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Five possible regimes of nonresonant nuclear fusion reactions in dense
stellar matter are briefly reviewed. They are: classical thermonuclear
(weak screening) regime; thermonuclear strong screening burning regime;
pycnonuclear (zero-temperature) regime; thermally enhanced pycnonu-
clear burning; and the regime intermediate between the thermo- and
pycno-nuclear ones.

PACS numbers: 97.10. Cv

1. Introduction

Nuclear reactions are important during all stages of stellar evolution.
This work deals with nonresonant nuclear fusion reactions in dense stellar
matter when colliding nuclei, 1 and 2, form a compound nucleus ¢ which
undergoes further transformations. Not too high temperatures T'<(3 — 5) x
10° K will be considered when nuclei are not dissolved and penetrate a
substantial Coulomb barrier in nuclear reactions. In all cases important for
applications one can restrict oneself by densities p<10'! g cm™3.

The rate of nuclear burning depends strongly on chemical composition
of matter, as well as on temperature and density (Sect. 2). Five different
nuclear burning regimes are possible in dense matter. They are reviewed
briefly in Sects 3-7. The results are summarized in Sect. 8.

* Presented at the XXIII Mazurian Lakes Summer School on Nuclear Physics,
Piaski, Poland, August 18-28, 1993.
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2. Properties of dense stellar matter

In the density-temperature domain of study (Fig. 1) stellar matter con-
sists of almost free electrons and of atoms which are fully ionized either by
high T or by high electron pressure. Let n, be number density of electrons
and n, be number density of ion species v = 1,...,s (with atomic number
A, and charge number Z,). For s > 1 we have a multicomponent plasma
of ions, while for s = 1 we have a one-component plasma (OCP) of ions. In
the case of OCP the index v will be often omitted.

LoGQLG/cH)

Fig. 1. Density-temperature diagram for a carbon plasma. T} is the temperature
below which the ions form Coulomb liquid; 7, is the melting temperature; T,
is the ion plasma temperature; T, is the temperature below which the electron
screening is strong (E. > 2); T, is the temperature below which the reaction rate
is temperature independent. Lines A and B correspond to burning of carbon in
t =1s, and 10° yrs, respectively.

The electron degeneracy temperature (see Fig. 1) is given by Tr =
To(V1+ 2% — 1), where To = mcc? ~ 5.930 x 10° K, m, is the electron
mass, z is the electron “relativistic parameter”,

1/3
r = PF ~ 1.009 (P_ﬁ) N PF = 5(37r2ne)1/31 (1)
mecC He

pF is the electron Fermi momentum, pg is density in units of 10 g cm™3,
and p. is the mean molecular weight per electron (g = A/Z for OCP).
Here and in what follows the Boltzmann constant is put equal to kg = 1.
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Ion state is defined by the ion-coupling parameter

2,2 5/3 1/3
r, =2 o2 (,”7“—) , (2)
(-3

ay kBT Ta

where a, = (32, / (41rne))l/ 3 is the radius of ion sphere (which contains Z,
electrons whose charge compensates the ion charge), and T5 = T/(108 K).

At sufficiently high temperatures the ions form a classical Boltzmann
gas. With decreasing T, the gas gradually (without a phase transition)
becomes a Coulomb liquid, and then (with a phase transition) a crystal.
The gaseous regime of an OCP occurs [1] for I' € 1 (T » T}, Fig. 1). The
melting of a classical OCP takes place [2] at I' = 172 (T = Ty,).

At low T the quantum effects in the ion motion (zero-point ion vibra-
tions) become important. These effects are especially pronounced if T < Tp,
where T}, = hwp, and wy, is the ion plasma frequency. For an OCP, one has

1/2 4rZ%e2n,;
T, ~ 7.832 x 10° (L‘;) K, wl=——"01%, (3)

P .
e mq

where n; is the number density of ions, and m; is the ion mass. The am-
plitude of zero-point ion vibrations is commonly much smaller than typical
inter-ion distance, a. With increasing density, this amplitude becomes larger
(with respect to a), and at large p zero-point vibrations can prevent crystal-
lization. In the density range of study, this effect is important for H and He
only [3, 4]. The p — T diagrams for ion mixtures are discussed, for instance,
in [5], and in the references therein.

3. Classical theory of thermonuclear reactions

According to the classical theory [6] the rate Ry (cm™> s71) of a ther-
monuclear reaction (21 + Z; — Z.) is

nin2

Ro=17%

(vo), 4)

where n; and n; are number densities of reacting nuclei, § = 1 if these
nuclei are equal and § = 0 otherwise, v = |v; — v2| is a relative velocity of
the nuclei, o is the reaction cross section, and brackets denote averaging of
vo over relative velocities with Maxwellian distribution function.

The reaction cross section is commonly written as

_Sp _ /sa) M 27&’822122)2
7= P-.exp(— - ) €= 2( 5 . (5)
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In this case, ¢ = Mv?/2 is a relative collision energy, M is the reduced
mass, P is the Coulomb barrier penetration probability, and S(e) is the
astrophysical factor which describes the reaction efficiency after the barrier
penetration. For a nonresonant reaction, 5 is a smooth function of £ and the
averaging (vo) is easily performed by the “saddle-point” method, yielding

_ [32e,% S(epr) _r Ay4,2322 \'®
(‘UO’)-—- —WTe N T = 9.1535 m ’ (6)

where T = 3(eg/4T)}/3. In a stellar matter one commonly has 7 > 1. In
this case, the reaction is strongly suppressed by the Coulomb barrier. The
main contribution to (6) comes from collisions with suprathermal energies
¢ which lie in a relatively narrow interval of width Ae ~ ,/e,xT in the
vicinity of the Gamov-peak energy ¢, = 77/3. A typical tunneling length
at these energies is ry, ~ 23222 /€pk- With decreasing T, the parameter
T grows as T~1/3, The reaction rate becomes lower, Gamov peak energy is
more suprathermal (épr/T = 7/3), and the tunneling length larger.

As will be shown in Sect. 4, the classical thermonuclear burning regime
operates at T2>T}.

4. Plasma screening in thermonuclear reactions
4.1. General formula

In dense stellar matter the effects of plasma screening in thermonuclear
reactions become important. These are the effects of surrounding plasma
particles (electrons and ions) onto the reaction of colliding nuclei. The
plasma electrons and ions affect the collisions of the reacting nuclei 1 and 2
in different ways. Let v, = ,/2epk7M be a typical velocity of the reacting
nuclei, v. a typical velocity of plasma electrons, and v; a typical (thermal)
velocity of plasma ions.

The plasma electrons are much faster than the colliding nuclei (ve >
vpk)- Then one can assume that the electrons form a continuous background
that is weakly but almost instantly polarized by the ions. On the contrary,
the plasma ions are commonly much slower than the reacting nuclei (v; <
vpk). Accordingly, one should initially calculate the reaction probability for
fixed positions of the plasma ions and then average over these positions.

The screening can be described by the factor E defined as

_ R _ nynpo—
E=q R = —5{va), (7)
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where R is the actual reaction rate, and Ry is the classical rate (4). Upper
line denotes additional averaging over positions of the plasma ions. In the
thermonuclear regime (quantum effects in ion motion are ignored), the av-
eraging can be performed with the classical Gibbs distribution of ions. The
screening effects increase the reaction rate, and E is called the enhancement
factor of the thermonuclear reaction (E > 1).

Explicit calculation of E is difficult but one important case is well
known. Let V be interaction potential of the reacting nuclei in a plasma.
It can be written as V = (Z;22¢%/r) + &, where &(r|r.,r3,...,7n) is the
plasma screening term which depends on a relative distance between the
reacting nuclei » = r3 — rq, on their center of mass r., and on positions of
neighbouring plasma ions r3,...,rxN. The positions r.,r3,...,r are fixed
for each reaction event, while R is the average over the events. Let I ~ a be
a typical length scale of ¢ as a function of », and let [ 3> r;,,. In the latter
case, $(r) may be regarded as constant, #(0), for a tunneling event, and
the plasma screening affects only the probability for the colliding nuclei to
approach the tunneling region r<r;,. Then one obtains:

E=ep (-2) = imep (222) 1) = expm0).  ®
In this case,
o(r) = exp (- 222 1 () (9)

is the radial-pair distribution function for ions 1 and 2. It is proportional
to the probability for these ions to be at a distance » and it is normalized
as g — 1 as r — oo. H(r) is the so called mean field potential created by
surrounding plasma particles. g(r) and H(r) have been studied intensively
by Monte Carlo method and various methods of the theory of liquids; see,
e.g., [T — 11}, and the references therein.

Using standard thermodynamic relationships (see, e.g., [5]), Eq. (8) can
be rewritten in the Boltzmann form,

A C
E = exp (-—;——) ApC = pl — pf - 4§, (10)

where u$ = 0FC /N, is the Coulomb part of the chemical potential of ions
of species v (v = c refers to a compound nucleus, Z. = Z; + Z;) determined
by the Coulomb component of the Helmholtz free energy FC. Egs (8) and
(10) represent the basis of the screening theory [12 — 14].

The main condition of validity for (8) and (10) is r4, < I. For estima-
tions, one can take an unscreened tunneling length r¢,, and set [ ~ a, the ion
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sphere radius. Then, for a nuclear reaction in OCP, the inequality ry, < [
is equivalent to T > T, (Fig. 1). The inequality can also be rewritten as
Epk > Z%e?faorasT > I.

4.2. Weak screening

If T » T the ions constitute almost perfect Boltzmann gas, and g(r)
in (9) is given by the Debye—Hiickel theory, g(r) = exp(-V(r)/T), where
V(r) = Z1Z2€* exp(—r/rp)/r and rp is the screening length of an electric
charge in a plasma. This immediately yields H(0) = Z; Z2e%/(rpT). Under
these conditions, the screening is commonly week, H(0) < 1, (E - 1) K 1,
and the classical theory of thermonuclear burning (Sect. 3) is valid.

For example, consider a hydrogen-helium plasma (with hydrogen abun-
dance X = 0.7, by mass) in the solar center, T = 1.5 x 10" K, p =
150 g cm—3. The plasma is nondegenerate, and one can treat rp as the
classical Debye radius. Then for the leading reaction (*H(p,e™)?H) of hy-
drogen burning in the proton cycle we have E ~ 1.055. The screening
enhances thermonuclear burning by about 5%.

{-3. Ion and electron screening

If T, < TXT; the electron gas is commonly strongly degenerate and
constitutes almost uniform background. Then in Eq. (10) one can put uC =
p},’ + ,uf, where uU is the Coulomb chemical potential calculated in the
uniform electron background approximation, and uf is a small correction
produced by weak polarization of the electron gas. Accordingly,

AulY
T

E; will be called the ion screening factor, while E. will be called the electron
screening factor. Commonly the ion screening dominates, H; > H..

Auf

E = E;E., E;. =exp(H;.), H; = - , He = T (11)

4.4. Strong ion screening

The problem reduces to calculating yy in a multicomponent ion plasma.
Luckily, according to extensive studies [9], strongly coupled Coulomb ion
mixtures obey additive rule. This means that, with very high accuracy, one
has: uU /T = f(I',), where f(I') is a universal function of I' which can be
determined from the studies of OCP, e.g., (15, 9 — 11]. A convenient fitting
expression was proposed by DeWitt [15]. Being applied to the Monte Carlo
data of [11] at 1 < I'<170, this expression yields

f(r)= Al + 4Br*/* —4cr='/* 4 DlogI' + F, (12)
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where A = —0.897744, B = 0.95043, C = 0.18956, D = —0.81487, F =
—2.5820. When I' > 1 the result f =~ AT is very close to that given by the
simple ion-sphere model [12}, f/S = —0.9T".

Eqs (11) and (12) yield H; = f(In) + f(I'2) — f(I'c) which allows one
to calculate easily E; for T, « T<T;. When temperature is much below T;
(" > 1) the exponent factor H; is nearly linear in I (H; ~ A(2-2%/3)I"' ~
1.055I" for Z; = Z;), and the ion screening becomes very strong. For
instance, E; = 6.4 x10%% for a reaction with equal nuclei in OCP at I" = 100.

4.5. Strong electron screening

Calculations of E, for T, <« T<T; were performed in [5] (also see [5]
for a critical analysis of preceding works). We will not present the numeri-
cal results [5] but give an order of magnitude estimate for an equal-charge
reaction in OCP: H, ~ H;(akTp)?, where a is the ion-sphere radius of the
reacting nuclei, kTp = ,/Wpe/vF is an inverse length of screening of an elec-
tric charge by strongly degenerate electrons, and vp is the electron Fermi
velocity. The factor (akrp)? ~ 4.72%/3¢?/(hvp) ~ 0.0322/3/1 + 22 /z is
generally small and reflects weak compressibility of the electron gas. Ac-
cordingly, the electron screening is commonly much weaker than the ion one
and of less astrophysical importance. However, the electron screening can
be strong by itself. The temperature T, in Fig. 1 corresponds to E, = 2 for
the carbon burning and restricts the domain of strong electron screening,
T<T.. With decreasing p, the parameter (ak7r)?> becomes larger and the
electron screening gets more important as compared to the ion screening.
For p ~ AZ g cm™3, the electron screening becomes comparable with the
ion one, H, ~ H;, but the above approaches to the screening problem fail at
these low densities (ionization becomes incomplete, electrons are strongly

non-ideal).

5. Pycnonuclear reaction regime

Pycnonuclear reaction regime operates even at T = 0. In this regime,
the Coulomb tunneling takes place due to zero point vibrations of nuclei in
their lattice cites. Basic theoretical aspects of pycnonclear reactions were
considered in the fundamental work [16]. The reaction is controlled by a
very weak tunneling of the nuclei. Each nucleus can actually interact with
the closest neighbors only: the tunneling probability of more distant nuclei
is negligible. The pycnonuclear reaction rate R, in a bcc lattice of OCP
is given by Ry, = (8n;)Q/2 since each nucleus is surrounded by 8 closest
neighbors. Here Q is the reaction frequency (s™!) for a pair of nuclei (1
and 2). The tunneling is most efficient if the center of mass of the reacting
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nuclei is fixed at its equilibrium position. The most sensitive problem is
the calculation of the interaction potential V(r) of nuclei 1 and 2 including
possible response of the neighbors. Salpeter and Van Horn [16] calculated
R, in two approximations. In the static approximation, the neighboring
nuclei are fixed at their lattice sites. In the relazed approximation, they are
allowed to adjust themselves fully to displacements of the reacting nuclei.
In any case, V(r) appears to be of oscillatory type for small displacements
of nuclei 1 and 2 from the lattice sites, and V(r) tends to the bare Coulomb
potential when r < a. The oscillator frequency wg is about w, (see (3)),
and typical zero-point displacements are 7o ~ /h/(m;iwp).

Recently, the calculations [16] have been extended [17] using somewhat
more detailed interaction potentials V(r). In Ref. [18], the pycnonuclear
reaction rates have been calculated with some mean directionally-averaged
potential V(r) (for OCP and binary ionic mixtures). These results have
been extended further in [19]. For OCP, the results [17 — 19] are close to
[16]. For instance, according to [17]

R, = 0%%cs AZ“pg)\"/4 exp(—7) em™ 3571, (13)
_(mi\Y3 K ps’°
2=(3) " grm; ~ 00002 a9

where § is the astrophysical factor measured in MeV bn, v = a;/vA. In
the static approximation, one has C = 5.8, a; = 2.639, while in the relaxed
approximation C' = 9.09, a; = 2.516. The main quantity is the exponent
argument 7 which determines the tunneling probability. Note that ¥ can
be rewritten as y = fm;wpa’®/h = 382%e?[(aTp), with B = (87/81)Y/¢ay.
Thus, 7 is similar to the ion-coupling parameter (2), where temperature T
is replaced by the “quantum temperature” T),.

For p = (10° — 10'%) g cm ™3, the pycnonuclear carbon burning rate in
the relaxed approximation is (2-3) orders of magnitude larger than in the
static approximation. Kinetic energy of responding neighboring ions in the
relaxed approximation can be treated [17] in terms of renormalization of
reduced mass of the colliding nuclei. An allowance for this effect [17] shifts
the reaction rate R, calculated in the relaxed approximation to that in the
static approximation.

The static approximation would be exact if wptsn, < 1, while the relaxed
approximation would be exact if wptsy, > 1. Here ty;, is the tunneling time,
and wy 1 is a typical response time of the neighbouring nuclei. A simple
WKB estimate of ¢, yields wpt;n ~ 1 (contrary to the conclusion of [17}).
Thus, actually the ion response is neither static nor relaxed but dynamic.

As shown in [17], the pycnonuclear burning depends on the lattice type.
One cannot exclude that nuclei form the fcc lattice rather than bee. The



Nuclear Reaction in Dense Stellar Matter 409

binding energy of a nucleus in a fcc lattice is lower, but the difference (about
10325/3(pg/pe)1/? K in temperature units) is negligible according to astro-
physical standards. For p ~ (10° — 10'%) g cm~3, the pycnonuclear carbon
burning rate in fcc lattice is (5-8) orders of magnitude larger [17] than in bec.
The difference comes mainly from different tunneling probabilities which are
sensitive to closest distances between the nuclei in a lattice and to the pa-
rameters of the interaction potential V(r). The closest distances and the
potential parameters can vary noticeably for ionic mixtures [19] and/or in
the presence of lattice imperfections [16]. All these effects introduce addi-
tional uncertainty into our knowledge of actual values of R,.

The pycnonuclear burning does not depend on T but increases with
density because zero-point vibrations become more important at higher p.
As will be shown in Sect. 6 the burning remains temperature independent
for T<T,/log(T;/Tp).

6. Thermal enhancement of pycnonuclear burning

When T increases from T = 0, the reaction rate R becomes temperature
dependent. If T is not very large, it is convenient to introduce the thermal
enhancement factor,

R

E, = I_Z; ’ (15)
where R is the actual reaction rate, and R, is the pycnonuclear rate. The
temperature dependence of R at T<T, was considered in [16]. The main
effect is concerned with thermal increase of energies of the reacting nuclei.
The effect is especially simple when energy ¢ of relative motion of the nuclei
is much smaller than the Coulomb energy, U. ~ Z%e%/a. In this case the
barrier penetration probability is P(e) ~ exp(—h)exp ((¢/wo)log(U./¢)),
where wy is the fundamental oscillator frequency (Sect. 5). The probability
increases rapidly with ¢ while the energy distribution of the nuclei, f =
exp(—¢/T), is a rapidly decreasing function. The reaction rate is expressed
through the sum of products fP over various quantum states of the reacting
nuclei. The competition of two factors, f and P, produces a peak at energy
Epk similar to the Gamov peak in the thermonuclear burning (Sect. 3). The
peak position and the reaction rate can be evaluated by the same “saddle-
point” method. According to [16}, ¢, ~ hwp + U, exp(—(U./T), where { ~.
1 is a numerical factor. Thus, the thermal enhancement becomes important
for T>T,/log(T1/Tp), when ¢,; grows rapidly with T and becomes much
larger than the zero-point energy. For T ~ Tp/2, the peak energy becomes
comparable to the Coulomb energy U,, and then the thermal enhancement
regime is over. Note that neighbouring ions remain mainly in their ground
state over all the enhancement regime.
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Thus, the T = 0 pycnonuclear regime discussed in Sect. 5 operates
at T<T,/log(Ti/Tp). The regime of thermal enhancement of pycnonuclear
burning is valid in a narrow temperature interval, T,/ log(T;/Tp)<T<Tp/2.
The enhancement factor (15) for the latter regime was calculated [16] in
the relaxed and static approximations. The temperature dependence of
E, can be approximately described as Ej, ~ exp ((Uc/hwo) exp(—fwo /T)).
When density grows, the T;/T,-ratio becomes lower, and the temperature
interval of the thermal enhancement regime becomes narrower. Accordingly,
the regime is less pronounced. If, for instance, T = T,/2 one has E, ~
(10" — 10®) (depending on the approximation used) for the carbon burning
at p=10° g cm™3, and E, ~ 10 for p = 101° g cm™3.

7. Intermediate thermo/pycno-nuclear burning regime

This regime occurs in the temperature range T, /2<T<Tp. It is most
difficult for theoretical description. The peak energies of the reacting nu-
clei are comparable to the Coulomb energy, Z2e2/a. The reacting nuclei
are neither tightly bound to their equilibrium positions nor entirely free.
The interaction potential of these nuclei V(r) depends on the positions of
neighboring ions. The regime is intermediate (between quantum and clas-
sical domains) for the neighboring ions as well: the ions occupy several low
energy states.

Many authors approach this regime from high-temperature domain, in-
troducing the screening factors E = R/Ry and calculating the tunneling
probability in the mean-field approximation (see [20,18], and the references
therein). In this approximation, the interaction potential is taken in the
form V = Z; Z;e?r~! — H(r)T, where H(r) is the mean-field potential, see
(9). Note that in a series of works [20, 18] the 7% term in the small-r expan-
sion of H(r) is calculated inaccurately [21]. This, however, cannot introduce
an essential error into E. A comparison of the reaction rates calculated in
the mean-field approximation [18] with those based on the screening factors
of Sect. 4 shows that the simple screening approach of Sect. 4 becomes in-
valid at T<T5,. In the range of T, /2<T<T, the mean-field results give some
interpolation (Fig. 2) between the simple screening regime (Sect. 4) and
thermally enhanced pycnonuclear regime (Sect. 6). The accuracy of this
interpolation is not very well known. Actually, the reaction rates can be
strongly affected [22, 23] by fluctuations of the interparticle potential V(r)
introduced by neighbouring ions. In a rigorous theory, one should deter-
mine the barrier penetration factor in a random potential and then average
this factor over an ensemble of fluctuations. This rigorous approach has not
yet been realized (although some simplified attempts have been undertaken

[24]).
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Fig. 2. Temperature dependence of the carbon burning reaction rate in carbon
matter at p = 10° g cm~3. C is the classical thermonuclear reaction rate; S is the
rate with the strong screening factor of Sect. 4; I is the same with the screening
factor [18] calculated in the mean-field approximation. Curves R and P show the
pycnonuclear reaction rates in the relaxed and static approximations, respectively.
The T = 0 results are taken from {17] (bec lattice), while the thermal enhancement
factors are from [16].

8. Summary

Non-resonant nuclear reactions in dense stellar matter can proceed in
five regimes (Fig. 1) depending on temperature, density, and chemical com-
position of matter. The classical thermonuclear burning (Sect. 3) occurs at
T > T;. The thermonuclear regime with strong screening (Sect. 4) takes
place at T, « T<T,. The temperature independent pycnonyclear regime
(Sect. 5) is realized at T<T,/log(T;/Tp). The regime of thermal enhance-
ment of pycnonuclear burning (Sect. 6) operates at T,/ log(T;/T,)<T<Tp/2.
Finally, the intermediate thermo/pycno-nuclear burning (Sect. 7) occurs at
Tp/2<T<T,. Fig. 2 shows the temperature dependence of the carbon burn-
ing rate for p = 10° g cm—3. Different burning regimes are quite visible.

The many-body effects in dense matter greatly amplify the reaction
rates at T<T; as compared to the classical thermonuclear rates. These
effects are especially pronounced in the pycnonuclear regime: they allow
the nuclei to react even at T = 0. Curves A and B in Fig. 1 show the lines
in the p — T plane where the mean burning time of carbon mattert = n;/R
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equals 1 s and 10° yrs, respectively. The pycnonyclear burning of carbon is
seen to be most essential at p>101% g cm 3.

The physical nature of nuclear burning in all 5 reaction regimes is under-
stood quite adequately. The existing theoretical description of nuclear reac-
tions is most reliable for T>T}, (classical thermonuclear and strong screening
thermonuclear burning). For lower temperatures, the results (Secs 5-7) are
not so very certain.

This work has been supported in part by KBN grant No. 2-1244-91-01
and by ESO C&EE Programme grant No. A-01-068.
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