaller. The crit-
ical value of z for the direct electron Urca processes, n — p + e~ + 7,
p+e~ — n+ v, will be somewhat higher than 0.111. However, it will
be always lower, than the extremal value of 0.148, reached in the limiting
case of the ultrarelativistic muons. Also, z;j¢ . Will be reached at a value
of baryon density nci¢ ., lowered with respect to that of the npe model.

When ppn < pru + prp (Which occurs above some z.j¢,,), the direct
muon Urca processes can take place,

n_)p+l‘_+l7# ’
p+pu —ntv,. (3.9)

This occurs above some ncy¢ -

In order to give an example of the effect of muons, let us consider a
specific model of the symmetry energy, S(n},) (“model I” used in [22]). For
this model, we get for the npe matter ncj . = 0.44 fm~—3. The presence
of muons lowers the value of the n¢pjt e to ncyie,e = 0.42 fm~3; the critical
value of the proton fraction is 2., = 0.135. The critical density for the
direct muon Urca process is somewhat higher than nei; . , namely n¢¢ , =
0.52 fm~3, and corresponds to Zerie,u = 0.16.

The neutrino emissivity, resulting from the neutral current processes in
dense matter, has a weak dependence on the neutron star matter composi-
tion. For the sake of comparison with Urca processes, we quote the result
of Friman and Maxwell [20] for the nn Bremsstrahlung:

.y 4 1/3
Q.(Brem.nn) = 2 x 10 (Tﬁ) ('—lh) (To)®—6_ .  (3.10)

Mp ng cm3 s

The temperature dependence of Q,(Brem.) deserves a comment. The
straightforward application of the phase space-factor rule, explained in the
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case of the Urca processes, yields a T1° factor for the Bremsstrahlung pro-
cesses (T4 from the degenerate nucleons, T7 from the neutrino pair, 71
from the energy conservation delta function). However, the transition ampli-
tude contains a characteristic singularity, reflecting the infrared divergence
of the rate of the /v pair emission, characteristic of Bremsstrahlung pro-
cesses (also the photon ones), which yields an additional 72 factor. This
gives an overall T factor in (3.10).

The neutrino emissivity from the nucleon Bremsstrahlung processes is
significantly lower than that from the modified Urca process.

It should be stressed, once again, that the numerical prefactors in
Eqs (3.6), (3.8), and (3.10), and their density dependence, are subject to a
large uncertainty. This results mainly from the approximate treatment of
the strong interaction effects in dense nucleon medium (see, e.g., [21]).

3.2. Baryon matter: hyperons

At sufficiently high density (n;, > 2 — 3ng), neutron star matter may
contain an admixture of hyperons. In view of this, we should consider
also neutrino emissivity resulting from weak interaction processes involving
hyperons.

The simplest neutrino emitting processes, involving hyperons, are

By ——ng+l+l7[,
B+l — By +vyy, (3.11)

where B; and B; are baryons, and [ is a lepton (I = ¢, u). The non-exotic
case with By = n, B; = p, was considered in Sec. 3.1. In this Section we
will consider the processes, in which B; are hyperons (B = 4, X, E).

We assume, that hyperons form degenerate Fermi gases. Therefore, all
hyperons participating in the hyperon-Urca processes, Eq. (3.11), must have
momenta close to their respective Fermi momenta, pr;. Matter is very close
to beta equilibrium, and therefore the chemical potentials of baryons and
leptons satisfy the equilibrium condition of Section 2.2:

KB, = BB, + 11 - (3.12)
The condition for momentum conservation in the hyperon-Urca processes,
which is essential for neutrino emissivity, is equivalent to triangle inequali-
ties:
lprB, — PFil < PFB, < PFB, +PFI - (3.13)
When these inequalities are not satisfied, the direct hyperon-Urca processes
are not allowed, and the relevant neutrino emission processes are the mod-
ified hyperon-Urca processes,

B'+By,— B +By+1+7,
B'+By+1— B'+ By + ;. (3.14)
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The modified hyperon-Urca processes were studied in 1987 by Maxwell
[23]. It is interesting to note, that the direct hyperon-Urca processes were
first considered very recently, in 1992 [24].

The calculation of the neutrino emissivity from the direct hyperon-Urca
processes can be done using the same methods, as those applied for the
direct nucleon-Urca process. The difference concerns the quantity |M|2.
The squared matrix elements for various hyperon direct-Urca processes were
calculated in [24]. Baryons were treated in the non-relativistic limit, and
the SU(3) symmetry has been assumed when calculating the relevant matrix
elements. The general result, obtained assuming that the effective masses
at the Fermi surfaces are equal to the bare (vacuum) masses, is given by
the formula [24]

Q. (dir.hyp.Urca) =

1/3
4.0 x 1027 2.8 (zel'-"-) R-(To)® 6y —8_ | (3.15)

m2 ng cm? s

where 0, is the threshold factor, equal 1 if the triangle inequality, Eq. (3.13),
is satisfied, and zero otherwise. The factors R depend on the charged current
process involved, and are given in Table I, based on [24]. By definition, R =
1 for the direct nucleon-Urca process, discussed in the preceding Section.

TABLE 1
The R factor for the direct Urca processes

Process R
n —p+lii 1.0000
A —p+ltin 0.0394
T —n+liin 0.0125
T — A+l 0.2055
T —X4l+in 0.6052
E-—A+l+y 0.0175
E-—X%41l+i 0.0282
E Tt il+iy 0.0564
E-—Z4l+n 0.2218

It should be stressed, that the numerical values of the coefficients in
Eq. (3.15), and their density dependence, are rather uncertain. This results
from the approximate treatment of strong interactions in dense matter, as
well as from the lack of knowledge of the N — H and H — H interactions.
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The neutrino emissivities from direct hyperon-Urca processes are sup-
pressed in comparison with the nucleon ones, because they have smaller ma-
trix elements for the relevant charged current processes (Table I). However,
direct hyperon-Urca emissivities are larger by a factor of order (Tf;/T)? ~
108 (Ty)~2 than those of the modified hyperon-Urca processes, considered
by Maxwell [23].

The expression for the direct baryon-Urca processes, Eq. (3.15), was ob-
tained assuming, that the lepton [ is the electron. In the presence of muons,
with u, = ., one can get an additional contribution to @, (dir.Urca), pro-
vided the relevant triangle inequality, Eq. (3.13), is satisfied.

Let us consider the threshold concentrations for the direct hyperon-Urca
processes. The hyperon composition of dense matter has been discussed
in Sec. 2.2. Typically, the hyperon A, with a vacuum (bare) mass of 1116
MeV, and ¥, with mass 1197 MeV, appear at a similar density, because the
somewhat higher mass of ¥~ is compensated by the presence of the electron
chemical potential in the equilibrium condition for the £~: pgp- = py + pte
{for the A the condition reads: 4 = pp). In the case of a multicomponent
baryon-lepton plasma, the derivation of the threshold conditions in terms
of the fractions = B; = np; jnp is a rather complicated task. However,
some general statements can be made. It is easy to show, that if the direct
nucleon-Urca process is forbidden, then the direct hyperon-Urca processes
2~ — n+1+ 7 are also forbidden, because z 5, < z;. In such a situation,
the only direct Urca processes, that could be allowed, are those involving
Ast A— p+l4+vand ¥~ — A+ 1+ #. The threshold concentration of
A’s can be very low (it can be shown, that it is less than 0.032 {24]).

Calculations with phenomenological N - N, N - H, H — H potentials
lead to conclusion, that the hyperons appear at rather high density. Pand-
haripande and Garde {25] find only the £~ hyperon in dense matter. Bethe
and Johnson {10] found that the hyperons appear above 3 — 6ny, depending
on the assumed baryon-baryon potential model. In more recent calcula-
tions with relativistic mean field models of dense matter (cf. Sec. 2.2),
hyperons appear at 2 — 3ny, and their abundances (fractions) grow rapidly
with density 7, 9, 11]. For these most recent models, the proton fraction (in
the presence of hyperons) exceeds the critical one, and therefore the direct
hyperon-Urca emissivities just add to the dominating direct nucleon-Urca
emissivity.

It should be stressed, that the hyperon concentrations in dense matter
are even more uncertain than the proton abundance. Also, all most recent
calculations of the hyperon abundances have been done using the relativistic
mean field theories, in which correlations are neglected. Therefore, it is
difficult to make a conclusive statement about actwal neutrino luminosity
of dense baryon matter.
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4. Cooling of neutron stars

The initial temperature in the interior of neutron star, just after its
formation, exceeds 101%® K. An important feature of hot neutron star, which
determines its subsequent cooling, is the structure of the stellar interior. Let
us discuss the structure of neutron star, of a typical mass of ~ 1.4 Mg. Let
us notice, that 1.4 Mg is a typical mass of observed neutron stars. A radial
cross-section through a 1.4 M neutron star model, calculated for a specific
equation of state of dense matter, is shown in Fig. 4. Basically, neutron
star is composed of the “crust” of the density ranging from ~ 10 g cm™3
to ~ 10 g cm™3, and of a liquid interior. The potentially detectable
thermal radiation (photons) from cooling neutron star is emitted from a
photosphere, situated in a few centimeters thin gaseous atmosphere - the
outermost layer of an idealized model of neutron star. Neutrino emissivity
of the crust is much lower than that of the liquid interior. Also, the thermal
conductivity of the neutron star crust is much lower than that of the liquid,
superdense core. Let us notice, that the crust contains only a few percent
of the neutron star mass, but due to its relatively low thermal conductivity
constitutes a very efficient “insulator”, separating the liquid core from the
photosphere.

Before discussing detailed scenarios of the neutron star cooling, let us
estimate the timescale of cooling of small mass element of the liquid interior.
A characteristic time for cooling by neutrino emission, 7., = T/T, can
be estimated by equating the neutrino energy loss rate, Q,, to the rate
of change of the thermal energy, cyT, where cy is the specific heat of
matter (per volume) at a fixed volume. This gives 7.o01 = cvT/Q,, If we
approximate cy by that of a free Fermi gas of neutrons at ny, = ng, we get
then:

sdir.Urca 1 min mod.Urca ., 1 year (5.1)
cool - 4 cool - 8 . .
T9 . T9

These simple estimates imply, that if the direct nucleon-Urca processes are
operating, the liquid core will cool down to 10° K in a minute, and to 102 K
in about a week. Actually, cooling to 10° K will be somewhat delayed by
the v, 7. absorption within the direct Urca core, the actual timescale being
a few tens of minutes [22]. In the case when the direct Urca processes are
not allowed, it takes a year for the core to cool down to 10° K, while cooling
to 10® K will take some ~ 10% years.

These simple estimates show, that the operating direct Urca process
will speed-up in a dramatie way the cooling of neutron star interior. How-
ever, from the observational point of view, the relevant timescale is that
needed for the propagation of the thermal signal of this rapid cooling (the
“cooling wave”) to the neutron star photosphere, from which photons are
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Fig. 4. Cross section of a neutron star model with M = 1.4 Mg. This specific
neutron star model has been calculated for the model I of Bethe and Johnson
[10] for the inner core, and the standard (BPS + BBP) model for the crust [1].
The outer crust is composed of nuclei embedded in electron gas, the inner crust
contains nuclei immersed in electron gas and neutron gas. The inner, liquid core
consists of a baryon-lepton plasma. The numbers on the right give the density,
in g em™3. The numbers on the left give the distance from the star center, in
km. The question mark is put to remind, that the composition of the central core

with p ~ 10'®* g cm~2 is very uncertain. The total baryon number of the star is

1.84 x 1057,

emitted. This requires solving the problem of the heat transport in neutron
star, starting from some initial, high-temperature, conditions. The thermal
evolution of neutron star is then determined by the neutrino losses from
the stellar interior, thermal conduction within neutron star (in particular,
through the neutron star crust), and photon emission from the neutron star
photosphere.

Detailed calculations show, that the timescale needed to reach the
steady thermal state within the neutron star crust is some tens of years
(see, e.g., [26]); for earlier times crust and liquid interior cool quite indepen-
dently, and surface photons cannot give us information about the thermal
state of the liquid interior.

From the observational point of view, the most interesting aspect of the
thermal evolution of neutron star is the “cooling curve”: surface (effective).
temperature, T, versus neutron star age. The photon luminosity of neutron
star is then given by L., = 4w R?0T2. A set of cooling curves for a specific
sequence of the neutron star models is given in Fig. 5 [27]. The neutron star
models have been calculated using a specific model of the liquid interior. The
relevant parameters of the neutron star models are given in Table II. Stars
with M > 1.35 Mg have a core, in which direct Urca processes are allowed;
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Fig. 5. Surface temperature, as measured by a distant observer (in K}, versus age
(in years), for some of the neutron star models of Table II. Normal nucleon liquids.

stars with lower masses cool exclusively by the modified Urca processes.
Both neutrons and protons are treated as normal liquids.

TABLE 11
Parameters of the neutron star models

M R M, liq. / M Rliq. M4 Urca RaUtcs Pcentr.
(M)  (km) (km) (Mo) (km)  (10'° g em~?)
1.2 11.63 0.930 9.99 0.000 0.000 1.03

1.3 11.46 0.940 10.03 0.000 0.000 1.16

1.4 11.25 0.960 10.02 0.038 2.400 1.33

1.5 10.97 0.965 9.93 0.212 4.170 1.56

1.6 10.57 0.975 9.72 0.489 5.345 1.93

1.7 9.47 0.980 8.91 1.003 6.240 3.38

Qualitatively, the cooling curves can be divided into segments (stages),
corresponding to specific dominating mechanisms of cooling. The sequence
starts with the earliest stage, corresponding to a very flat segment of the
cooling curve. Surface temperature is then determined by a rather slow
cooling of the very outer layers via neutrino emission. At some ~ 100 years
the cooling wave from the center reaches the surface (somewhat earlier, if
direct Urca mechanism operates). In the case when direct Urca mechanism
operates, the surface temperature falls by an order of magnitude within a
few years. Notice, that this is equivalent to a 10* drop in the surface photon
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luminesity, L, ! If direct Urca is not allowed, the cooling is less dramatic,
and extended within tens of years.

Then comes a long stage, when the star is in the steady thermal state,
and surface temperature decreases at the rate dictated by the neutrino losses
in the liquid interior. The internal temperature, T}y, is about an order
of magnitude lower, than the surface one. However, the temperature drop
takes place essentially within the very outer layer of neutron star, where the
heat conductivity is relatively low. The liquid interior of neutron star is to a
very good approximation isothermal. This stage lasts for some 10° years in
the case of direct Urca cooling, and some 10° years, if direct Urca does not
operate. As the internal temperature decreases, neutrino losses decrease,
too (let us remind, that Q,(dir.Urca) « T¢, @, (mod.Urca) « T?), and the
last stage of cooling is determined by the photon losses from the surface,
which dominate over the neutrino losses.

Below some critical temperature, T ,, protons in the liquid interior of
neutron star are expected to be superconducting. The proton superconduc-
tivity results from the isotropic pairing in the 1S, state, and the value of
T.,p depends on the density. Neutrons are expected to be paired in the 15,
state below nuclear density, and their superfluid properties are believed to
play an essential role in the “neutron star quakes”, taking place in the neu-
tron star crust, which are thought to be responsible for “glitches” observed
in the timing of the radio pulsars [28]. Above ng it ceases to be energet-
ically favourable for neutrons to pair in the 1§g state; this is due to the
increasing role of the short-range repulsive n — n interactions. As a result
of the increasingly important attractive tensor force, neutrons tend to pair
in a 3P, state, for which the influence of the strong short range repulsion
is less significant. Below some (density dependent) critical temperature,
T n, neutrons in the liquid interior of neutron star are thus expected to be
superfluid.

It should be stressed, that theoretical estimates of T, are very uncertain;
actually, even within the simplest BCS weak-coupling approximation, their
values depend dramatically (exponentially!) on the relevant matrix elements
of the pairing interaction. Typically, however, T, ~ 10° K.

For T < T, the spectrum of the particle - hole excitations near the Fermi
energy is characterized by an energy gap, A. In the case of the isotropic
18y pairing, A = 1.76kT; in the case of the 3P, pairing the energy gap is
anisotropic.

We can qualitatively discuss the effect of the non-zero energy gaps on
the neutron star cooling, using a simple estimate of the characteristic cool-
ing timescale, 7o) = ¢yT/Q,. The existence of the energy gaps has a
strong effect on the phase space available for the weak interaction processes
discussed in Sec. 3; for T < T, the available phase space is dramatically re-
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duced, which implies a strong damping of the corresponding neutrino emis-
sivity Q,. This would lead to a slowing down of the neutron star cooling.
However, at the same time, the existence of energy gap leads to a decrease
of the specific heat of the corresponding component of matter, which tends
to speed up the cooling.
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Fig. 6. Surface temperature versus age, as measured by a distant observer, for
the 1.4 Mg and 1.3 Mg neutron star models of Table II, with various models of
proton and/or neutron pairing. All curves include proton 1Sy [29] and :neutron
1So [33] energy gaps. Solid lines correspond to a 1.4 M, star (small direct Urca
core), with ®P; neutron energy gap of Takatsuka (T) [29], and Amundsen and
Ostgaard (AO) [30]. Dashed line: 1.4 Mg star, no neutron 3P, pairing. Dotted
and dash-dotted lines correspond to 1.3 Mg model (no direct Urca core). Dotted
line: P, neutron pairing present (0.3HGRR model of [27]). Dash-dotted kine: no
8P, neutron pairing. Observational data are described in the text.

Results of detailed calculations [28], showing the effect of the energy
gaps on the cooling curve of neutron star are shown in Fig. 6. The 1.4 Mg
neutron star has a small core, in which direct Urca process is allowed. All
curves include proton 1§, [29] and neutron 1S, [33] pairing , which have
a small effect on cooling. Three cases of the neutron 2P, energy gap were
considered: energy gap calculated by Takatsuka [29], that of Amundsen and
Ostgaard [30], and a zero neutron gap case. Generally, the larger gaps give
slower cooling (higher surface temperature at a give neutron star age). For
the sake of comparison, the cooling curves for a 1.3 Mg star, which cools
via modified Urca processes, are also shown.
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Thermal radiation from the surfaces of cooling neutron stars could
be detected by the X-ray detectors on the dedicated satellites (EXOSAT,
ROSAT). To be detectable, neutron stars should not be too distant (at most
at a few kiloparcecs), and not too old, to be sufficiently powerful emitters in
the X-ray domain. The age of neutron star is determined from the known
date of its formation, or from the pulsar slowing down (assuming a specific
model for the magnetic braking). In Fig. 6 we plotted the inferred surface
temperature (or the upper limits to it) for four best candidates for observed
cooling neutron stars. Let us notice, that the Crab pulsar, the Vela pulsar,
PSR 0656+16, PSR 1055-52 are observed as radio pulsars, and therefore
are neutron stars. We conclude from Fig. 6, that the Vela pulsar and PSR
0656-+14 lie below the standard cooling curve without the direct Urca cool-
ing. Therefore, both pulsars require some enhanced cooling, which could
be provided by a direct Urca mechanism, damped to some extent by the
sufficiently high energy gaps of paired nucleons.

As far as PSR 1055-52 is concerned, its high temperature could be due
to internal heating, resulting from dissipative processes in its rotating inte-
rior. Several such mechanisms were proposed (see, e.g. [31, 32]). Generally,
the fact that an observed neutron star temperature lies above the calcu-
lated cooling curve is not conclusive (because this can be explained by some
additional energy sources). On the contrary, the fact, that observed tem-
perature lies below the calculated cooling curve is conclusive: it rules out
the theoretical cooling curve and the dense matter model used, and requires
a novel mechanism of cooling.

5. Conclusion

Composition of dense matter at the densities exceeding significantly
saturation density of nuclear matter ( ny, > ng or p > 2.7x 10" g cm™3) is
rather uncertain. In particular, the relative proton fraction, which is deter-
mined by the density dependence of the nuclear symmetry energy, strongly
depends on the assumed model of the nuclear hamiltonian, and on the many-
body theory of dense matter. The uncertainty in the hyperon composition
of dense matter at p > 5 — 7 x 10'* g em ™3 is even larger.

Particularly important is the density dependence of the proton fraction
in dense matter. If it exceeds a critical value (which is 0.11-0.15 in the
absence of hyperons) direct Urca processes are allowed, and the neutrino
emissivity increases by many orders of magnitude as compared to that for
lower proton fraction. The presence of hyperons can also strongly increase
the neutrino emissivity of hot, dense matter.

While the bulk properties of neutron stars, such as radius and moment
of inertia at a given mass, depend only on the equation of state of dense
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matter (relation between pressure and density), the cooling rate of young
neutron stars is very sensitive to the composition of the stellar liquid interior.
In particular, if neutron star contains a central core in which the direct
Urca process is operative, the cooling timescale shortens by many orders of
magnitude. Energy gaps due to superfluidity /superconductivity of nucleons
tend to decrease this dramatic effect.

Some X-ray observations of pulsars indicate a need of an additional
cooling mechanism, as compared to the “standard cooling curves”. This
could be explained by the specific composition of the dense baryon interior,
which allows for a direct Urca core, without introducing such speculative
phases of dense matter, like deconfined quarks and/or pion condensate.
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