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With the help of molecular dynamics computer simulations we study
the equilibrium configurations and the volume and surface energies at
low temperature of large systems of classical interacting particles either
under the influence of their mutual long range Coulomb forces and a
radial harmonic external confining force or of the short range Lennard-
Jones potential. The former is a model for charged particles in ion traps
and the latter for clusters. For the Coulomb plus harmonic force, the
particles arrange in concentric spherical shells with hexagonal structures
on the surfaces. The closed shell particle numbers agree well with those
of multilayer icosahedra (mli). A Madelung (excess) energy of —0.8926 is
extracted which is larger than the bec value. The results are compared
with those obtained by a simple onion shell model. For the Lennard-Jones
force we employ various initial configurations like multilayer icosahedra
or hexagonal closed packed (hcp) spheres. Cohesive (volume) and surface
energies per particle are extracted and compared to the energies of scaled
mli quasicrystals and of spherical scaled crystals with N up to 36 000. It
is shown that relaxed mli are the dominant structures for N <5000 and
hep spheres for larger particle numbers. For N < 22000, hcp crystals have
about the same closed shell numbers as mli quasicrystals but smaller ones
for N >22000. The same magic numbers are obtained with other short
range Mie potentials. The stable Argon cluster configurations calculated
with a realistic pair potential are mli for N < 750, hep for 750 < N <9300
and face centered cubic (fcc) for N >9300.
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1. Introduction

A cooled gas liquifies and a cooled liquid crystallizes. This applies to all
kinds of matter with equations of state similar to the one of an ideal gas. In
particular, a system of charged particles under the influence of their mutual
Coulomb repulsion and of a neutralizing background yields so-called Wigner
or Coulomb crystals [1-3] The same holds for a system of charged particles
bound by an external confining force, for instance of light charged ions in
electromagnetic traps [4-6]. Here the structures of systems of a few (one to
ten, or even up to a few thousand) light ions in Penning or Paul traps of
various, even toroidal [7], shapes have been studied experimentally in detail
with the help of laser cooling. Typical interparticle distances are of the
order of a few micrometers in contrast to ordinary crystals with distances
of a few Angstroms. Two-dimensional Wigner solids can also be produced
with an electron plasma at solid-state heterojunctions [8]. However, whereas
in infinite systems there exists a sharp phase transition between the liquid
and crystalline states, this is washed out in finite systems.

In this connection, the properties of ions confined in an external field has
become of recent interest with the advent of the low temperatures attained
in storage rings with electron cooling, especially for heavy ions [9-11], and
Schiffer and Kienle [12] have suggested that an heavy ion beam might attain
an ordered liquid or crystal state.

In this lecture we are concerned with the structure and energetics of a
system of confined ions under the influence of a radial focusing force and
under either the long range Coulomb or the short range Lennard-Jones or
similar force. What is the (quasi-) crystalline structure of such an ensemble
of many charges? Are there transitions from one kind of (quasi-) crystalline
structure to another? How large is the volume (or Madelung or excess or
cohesive) energy, i.e. the energy per particle of an infinite system, and can
one extract surface energy coefficients? Is there a classical shell energy
and what are the magic particle numbers at which the structures are most
stable?

The strongly correlated infinite one-component plasma (OCP) crystal-
lizes in an bcc lattice if the plasma parameter, i.e. the ratio of Coulomb
to thermal energy, reaches the value [3] I' = 171. Finite systems, on the
other hand, exhibit hexagonal structures on the surfaces [13, 14}, however
imperfect due to the incompatibility between a perfect lattice and a curved
surface and due to the incommensurability of two adjacent shells. A change
of structure from the plane hexagonal into the bce one occurs only if the
dimensions of the system become as large as about 100 interparticle dis-
tances [15].
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2. Coulomb plus harmonic forces

In order to study large but finite Coulomb systems we extend the cal-
culations on small systems by Rafac et al. [16] and employ the molecular
dynamics (MD) technique to solve the classical equations of motion under
the external harmonic confining force

i — .
conf ™ —Kr"

and the Coulomb force,

ri—T;
FCoul =~-q E |7'1, —7'_1|3

The initial momenta are chosen at random as to give an initial kinetic energy
corresponding to I' ~ 1 and the initial coordinates of N ions usually are
chosen as those of the (N-1)-ion system with one ion added at random. The
system then is followed in time thereby cooling by reducing the momenta
until thermal equilibrium has been reached; for details see Ref. [14]. In
this chapter distances are measured in units of the Wigner-Seitz radius

s = (¢%/K)'/? and energies in units of ¢*/aws. The total energy, i.e. the
sum of confining and Coulomb energies per particle, then reads

$’+sz|r"_r~7|

1 j<i

and the excess energy is defined by subtracting the homogeneous value of

T = HN2/3,
TABLE I
Structures, rms radii and excess energies of closed shell N-particle systems.

N Structure Rims Eexcess

12 12 1.6002 -0.87663

60 48412 2.9335 -0.88498
146 93441412 4.0054 -0.88745
308 163+93+424-10 5.7404 -0.88919
561 255+161+93+42+10 6.3418 -0.88994
899 356+247+1544+92+38+12 7.4361 -0.89059
1414 491+4-365+244+1634-94+44+13 8.6600 -0.89124
2057 641+491+363+4+-257+158+93+44+10 9.8209 -0.89132
2837 8054-634+4804356+246+4173+ 143" 10.9384 -0.89172
3871 9924-801+639+1439" 12.1379 -0.8915!

* The remaining shells cannot be resolved
t At small temperature
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The resulting magic numbers are listed in Table I where the excess
energy is minimal as compared to the neighbouring particle numbers. The
excess energy is shown in Fig. 1. For systems with N <64, there are strong
shell effects in the excess energy with peaks and minima if a new shell opens,
in particular the transitions at N =12, 60,146. One notes that the smaller
magic numbers are even as compared to those of the mli because the center
particle is always missing. In particular, the second shell starts at N =13,
the third one at N =61, and the next ones at or around N = 147, 309, 565,
900, 1400, 2100, respectively.
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Fig. 1. Excess {(Madelung) energy of Coulomb quasicrystals. The dots are MD
data and the full line is the best fit. The open arrow points to the asymptotic value
and the full arrow to the Madelung energy of the infinite bcc OCP. Open circles
are results of spherical bec matter together with a fit (dashed line).

These closed shell particle numbers are compatible with the magic num-
bers of Mackay’s multilayer icosahedra (mli) [17],

N=(2M+1) [§M(M +1)+1], (1)

notably N = 13, 55, 147, 309, 561, 923, ... which have been verified ex-
perimentally as closed shell particle numbers in metal clusters, see e.g.
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Refs. [18, 19]. The subshell numbers are given by 10N2? + 2 = 12, 42, 92,
162, 242, ... They are thus more general in the sense that they not only are
identical to those of stacked cuboctahedra but also show up in Coulomb
systems. Due to the long range nature of the Coulomb force, Coulomb qua-
sicrystals tend to be as spherical as possible. This is not in contradiction
to the edged nature of the mli because here the plane surfaces of the mli
become curved.

An infinite Coulomb system can take advantage of all long range inter-
actions in order to arrange in an bcc lattice and to minimize the Madelung
energy by summing up all long range contributions. A finite system, on
the other hand, can explore only the short and intermediate range parts of
the Coulomb interaction. It is well known that systems with short range
interactions arrange in fcc or hep lattices with coordinations (the number of
almost equal nearest neighbour distances) of 12 but with higher Madelung
energies. A finite Coulomb system, hence, will arrange in such a way as to
maximize the coordination i.e. to achieve the maximum possible number of
equilateral triangles. In Fig. 2 is shown the front hemisphere of the outer
shell of the 5000-particle system. Here the overall hexagonal structure is
well pronounced, however with dislocations and pentagonal point defects.
The particles in the next inner shell most often sit below the line connecting
two particles rather than below the center of the triangle.

20 + i i ) i i i

-0 -5 -0 -5 0 5 0 15 20
X (aws)

Fig. 2. The front hemisphere of the outer shell of the 5000 ion system. Note the
haxagonal structure with approximately equilateral triangles and the point defect
below the center.
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A fit for N > 300 gives
emp = —0.8926 + 0.0001 + 0.0088N~1/3 4 0.096 N —2/3

with an asymptotic Madelung energy of —0.8926 which is higher than the
one of the infinite bcc OCP of —0.895929, thus indicating that even at very
large particle numbers the hexagonal surface structure is still dominating
over the bee structure. This is due to the small surface energy of the hexag-
onal lattice on the curved surfaces. The surface energy extracted from the
MD data is the average over the whole surface and also includes relaxation
and reconstruction of the surface that minimize the total energy. To eval-
uate the order of magnitude of surface relaxation we calculated the excess
energies of unrelaxed spherical fragments containing up to 25 000 particles,
sliced out of infinite ideal beec matter with the same density, see the open
circles in Fig. 1. Extrapolation of these data to the becc Madelung energy
(dashed line) gives a surface energy coefficient of =~ 0.4. It crosses the fit
of the MD data at N =~ 4x10%. This number of particles at which the
infinite bce lattice takes over energetically is compatible with the estimate
of Dubin [15].

In order to explain the results of the computer simulations we com-
pare them with those of an onion shell model, where the quasicrystals are
supposed to consist of M homogeneously charged shells of radius R, and
number of particles N, with the constraint ) N, = N. The Coulomb and
confining energies then become

£ (5]

1
€Coul = 37 [
N v=1 v<p

1 2
Econf = E N,R;.
2N &
This is corrected for the energy per particle of the plane hexagonal lat-

tice [20, 15],
-h
el;fa:lx = -a/ﬁ’
where a=1.960515789 and f is the unit area of an ion. With the geometrical
value of f = a?1/3/2, where a = (167r/9)1/3 is the minimum distance, it
takes on the value eﬁi‘;x = —1.187397. Minimization of the total energy
with respect to the radii yields

1
R = 5Ny + > N, (2)
u<v
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which, in turn gives the total energy per particle

3 -h
€iotal = ﬁ Z Nvazl + ell:/[,;x'
v

Demanding that the area of a given shell is occupied by N, areas of equilat-
eral triangles of sides a, thus also allowing for noninteger particle numbers
N’ NV’ 41
2

4rR, = 3dN,, + 2%

Eqs (2), (3) are solved iteratively with initial values No = Rg = 0. The
. . P-hex . " .

excess energies without ), ;" -corrections, of course, would be positive, i.e.
higher than the true minimum of the homogeneous system. The agreement
of the shell model results with the MD results is rather good even for the
first shell. The opening of new shells is accurately predicted up to parts
of a particle number, and the radii and energies are well reproduced. This
yields

(v>0), (3)

above the bce (-0.895929), fcc (-0.895874) and hep (-0.895838) values but
below the MD result (-0.89280) and of the sc lattice (-0.880059).

3. Short range forces

The largest magic number identified in cluster experiments is around
21300 [19]. They are well in agreement with those obtained from purely
classical geometrical packing of N particles, for instance, into mli or cuboc-
tahedra (mlc). However, the energetical stability of large crystals and qua-
sicrystals under short range forces has only been studied extensively by
Raoult et al. [21]. Here icosahedral, octahedral and mono-twinned fcc,
decahedral, tetrakaidecahedral, hexakaiicosahedral (hki), dodecahedral pen-
takaitetrakontahedral (dpk) and other truncated structures are considered.

We extend these calculations to very large particle numbers and, as an
approximation to the effective two-body force in clusters, we employ the
short range L] potential,

VLi(r) = €0 [(r/a')_12 - 2(1-/0)_6] .

In this chapter we will use 9 = & = 1. The energy per particle is given by

| N
Eu=+ S) Ws(lri - xj)). (4)

i j<i
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Due to the very short range nature of the LJ force a start with initial random
coordinates never yields a stable configuration. Therefore we employ mli,
mlc, spheres of hexagonal closed packed (hcp), face centered (fcc) or body
centered cubic (bcc) matter, or even stacked rhombic dodecahedra (srd)
proposed by Kepler, see Ref. [22]. Systems with particle numbers up to
N = 6525 are completely relaxed by MD and those with 2 < N < 36000
are studied by uniform scaling and energy minimization. Systems with
nonmagic numbers of particles were started with a magic core and the extra
particles at random in the next shell; for details see Ref. [23].

TABLE II

Cohesive and surface energies and scaling factors of different Lennard-Jones crystals
and of infinite mli and mlc quasicrystals.

Structure Vi3 SLs 8

hep -8.611065! 15.52 0.971228!
fee -8.610201% 15.4% 0.971234!
mlec -8.593 15.62 0.974°
hki -8.545* 14.234

mli -8.54% 14.18% 0.953%
dpk -8.5384 14.20%

bee -8.237292! 15.12 0.979204!

1 Analytical values

? From minimizing scaled large spheres

% Estimated from MD relaxation

4 Lower limits extrapolated from Ref. [21]

With inverse power-law potentials scaling effects can be calculated by
scaling the dimensions in Eq. (4) and minimizing with respect to the scaling
parameter, so = (€32/es)}/® to yield the minimum energy

n}in = ——eg / €12 .
For infinite bec, fcc and hep matter, the inverse-power sums e,, are known,
see [24], to give the scaling parameters and cohesive energies of Table II.

Under the LJ force, hcp matter is lowest in energy, followed by fcc
and bcc matter. We repeated those scaling calculations for spheres of such
matter with up to 36 000 particles in order to obtain also the surface energy
coefficient in the expansion

Ery =Wy + SLyN~1/3.,

which are also listed in Table II. Relaxation of finite systems is achieved
by solving the coupled classical equations of motion with standard MD as
described above.
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The resulting energies are listed in Table III and shown in Fig. 3. For
small systems it can be seen that the energy of mli with the magic numbers
13, 55, 147 and 309 attains minimal values as compared to surrounding
nonmagic clusters.

TABLE III

Closed shell particle numbers N of shell M and their energies of relaxed mli, mle,
hep and fce structures and of scaled mli, hep and fee.

M N B B B B Eme bige Bae
1 13 -3.4098 —3.4098 -3.1466
2 55 —5.0772 —4.8778 —4.9114 —4.7660 -5.0373 —4.9052 —2.4041
3 147 -5.9623 -5.8121 -5.8636 —5.7888 —5.8938 —5.8576 —4.0776
4 309 —-6.4959 —6.3805 —6.3907 —6.3347 —6.4102 —6.3834 -5.3022
5 561 —6.8492 —6.7595 —6.7707 —6.7522 —6.7530 —6.7621 —6.1041
6 923 ~T7.0994 —7.0295 -—7.0490 -7.0202 —6.9965 —7.0409 —6.6062
7 1415 -7.2854 -—7.2312 -7.2261 -—T7.2454 -7.1781 -7.2184 —6.9529
8 2057 -7.4291 -7.3875 -7.3956 —7.3831 -7.3185 -—7.3880 —7.1823
9 2869 --7.5432 —7.5121 -7.5204 -7.5168 —7.4304 -7.5137 —7.3676

10 3871 -7.6361 -7.6138 -7.6257 —7.6209 -7.5216 -—7.6193 -—7.5085
11 5083 -7.7128 -7.6982 -T7.7133 -7.7037 -7.5973 -7.7071 -7.6219
12 6525 -7.7775 —7.7696 —7.7832 -7.7808 -7.6611 -—7.7774 -T7.7121

13 8217 —7.7156 —7.8404 -—7.7849
14 10179 —7.7628 —7.8933 -7.8515
16 12431 —7.8041 -—-7.9420 -7.9000
16 14993 —7.8404 -7.9807 -7.9441
17 17885 —7.8726 -—8.0158 —7.9865
18 21127 —7.9013 -—8.0477 -8.0238
19 24739 —7.9272 —8.0748 —8.0554
20 28741 —7.9505 -—8.1003 —8.0851
21 33153 —8.1223 -8.1086

Relaxed icosahedrons are lowest in energy up to N =3 871, with either
multilayer or stacked cuboctahedrons being much higher. In addition, since
simple spherical hcp crystals always have lower energy than mlc and since
even fcc crystals are lower in most of this interval of particle numbers, we
exclude the possibility of the existence of large cuboctahedral clusters. Due
to their bee structure the same holds for rhombic dodecahedra.

Despite the fact that mli have a very low surface energy, the volume
energy and, hence, the total energy becomes too large for large particle
numbers. Around particle number of 5083, hence, there is a transition to
hcp crystals which, however, have larger surface energy but lower volume
energy. Similar reasoning holds for the hki and dpk. The corresponding
values for the cohesive and surface energies of Table II have been obtained
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Fig. 3. Energies per particle of LI crystals and quasicrystals. Full (open) circles
are relaxed MD results with mli initial configurations at magic (nonmagic) particle
numbers. In the insert are shown various energies (r: relaxed by MD, s: scaled and
minimized) with the scaled-hcp average of —8.591 4 15.035N ~1/2 subtracted. The
open arrow points to the hep matter value.

by extrapolating the results of Ref. [21). They have to be taken as lower
limits. However, from Table II it can also be seen that although hki have
a slightly larger surface energy than dpk, their cohesive energy is slightly
less. Hki, hence becomes the more stable configuration for N > 40 000.

In order to follow the magic numbers beyond N =6 525 the shell ener-
gies of scaled (but not relaxed) spherical simple cubic (sc), bee, fec and hep
crystals have been calculated. By subtracting the mean and smoothing we
obtain the shell energies of Fig. 4. All of them exhibit characteristic shell os-
cillations due to the fact that there exist spherical crystalline configurations
with minimum (maximum) number of surface particles at the same radius,
hence with small (large) surface energies. However, for large systems sc, bee
and fcc do not show the characteristic shell spacing of Eq. (1) whereas hcp
does for N=10179,12431,14993,17 885 and 21 127 at the correct positions
(also, at 8217 there is a local minimum). The next two minima appear at
N ~ 23600 and 27500 rather than at 24 793 and 28 741. Here the magic
numbers were not yet identified experimentally. For larger particle numbers
the shell energy becomes rather small and one expects that magic numbers
cease to exist.

In order to assure that the effect of magic numbers in hcp spheres is
not an artifact of the LJ force we repeated the scaling calculations with the
Mie potential #~4™ — 2r=2" (n =3 is the LJ potential) with n=1,...,4.
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NV3

Fig. 4. Shell energies of scaled spherical L] crystals, smoothed and the mean
subtracted. The large N parts are magnified.

For the short range potentials with n = 2,3,4 we found the minima of the
energy essentially at the same magic numbers as discussed above. In the
long range case n = 1, on the other hand, the shell oscillations are very
irregular and one cannot associate magic numbers. However, we cannot
exclude that macroscopic structures formed of hcp matter, other than the
sphere, might have even less surface energy.

Similarly, we calculated the stable configurations of Argon clusters with
the realistic Argon-Argon pair potential of Ref. [25] which has an exponen-

tial and Gaussian long range tail and an e~1/ r* short range cutoff. Here
we found a transition from mli to hcp at particle numbers around 750 and
a transition from hcp to fcc at N = 9300.
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