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The optical potential ¥V for heavy-ion scattering is derived from the
properties of nuclear matter and the NN cross section. The proximity
approximation for the complex energy-dependent V is discussed.
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In my talk, I shall present the nuclear matter (NM) approach to the
heavy-ion (HI) optical potential V = Vr + iV, worked out in collaboration
with Sigurd Kohler of the University of Arizona [1-4], and its relation to
the proximity approximation [5, 6].

Our approach is based on the local density approximation. The two
nuclei 1 (target) and 2 (projectile) [with masses M; = A;m (m = nucleon
mass)] colliding with the relative momentum Kggy are described locally
as two interpenetrating slabs of NM moving against each other. For the
nucleon density and momentum distributions at r, p(r) and n(k), we apply
the frozen density approximation in which p(r) = p1(r) + p2(|r— R|), where
p1 and p, are the empirical density distributions of nuclei 1 and 2, and R is
the relative position vector between the centers of mass of 1 and 2. For n, we
assume the distribution consisting of two Fermi spheres with Fermi momenta
kry = [3x2p1(r)/2]1/3 and kp; = [372p2(|r — R|)/2]}/3, whose centers are
separated by the average relative nucleon momentum K, = (m/u)KggL),
where p = MiM, /(M + M2). If K. < kp; + kp; the two Fermi spheres
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overlap. We resolve the double occupancy problem in the overlap region by
increasing kp; and kg2, which leads to an increase A7 in the kinetic energy
density 7 = Q71 3", n(k)e(k), where ¢ = A%k2/2m and Q is the volume of
the system.

We define V as the difference between the energy € of the overlapping
and that of spatially separated nuclei:

KK IziEL

V = £(KRgL, R) — o

“81"82? (1)

where £; are intrinsic nuclear energies of nuclei 1 and 2, and
E = h’KfpyL/2u.

In our local density approximation,
E(Knew, B) = [ dr(EMM{n(k, p(r)] + Ho(o(r))), (2)

where HNM js the energy density of the local NM, and the density gradient
correction Hy = (h%/72m)(Vp)?/p +n(Vp)?. For &;, we also apply expres-
sion (2) with p = pi(r) and n = ng(k, pi(r)) = 8(kr; — k), and adjust 7 to
the experimental values of &;.

One way of calculating HNM, followed by Faessler and his collaborators
[7-9], is to start from the NN interaction and apply the Brueckner theory.
We bypass the difficult task of calculating self-consistently the Brueckner
reaction matrix in the case of the two-sphere momentum distribution, and
determine HNM directly from the properties of NM and from the NN cross
section o.

For the real part Re HNM | we apply the approximate expression (which
is exact in the case of Skyrme interaction [4]):

Re ™M o HNMng(k, p)) + 071 D _(n(k, p) — no(k, p))eolk, p)
k

=fp+(r-m)lv, 3)

where HNM[n)] = (Enm/A)p = fp is the energy density, 7o the kinetic
energy density, and eg the s.p. energy in he ground state of NM of density
p. In the last step, the effective mass approximation is assumed for eg, with
m*/m = v = (14 (v} — 1)p/po)~?, where po is the saturation density
of NM. For f, we assume the form f = (3/5)e(kp) + 30,5 5 ai(kp/kro),
where kp(kpg) is the Fermi momentum in the ground state of NM of density
p(po). The coeflicients a; are determined by the empirical values of pyg,

f(PO) = Eyol, and K. = kFO(de/dk%‘)O-
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For the imaginary part of H NM_ we use the approximation:

Im BN ~ —y(8?/2m)272 Y n(k1, p)n(kz, p)Q|(k1 — k2)/2)|o,  (4)
key kg

where the exclusion principle operator @ = 1 when the scattering of the
two nucleons with momenta k3, k; ends with final momenta outside our
two Fermi spheres, and Q = 0 otherwise.

With the help of expressions (3) and (4) for HNM, we may calculate
&, Eq. (2), and thus determine V, Eq. (1), in terms of NM parameters and
o. The results to be presented were obtained with the following input:
kro = 1.35 fm~! (pg = 0.166 fm~3, g, = —15.8 MeV, K. = 235 MeV,
vg = 0.7 — 0.83, and the experimental values of o.
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Fig. 1. V/A for two slabs of NM of the same density as function of K, for total
density p = po/2 (A), p = po (B), and p = 2po (C).

Results for two infinite slabs of NM of equal (constant) density p; =
p2 = p/2 (here Hy = 0) are shown in Fig. 1. The potential energy
contribution to Vr/A (A = A; + A2) increases (algebraically) with K,
(which may be traced back to the short range NN repulsion), and the re-
pulsive kinetic energy contribution Ar/p decreases with K, (and vanishes
for K, > kp1 + kp2). The net effect is the initial decrease in Vg /A and the
appearance of a “window” of a minimum in VR /4 at K, ~ 1.5 — 2 fm™1.
If py = p2 < po/2 (cases A and B), one gains energy by merging the two
slabs, and Vr/A < 0 at K, = 0. The depth of V1/A increases with K,
because more and more phase space allowed by Q is available for the final
states of the NN scattering.

Results obtained for V(R) for 4°Ca—4°Ca are shown in Fig. 2. [The
kinetic energy of the projectile nucleus per projectile nucleon Eyzp/A; =
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(h2/2m)K2 = 20.7K?2.] The behavior of these results reflects the behavior
of the results for two slabs in Fig. 1, supplemented by the density gradient
correction which is attractive at large and repulsive at small distances R.
Both VR and Vi show a strong energy dependence. The absorptive potential
V) is concentrated at small distances R, and VR reveals an increasing repul-
sion at small distances with increasing energy. [The occurrence of the short
range repulsion has been demonstrated recently [10] in the analysis of the
carbon-carbon data.] In general, neither Vg nor Vj has the Woods—Saxon
(WS) shape often used in phenomenological analyses.
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Fig. 2. V(R) for ¥°Ca—*°Ca at the indicated values of K, (in fm™1).

The results of our simple theory agree nicely with the results of the
laborious calculations of Faessler and his group (8], and the cross sections for
HI scattering calculated in [8] reproduce reasonably well the experimental
data.

Let me say a few words about the proximity approximation (PA) {11]
in which the interaction ¥V between two gently curved leptodermous objects
in close proximity is approximated by VFA, a superposition of interaction
potentials U(Z) per unit area between two flat surfaces at distance Z made
of the same material. In the case of two spherical nuclei with WS densities

pi(r) = po/[1 + exp((r — R;)/a))], we have:

o0 oo
yFPA = 2x / dr v U(E,Z) = 4rayR12 / ds¢(E,s), (5)
0 20

where Ry2 = R1R2/(R1 + R2), 38 = Z/a, s9 = (R - Ry — Ry)/a, v is
the surface energy per unit surface, and the dimensionless proximity func-
tion ¢(E,s) = U(E,Z)/2vy, where U is the interaction potential of two
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semi-infinite slabs of NM with WS profiles, with Z equal to the distance be-
tween the half-fall planes of the two slabs. Approximation (5) may be easily
derived from our expression for V(E, R) for such distances R for which
r) < R; in the overlap region of the two nuclei (»; is the distance from
the line connecting the centers of the two nuclei).
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Fig. 3. ¢(s) for the indicated values of K, (in fm~1).

Whereas the original PA applied to Vg at zero energy, our expression
(5) shows the energy dependence of VFA, Furthermore, for E > 0 our YFA
becomes complex, similarly as our proximity function ¢ = ¢gr + i¢;. Our
results for ¢, obtained with a = 0.57 fm (with the corresponding calculated
value of ¥ = 0.98 fm~2), are shown in Fig. 3. The behavior of ¢ ~ U is
similar to that of V (see Fig. 2) and reflects the behavior of V/A4 for two
infinite slabs (Fig. 1), supplemented by the density gradient correction to
U, which reaches its minimum value of —2v at Z = 0.

A comparison of our results for VP4 with those for V permits an esti-
mate of the accuracy of PA, which turns out to be satisfactory for not too
light nuclei (4 216) for R — Ry — Rz 2 — 3 fm. One consequence of PA is

~

the scaling law: VPA /R, is a universal function of R — Ry — R; and energy.
The experimental evidence for the scaling law for Vg was presented in [11].
As discussed in [6], there is some experimental evidence that also V; ot ys
this law.
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