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It is shown how first- and second-order interference effects can be used
to measure the extent of chaotic light sources such as stars viewed from
a great distance. The same technique can be applied in nuclear physics
where the interference effect arises from the quantum statistics of identical
particles. The results from an experiment attempting to measure the
size of the participant zone in a heavy-ion reaction using bremsstrahlung
photons as a probe are presented.

PACS numbers: 25.70. -z

1. Introduction

The observation by Young at the beginning of the XIX century of in-
tensity fringes when the values of the electromagnetic field at two distant
points are superposed, as in the two-slit experiment, provided the irrefutable
proof for the wave nature of light. Later the same interference effects were
shown to occur for massive particles thus demonstrating the dual nature of
quantum objects. This kind of interference, which is now called first-order
or amplitude interference, was interpreted by Dirac [1] as the interference
of a particle with itself. This interpretation was demonstrated [2] to be true
in experiments where only one particle at a time was present in the inter-
ferometer. The interference fringes for electrons could be observed under
conditions where the mean interval between successive electrons was about
150 km - the interferometer being only 1.5 m long!

The observation of fringe blurring was used in Michelson type of inter-
ferometers to measure the angular dimension of stars. The resolution of this
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apparatus is however limited because of the difficulties to keep the relative
phase of the interferring field at two distant locations constant. In 1954,
Hanbury-Brown and Twiss [3] developed a new type of interferometer for
use in radio-astronomy where they showed that different photons can also
interfere, in apparent contradiction with the self-interference interpretation.
The distinction between this interference process, called second order or in-
tensity interference, and Young’s two-slit interference phenomenon is that
the former is a multiparticle process peculiar to quantum mechanics where
the notion of different particles must be redefined.

In the sixties, the intensity interferometry was applied to particle physics
by measuring the correlation between identical particles [4]. In that way it
became possible to measure the size of the pion source in antiproton-proton
annjhilation reactions. In nuclear physics [5], at energies close to the Fermi
energy, correlations between identical nucleons or light composite particles
were used but without ever observing the interference effects, obscured by
final state interactions between the two particles.

I will present here a pioneering experiment where the correlation be-
tween photons has been measured to search for the intensity interference
effect and thus determine the extent of the source emitting these photons.

In the first two sections I will recall under which conditions the interfer-
ence pattern arises both in first and second order interference experiments. I
will also show how the disappearance of the pattern can be used to measure
the size of the light source. I will then briefly review what we know about
the mechanism producing hard photons in heavy-ion reactions and show
that these photons are well suited for the observation of the intensity in-
terference effect. Finally, the method employed to measure the two-photon
correlation will be presented together with the results we have obtained in
the reaction Kr+4Ni at 60 MeV /u.

2. Amplitude or first order interference

We define interference as the superposition of the electromagnetic field
evaluated at two points separated in space and time. Such a superposition
can be achieved with the set-up shown in Fig. 1. Two identical pinholes
located at r; and r; on a first screen E1 are illuminated by two independent
chaotic light sources. At a distance D the superposition of the light from
the two pinholes is observed on a second screen E2. The light, which we
shall assume to be monochromatic and linearly polarized, can be described
by its electric field. At a time t and a position R, the observed intensity on
E?2 results from the linear superposition of the fields at r; and 7, at earlier
times determined by the velocity of light:

I(R,t) = |[E(r1,t1) + E(r2,82))? ,
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t; =d;/c,
d;i=|R-r;] i=1,2. (1)

If we write the electric field as a plane wave,
E(r,t) = Eoexp {i[kr - wt + &(2)] } ,
expression (1) becomes: 7
I(R,t) = 2E3{1 + cos [k (d — d3) + #1(t) - &2(1)] } - (2)

For chaotic light sources the coherence time, t., is defined as the time dur-
ing which the phase of the electromagnetic field remains approximately con-
stant. In other words, the coherence time is a characteristic time for the
source which determines the time scale of the random fluctuations. It is
of the order of 10~1? seconds for a discharge lamp and 10~% seconds for
a laser. The path length, I = ct., associated with the coherence time is
known as the coherence length.

E E,

Intensity on screen E, 1* order correlation function
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Fig. 1. Schematic set-up allowing the superposition of the electromagnetic field at
two locations r; and r;. The sources Sy and S; are independent therefore (a) no
interference fringes are observed on E2 and (b) the correlation function is equal
to 1.
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The intensity is normally recorded by photographic plates or is observed
with the naked eye. In either case, the recording time T is long compared
to the coherence time. The observed intensity is therefore a time-average of

the intensity:
T
I(R)= (&1 = 7 / I(R,t)dt. 3)

0

Since the two sources are chaotic and independent, the phases of the field
at r; and r; fluctuate randomly and the second term of Eq. (2) is zero on
average. The averaged intensity is thus constant and equal to 2E2? and
therefore the screen E; is uniformly illuminated.

To keep the relative phase §(t) constant, Young changed the set-up
of Fig. 1 so that the two pinholes are illuminated by a single light source
positioned at an equal distance from 7; and r;. Such a set-up is shown in
Fig. 2. If we take §(t) = constant = 0 the observed intensity is:

I(R) = 2E3{ 1+ cos [k (dy — d2)] } . (4)

It consists of two contributions. The first term represents the intensities
due to each of the pinholes in the absence of the other. This term does not
cause the interference effects. The fringes are described by the second term
which includes the correlation function for the field at the two pinholes. The
fringe pattern depends on the path difference d; — d2 and the visibility of
the fringes can be represented by the first order correlation function defined

> I”'l'f‘z(R)
Iy (B) In,(R)'/*

For the set-up of Fig. 1, the first order correlation function is equal to 1
(no fringe visibility) and for the set-up of Fig. 2 it is equal to (using the
notations of Fig. 2):

cO(R) = (5)

C(l)(L) =1+ cos [k (dy — d3)]
=1+ cos(kaL). (6)

The finite extent of the source in the direction joining the pinholes,
neglected in the above treatment, is often the most important limiting factor
for the fringe visibility. The most brilliant fringe is at the center of the
screen R = 0, and the intensity of a fringe will decrease when one moves
away from the center. The fringes will disappear altogether when the path
difference exceeds the coherence length. There are actually techniques for
determining the angular diameter of distant light sources, for example stars,
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Fig. 2. Schematic set-up for the coherent superposition of the electromagnetic field
at two locations r; and r;: a) interference fringes are observed on E2 and b) the
correlation function has a maximum at the center (maximum fringe visibility) and
decreases at large L where the fringes become difficult to observe.

b)

by observation of fringe blurring. This can be achieved with the Michelson
interferometer schematized in Fig. 3 where the star, a disk of radius R, is
viewed by two aerials in which currents are summed through two cables of
equal length L/2.
The contribution I; to the summed intensity from one atom at r; is, accord-
ing to Eq. (4):

L(L) = 2E3{1 + cos (kaiL) } (7)

and the total intensity I'y; for N atoms distributed according to a normalized
density distribution p(r;) is:

Is(L) = / I(L)p(rs) drs

source

=2NE; {1+ (N - 1) l5(kaL)}*} , (8)

where j is the Fourier transform of the density distribution and a = R/D is
the angular dimension of the source viewed from the distance D. The first
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Fig. 3. Schematic set-up of the Michelson interferometer and expected correlation
function for a Gaussian density distribution

order correlation function has the following form:
CONL) =1+ |p(kaL)” . (9)

The correlation function is measured from L = 0 up to distances exceeding
the spatial coherence length and the observed fall off (see Fig. 3) measures
the angular radius of the star.

The difficulty and the resolution limitation of this kind of interferome-
ter originate from the necessity to keep the relative phase constant during
the measurement. This is rather difficult to achieve because of phase fluc-
tuations due to atmospheric turbulences or phase shifts along the cables.
To avoid this constraint, Hanbury-Brown and Twiss introduced in 1954 [3]
a new concept and developed the intensity interferometer.
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3. Intensity or second order interference

The aerials can be replaced by photomultipliers and instead of summing
the outputs as for the Michelson interferometer, the Intensity interferom-
eter, schematized in Fig. 4, measures the coincidence rate. It, therefore,
allows one to measure the correlation of two intensities at different times
and locations rather than as previously the correlation of the electric field.
One defines the second order correlation function as the ratio of the coinci-
dence rates and the product of the single rates:

In(Ry, R2)

C®)(Ry,R;) = TRy - 1(Ra) (10)

The contribution to the instantaneous inclusive and coincidence intensities
from two atoms at r; and r; is, according to Eq. (4):

Lj(Ryt) = 233{1 + cos [ky(dy — d2) + 6(t)] } =12 (11

In(Ry, Ry, t) = ij(Rl,t)Iij(Rz,t)
= (2E3)" {1 + coslka(d1 — dy) + 6(t)] + coslka(dy — dy) + 8(1)]
+ 3 COS[(kl + kg)(dl - dz) + 25(t)]
+ Jeos[(k1 — ka)(dx - d2)]} (12)
Again, it is necessary to average Eqs (11) and (12) over the observation
time. Since in a chaotic source the two atoms radiate light independently
of each other, §(t) fluctuates randomly and all the terms depending on §(t)

vanish for the averaged intensities. The second order correlation function is
then:

CNL) =1+ L cos[(k1 — kz)al] (13)
and for N atoms distributed according to p(r):

N -1
CONL) = 14+ =5 |pl(k1 - k2)aL)l”

~ 1+ |p[(ky — k2)aL]*  for N> 1. (14)

If the field is coherent (§(t) = constant) it makes no difference to take
the average of the product of the intensities or the product of the averaged
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Fig. 4. Schematic set-up for the intensity interferometer and the correlation func-
tion for a Gaussian density distribution.

intensities. The numerator and denominator of Eq. (10) are, therefore, equal
and the correlation function is equal to one.

As for the Michelson interferometer, the fall-off of the correlation func-
tion (Fig. 4) measures the angular size of distant light sources but with the
fundamental difference that the field must no longer be coherent but chaotic
instead.

Intensity interference is a new kind of interference since it is a multipar-
ticle process and seems to contradict the fundamental dictum of Dirac [1]:
“Each photon interferes only with itself. Interference between different pho-
tons never occurs.” We shall see in the next section that quantum statistics
provides the explanation for the occurrence of the intensity interference be-
tween identical particles.
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The observation of first- and second-order interference effects can be
summarized by introducing the notion of coherence. The term coherence
is used to denote the correlation between the values of the field at two
points separated in space or in time. The fact that there exist two kinds of
correlation of first and second order leads us to distinguish also first- and
second-order coherence. The fringes in the Young experiment are visible
(€ > 1) only if the field is coherent at least to first order and for the
observation of intensity interference effects (C(2) > 1) the field must be
incoherent to second order whatever the first-order degree of coherence is.
For a coherent field C(2) = 1. The quantum theory of optical coherence can
be found in reference [6].

4. Photon correlation in nuclear physics

In nuclear physics, identical particle correlations, a technique compa-
rable to intensity interferometry, is a powerful tool to determine source
sizes. The particles preferably used in this kind of measurement are those
which are produced most abundantly in nuclear reactions: pions and kaons
at ultrarelativistic energies to probe the fireball during the hadronization
phase; protons, neutrons and complex particles at intermediate energies to
probe the heavy ion collision zone at various stages of the reaction. Pho-
tons, the obvious probe for the study of interference phenomena, were never
considered because of the difficulties in identifying them in the huge electro-
magnetic and hadronic background at ultrarelativistic energies or because of
their weak production cross sections at intermediate energies. I will present
in the following sections an experiment aimed at the determination of par-
ticipant zone sizes by way of the measurement of the correlation between
hard photons emitted in heavy ion collisions at intermediate energies.

Firstly, however, I will examine how the intensity interference effect
arises in the correlation between identical particles.

4.1. Identical particle correlation

To construct the second order correlation function defined in Eq. (10),
one needs to measure the coincidence rate between two detectors. The
probability to detect two particles in coincidence is given by the modulus
squared of the two-body wave function, 112, which is in case of two emitters
r; and r;:

iz = % {1(ri)ba(r;) + 1(rs)2(rs)} - (15)

The first term represents the amplitude for detecting the particke emitted
from r; in detector 1 and the particle emitted from r; in detector 2. Since
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Fig. 5. Graphical representation of the mechanisms which generate a correlation
between identical particles: a) the quantum statistics, b) final state interactions
(Coulomb and nuclear), ¢) decay of a resonance of mass M.

the two particles are identical and therefore indistinguishable one needs
to add the second term where the particles have been exchanged. If the
particles are bosons the Bose—Einstein statistics requires that the two-body
wave function is symmetric with respect to particle exchange, hence the
+ sign in expression (15). Otherwise, for fermions, the wave function is
antisymmetric and the sign —. The two-body wave function (15) represents
the two first contributions depicted in Fig. 5.a. The last two contributions
where the particles are emitted from a single point are represented by the
following wave function:

Y12 = —\}—5 {¥1(ri)2(ri) + a(rj)2(rj)} - (16)
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Writing the single particle wave function in form of a plane wave, ¥(r;) =
exp(ikr;), and assuming a density distribution, p(r;), for the points emitting
particles in a source of radius R, the correlation function for the cases shown
in Fig. 5.a) can be easily derived:

[ p(r1)p(r2)[312|? drydry
Jo(r)l1]2 dry [ p(r2)|92|? dry
=1+ 316(ks — k2)* + 3 |5(k1 + k2)]?  for N =2
=1+ |p(k1 — k2)|*> + (k1 + k2)*  for N>1, (17)

C B (ky, k) =

where N represents the granularity of the source. In contrast to astron-
omy, where the source size remains unchanged during the observation time,
in nuclear physics the density distribution changes with time. Therefore,
in Eq. (17), the 3-momenta must be replaced by the 4-momenta. Expres-
sion (17) is similar to the correlation function (14) with an additional term
in k; + k2, the total momentum of the two particles. This term is due to
the case where the two particles are emitted from a single point. The full
derivation of the correlation due to the quantum statistics can be found in
Ref. [7].

Other processes can produce a correlation in the two-particle coinci-
dence distribution. The first one, shown in Fig. 5.b), corresponds to the fi-
nal state interactions between the two particles. This is the case of charged
particles subject to the Coulomb and nuclear forces. The Coulomb force
prevents the particles from being close to each other in phase space and
results in a decrease in the correlation function at small relative momenta.
The nuclear force is responsible for resonant states favoring strong correla-
tion at the energy of the resonance. For photons the final state interactions
are negligible, but one needs to consider the correlation due to the decay
of unstable particles Fig. 5.a), such as neutral mesons into photons. The
correlation function will be strongly enhanced at the mass of the particle.

For photons, the correlation function (17) must be changed to take into
account their spin: left hand polarized and right hand polarized photons
are not identical particles. Neuhauser [8] has shown that, under a number
of conditions justified for nuclear bremsstrahlung photons, the correlation
function is:

COVky,ka) = 1+ } [1+ cos? 9] [|(ks — k2)I* +18(ks + k)], (18)

where 1 is the opening angle of the two photons. The effect of the polariza-
tion is to reduce the maximum value of the correlation function from 2 to
1.5 in the high energy limit (5(k; + k2) ~ 0). Expression (18) is valid only
in case where the photon production is isotropic. Razumov and Weiner [9]
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have derived a more general expression taking into account the dynamics of
the photon production and have shown that the maximum of the correlation
function depends strongly on the angular distribution of the photons and
can vary between 1.5 for isotropic emission and 2 for dipolar emission in the

high energy limit.
4.2. Bremsstrahlung photons

High energy photons (E. > 30 MeV) have been extensively studied in
the past decade for a large variety of systems over bombarding energies be-
tween 10 MeV /u and 124 MeV /u. The results are reviewed in references [10]
and [11].

The global features are summarized in Fig. 6.
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Fig. 6. Characteristics of the hard photons emitted in heavy ion reactions near the
Fermi energy.

The hard photon spectrum, beyond the giant resonances region, ex-
hibits an exponential shape Fig. 6.a) with an inverse slope parameter E,
increasing with the bombarding energy Fig. 6.b). Exploiting the Doppler
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shift, the velocity of the photon emitting source can be measured and is
found to be equal to half the beam velocity Fig. 6.c). These observations
lead one to identify the hard photons as the bremsstrahlung photons emit-
ted in individual neutron-proton collisions. The production cross section
can be expressed with only one parameter depending on the bombarding
energy, the probability to produce a photon per neutron-proton collision:

Oy

Py= -
v "R(Nnr’)b’

(19)

where og is the total reaction cross section and (Nyp); the number of
neutron-proton collisions averaged over the impact parameter. The evolu-
tion of this probability with the energy available for the nuclear reaction is
shown in Fig. 6.d) in comparison with the probability calculated in a free
nucleon-proton collision. One observes that the photons with energies larger
than 30 MeV can be produced in the medium well below the threshold en-
ergy of 60 MeV for a free collision. The additional energy necessary to create
these sub-threshold photons is believed to be provided by the Fermi energy
of the nucleons within the collision zone. Furthermore, phase space calcu-
lations indicate that, because of Pauli blocking, only first chance collisions
participate in the production of hard photons.

To summarize, photons are produced through the bremsstrahlung mech-
anism in first chance individual neutron-proton collisions. Because of the
stochastic nature of the collisions in a heavy-ion reaction, the total flux of
photons results from an tncoherent superposition of photons produced in
individual collisions. We thus have at hand a chaotic light source which
is well located in space, the participant zone, and in time, the duration
of a nucleon—nucleon collision. The correlation technique may therefore be
adapted for the determination of the spatial and temporal extent of the
source using hard photons.

4.3. The two-photon correlation ezperiment

The experimental difficulties one needs to overcome in the measure-
ment of the two-photon correlation function are: the unambiguous iden-
tification of the photons among the hadronic and cosmic-ray background
and the weak production cross sections (0, ~ 10ub). One thus requires
an efficient detection system with high angular and energy resolution and
an effective background suppression (hadrons, ete™ conversion pairs, and
cosmic rays). These problems were solved by the use of the photon spec-
trometer TAPS 1, an array of 320 hexagonal telescopes each consisting of

! Two Arms Photon Spectrometer, a GANIL-GieSen-GSI-KVI-Valencia coll.
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a 2 mm thick NE102A AFE detector and a 250 mm thick BaF; E detector.
To optimize the collection of the electromagnetic shower induced by high
energy photons the telescopes were assembled in 5 blocks of 64 detectors
each, positioned around the target at an average distance of 60 cm. In the
data analysis, the charged particles detected in TAPS, mainly protons and
electrons, were rejected by using the information from the AE detector as
a veto signal. In addition, photons and light particles were identified by
using the difference in the pulse shape generated in the E detector and the
different flight times. The residual contamination due to improperly identi-
fied hadrons was negligible. The energy and emission angle of the photons
were obtained by reconstructing the electromagnetic shower. For 70 MeV
photons, the final energy resolution was 3.5 MeV and the angular resolution
was 1°. A detailed description of TAPS and the methods used to identify
photons can be found in Refs [12-15]. We studied the system Kr+Ni at
60 MeV /u.

Experimentally, the second order correlation function defined by Eq. (10)
is constructed as the ratio of the two-photon coincidence yield Y2(ky, k2)
over an uncorrelated background generated by folding the single photon
yields Y1 (k;) and Y2 (k2):

Yo (k1, kz2)

C(ky, kg) = :
xp(k1, 2) Yi(k1) ® Ya(k2)

(20)

C?) js normalized to 1 in the region where the correlations are negligible.
Cosmic-ray induced events recorded in random coincidence with the beam
were eliminated in the analysis based on the shape of the shower [16] and
left over conversion pairs or non continuous showers by setting a minimum
relative angle of 18° between the two showers. In this way, 20,649 events
were identified as two hard photon events. We estimate that the contribu-
tions from cosmic events not rejected (4 events over the whole spectrum)
and from conversion pairs (6 events for invariant masses between 20 and
80 MeV) are negligible.

The correlation function is displayed in Fig. 7 as a function of the in-
variant relative momentum, Q;ny = /—(k1 — k2)?, which is equivalent for
photons to the invariant mass. This kind of representation, commonly used
in particle physics, has been selected because Q;,y allows one to easily
identify the correlation originating from #® — 27, as seen in the figure at
Qinv = 135 MeV. The neutral pion contribution to the correlation function
has been calculated with the help of a GEANT Monte Carlo simulation
(dashed line) indicating that it is negligible at low invariant mass. There-
fore, below 60 MeV, the spectrum contains mainly bremsstrahlung photons
and the rise towards low Q;,y, in the interval from 40 MeV down to 5 MeV,
is attributed to the expected interference effect between photons.
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Fig. 7. Correlation function measured for hard photons from the system Kr+Ni at
60 MeV /u. Subfigure b) is an enlargement of subfigure a) at low invariant mass.
The solid line is a fit to the data using Eq. (22), the dashed line shows the x°
contribution, and the dot-dashed line shows the interference effect.

The following expression was fitted to the experimental correlation func-
tion:

C'g%(va) = KO + Kl : g‘rr(Qinv) + K2 . g-xo(Qinv - m—;ro) ’ (21)

where K is a coefficient used to normalize the correlation function to unity
for uncorrelated photons and the last term describes the contribution from
the neutral pions. The interference term g, is obtained by assuming that
the source density distribution is of gaussian shape with a width R;,, and
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by neglecting the second term of Eq. (18) (4(k1 + k2) ~ 0 for ky 2 > 1).
The interference term thus has the following form:

2

C®(Qinv) =1+ A-exp (7:5—) , (22)
where 0. = hic/Rjyy is the correlation length and A = K;/K, is a factor
which represents the reduction of the correlation function at zero relative
momentum due to the spin of the photons, to the dynamics of their pro-
duction (see section 4.1), to the partial coherence of the source and chance
coincidences. We assumed that this parameter is a constant. The result of
the fit is shown in Fig. 7 as the solid line. The maximum of the correlation
function at zero relative momentum is equal to 1.7 + 0.2, consistent with
the predicted values (see Section 4.1). The correlation length is equal to
15+ 3 MeV corresponding to an invariant gaussian radius equal to 13+ 3 fm
and to an equivalent hard sphere radius equal to 20 + 4 fm. The size cal-
culated for the photon source considering an average impact parameter of
3.5 fm and an average number of participants equal to 76 nucleons is found
equal to R = 5 fm. The measured photon source size is thus 4 times larger
than the size of the expected participant zone, although it must be realized
that R;,, includes both the spatial and temporal dimensions. We don’t
have yet an interpretation for this unexpected observation.

5. Summary

The global features observed for the production of hard photons in
heavy-ion collisions in the vicinity of the Fermi energy indicate that the pho-
tons are predominantly produced in first chance individual nucleon-nucleon
collisions. The photon source is therefore chaotic and well localized in space
and time. All the required conditions are thus met to measure the intensity
interference effects which depend on the dimensions of the photon source.
The principles of this method have been described and the correlation func-
tion between identical particles, in particular photons, has been derived.

The results of an experiment performed using the photon spectrome-
ter TAPS have demonstrated that it is possible to measure and identify
two-photon events originating from the bremsstrahlung radiation emitted
during the collisions between participant nucleons. It was shown that the
strong correlation due to the decay of neutral pions does not mask the sec-
ond order interference effect. Whereas the effect was seen in the data the
interpretation of the measured source size remains an open question. Why
is the source size so much larger than the expected size of the participant
zone? Do we really observe the interference effect or is it another trivial ef-
fect? What are the respective roles of the spatial and temporal extent of the
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source? With the present data it is not possible to answer these questions.
Certainly new experiments are needed. One could, for example, repeat the
experiment using a much heavier system at the same bombarding energy to
check if the correlation function is narrower as expected for a larger source
size. The ultimate dream would be to collect enough data (that means a
lot!) to be able to disentangle the spatial and temporal extent in a bidi-
mensional representation of the correlation function, relative energy versus
relative momentum.

I would like to thank my colleagues in the TAPS collaboration who have
carried out the major portion of the acquisition and analysis of the data
included in this contribution — in particular M. Marqués, T. Matulewicz, F.
Lefevre, and P. Lautridou. In addition I wish to aknowledge many fruitfull
discussions with R. Ostendorf and J. Québert. I thank N. Orr for assistance
in the preparation of the manuscript.
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