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Numerical studies of the excitation of 112 fermions in oscillating nuc-
leus-like Woods~Saxon potentials are compared with analogous classical
calculations in infinitely deep cavities. For oscillation frequencies such
that hw is large compared to the level spacings, and for excitations small
compared to the separation energy, a close correspondence is observed.
For small frequencies a suppression of the excitation (relative to the clas-
sical resuit) is found.

PACS numbers: 05.45. +b, 24.10. -i
1. Introduction
Numerous calculations [1-3] have established a relationship between the

order-to-chaos transition in the dynamics of classical particles in a container,
and the transition from an elastic to a dissipative response of the container to
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shape changes. In this paper we report on preliminary results obtained when
the particles in the container are quantized. The objective is to establish
approximate contact with the classical results in that range of parameter
values where a semi-classical treatment should be valid, and then to explore
deviations due to specifically quantal effects.

2. The oscillating Woods—Saxon potential

As in Ref. [4] we took a Woeds-Saxon potential V(r,t) with a size cor-
responding approximately to a nucleus with mass number A = 184, with
a depth V; equal to 50 (or 48.65), 100 or 200 MeV, and with a diffuseness
parameter a which was varied from 0.6 fm down to 0.1 fm. By using a
large depth and extrapolating to zero diffuseness, one approaches the infi-
nite square well potential (a “billiard”) for which many classical results are
available.

Explicitly, we have

Vo
V(r,t) = — s 1
(r,2) = oy (1)
R(t) = 7\%(1 + an(t)Pa(cos 6) ) , (2)

Ry = 1.16 AY/3fm = 6.5978 fm.

an(t) = ‘/ 2”; 1(co + ¢ cos(wt)), (3)

where n = 2, 4, 6 determines the order of the Legendre polynomial P,(cos§),
and the coeflicient ¢; specifies the amplitude of the oscillation around the
shape specified by ¢g. The factor 1/(2n + 1)/5 ensures that the RMS de-
viation of the surface from the spherical shape is the same for all n. The
factor A(t) ensures volume conservation.

The potential well was filled with 112 uncharged fermions, meant to
represent the neutrons in a typical nucleus with A = 184. Owing to the axial
and reflection symmetries of the potential and the neutrons’ spin degeneracy
(there is no spin-orbit potential) there are typically 34 intrinsically different
single-particle wave functions that accommodate the 112 neutrons.

The time development is started at ¢ = 0 when the well is at its maxi-
mum deformation and the total energy of the 112 particles is Ey, say. The
relative excitation energy (E(t)— Eo)/Ey is followed as a function of time by
solving the time-dependent Schroedinger equation using an oscillator basis
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with 20 major oscillator shells. (Increasing the basis to 22 shells had a neg-
ligible effect on Figs 1, 2. Concerning Figs 3, 4 see below. In the evaluation
of matrix elements numerical integrations with up to 22 integration points
in both radial and axial directions were used. This was adequate except for
the smallest diffuseness, a = 0.1 fm, where a significant inaccuracy may be
present).

3. A sample of results

The solid curves in Fig. 1 show E.x./Ep as functions of time for one
period of oscillation specified by n = 4, ¢ = 0, ¢; = 0.2, Vp = —48.65 MeV,
a=0.1,...0.6 fm, and a frequency specified by the adiabaticity parameter
n of Ref. [1]. It is equal to the ratio of the maximum surface speed of the
deforming well, given by cjw R, to the speed v of the most energetic particle

in the well:
_ C]URQ

: (4
It follows that the characteristic energy hw is related to n by
RP (9
o= s (ar) )

where P is the (Fermi) momentum of the most energetic particle and m the
nucleon mass. The relation between the Fermi wave number i/P and the
nuclear radius constant rq is

h 8 1/3
o (2"

from which we deduce that
R -1/3 n
= o (a)A ~ 8.3(3) MeV, (6)
for A = 184.
In Fig. 1 the value of 7 is 0.24, i.e. iw ~ 10 MeV. The dashed curves
show the predictions of the wall formula for dissipation (for a well with zero
diffuseness) [5], t.e.

FEexc _ 2

where
7= 3ein(wt — 1 sin2wt). (8)
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Fig. 1. The time dependence of the relative excitation energy for one period of
oscillation of a Woods-Saxon well filled with 112 fermions (solid curves) is compared
with the wall formula (dashed curves). The diffuseness parameter a varies from 0.1
fm to 0.6 fm.

The quantal results for the diffuse potentials are seen to be consistently
lower than for the classical billiard. Most of the deviation appears to be
related to the effect of diffuseness. Thus, the values of E.xc/Fo after one pe-
riod are 0.090, 0.111, 0.130, 0.148, 0.162, 0.182 for a = 0.6,0.5,0.4,0.3,0.2,0.1
fm. This defines an almost perfectly linear relation, which extrapolates to
Eexc/Eg ~ 0.20 for a = 0, to be compared with the wall formula prediction
Eexc/Eo ~ $(0.2)(0.24)(27) = 0.226

The trend of the results is, in fact, consistent with the early studies
of Koonin, Hatch and Randrup [6], which predicted that the heating up
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of a semi-infinite quantal gas bounded by a rippling plane diffuse surface
should agree with the wall formula for ripples of infinite wavelengths (and
any degree of surface diffuseness), but that for finite wavelengths the results
should fall below the wall formula, the deviations increasing with increas-
ing diffuseness. Our studies with Ps type oscillations- not displayed here-
are also consistent with the expectation that the deviations (for a given
diffuseness) should increase with decreasing wavelength of the ripples.
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Fig. 2. This is like Fig. 1 but for a frequency of oscillation four times smaller.

Fig. 2 is similar to Fig. 1 but the frequency is much lower: 7 = 0.06, fiw =~
2.5 MeV. The quantal excitation curves are now considerably below the wall
formula for all values of the diffuseness, and they begin to show structures
not present in the classical results. The explanation is likely to be related
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to the fact that fw is no longer large compared to the spacings between
levels and one is not in the regime where a semi-classical treatment would
be accurate. For still lower values of hw the excitation would be dominated
by the distance to the lowest unoccupied level and would show structures
associated with avoided level crossings, having no counterpart in a classical
treatment.
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Fig. 3. The left part of the figure shows quantal excitation curves for P; and
Pg modes, extended to 10 periods of oscillation. The right part shows analogous
classical calculations (in a cavity), which are compared with the smooth part of
the wall formula, Eqs (7),(8), (dashed curves).

Fig. 3 shows the result of continuing the above type of calculation for 10
complete periods of oscillation. The diffuseness is a = 0.3fm, n = 0.4 (hw ~
16.5 MeV) and both classical and quantal excitation curves are shown for P,
and Pg modes. The classical results agree quite well with the wall formula (of
which only the smooth trend is indicated by the dashed curves). By contrast,
the quantal results begin to flatten out after a couple of periods. Such a
saturation could be an indication of a quantal “localization” phenomenon
[7], but at this time the significance of the quantal curves in Fig. 3 is quite
unclear. Thus, the huge excitation energies (several times Ey, itself of the
order of 20 MeV per particle) imply that quantal states in excess of the
depth of the Woods—Saxon potential would be excited. These would be
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Fig. 4. These are quantal calculations similar to those in Fig. 3, but the depth of
the potential was Vp = 50, 100, 200 MeV.

states in the continuum, but since the evolution equations are being solved
in a finite oscillator basis, the continuum is artificially suppressed and the
significance of the resulting curves is obscure. Thus the saturation effect
could be partly — or even entirely — an artifact of the finite oscillator
basis used. Fig. 4 illustrates the seriousness of this problem. It shows that
the “saturation” is a function of the potential depth and does not appear
to have reached any well-defined limiting trend at Vy = 200 MeV.

The results discussed earlier in connection with Figs 1 and 2 are not
subject to the ambiguity associated with the continuum, since the excita-
tion energies there are only of the order of 3 % of Ey, i.e. of the order of
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0.6 MeV per particle, much less than the separation energy in a well of even
48.65 MeV depth.

4. Summary

We have established a numerical correspondence between classical and
quantal dissipation curves for independent particles in a time-dependent
potential representing an idealized nucleus — at least for a certain choice
of parameters(fiw large compared to level spacings, E.xc small compared
to the separation energy). Using this regime as a kind of anchorage, we
shall now explore systematically the specifically quantal modifications of
the semi-classical one-body dissipation mechanism.
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