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The transformation formula to pseudo-SU(3) space for arbitrary one-
body operators is derived using Algebraic Generator Coordinate Method
(AGCM). The single-particle energies of the Nilsson and pseudo-Nilsson
Hamiltonians are compared.
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The concept of pseudo-spin §, pseudo-orbital angular momentum 1and,
as follows, pseudo-SU(3) group was introduced [1-4] in order to describe
the observed approximate degeneracy of the nuclear single-particle levels.
Late successes of this approach, especially in description of some superde-
formed bands in neighboring nuclei (5], reopened the detailed discussion
on the physical meaning of pseudo-SU(3) symmetry [6] as well as on its
mathematical foundations (7, 8].

An interesting problem in the pseudo-SU(3) formalism was to find out
a simple form of the transformation between the single-particle space K
and its “pseudo” counterpart K. If the considered single-particle space K is
spanned by the eigenstates of the spherical harmonic oscillator Hy:

Hqo|N(ls)jm) = Eo|N(ls)jm) (1)

with usual notation for its quantum numbers, then the transformation to
pseudo-oscillator space K can be formally written as ¢ : K — K :

N (1s)jm) = |N(I5)jin) . (2)
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Here |N(i3)j7) is an eigenstate of the pseudo-oscillator Hy with quantum

numbers: N=N—-1,5=3s,j = j, m =mand

= JlI+1, forj=1+1/2;
"{1-1, forj=1-1/2. (3)

The transformation ¢ = U P should be considered as a product of a unitary
transformation U relabellmg states (1) and a projection P of K on K which
excludes the intruders i.e., the states [N(Ns)j = N + 1 m). This form
of ¢ implies that the standard transformation scheme for any arbitrary
operator O i.e., O = ¢0¢1, cannot be here directly applied because the
transformation ¢ is irreversible.

In the papers {7, 8] the analytic form of the unitary transformation U
was derived. Unfortunately, the formulas presented in [7] are complicated
and, in practice, they were used only to operators diagonal in the spherical
harmonic oscillator basis (1).

The majority of difficulties connected with explicit construction of the
transformation (2), especially of the projection operator P, can be omitted
with the aid the Algebraic Generator Coordinate Method (AGCM) [9, 10]
which has many advantages while projecting operators or states onto a
subspace with definite symmetry. It allows to construct the state space
of the pseudo harmonic oscillator Hy, in a single step without consecutive
applications of the operators P and U, as the orthogonal sum of carrier
spaces of irreducible representations of the pseudo-SU(3) group.

For this purpose let us consider the operators T'(g) representing g €
SU(3) in K and define a new family of operators T(g) by the formula :

(N'(I's")j'm!|T(g)IN (Is)jm) = (N'(I'5");'m'|T(9)| N (I5)jm),  (4a)
T(g)|N(Is)j = N +1/2m) =0, (4b)

It can be shown that the family T(g) is a unitary representation of the
group SU(3) in the subspace K C K. This representation can be identified
with the pseudo-SU(3) group and allows us to define the metastate kernel
function (p; -):

gy = Y (N(is)jm|T(g)|N(Is)im)npy;

Nljm
N
Dl;m lJm(g) Nlj» (5)
Nijm
where DY im,0jtm(9) are matrix elements of dim[N]-dimensional irreducible

representation of the SU(3) group, and np;; > 0 stand for arbitrary weights
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with the normalization condition ) NN = L With this metastate
kernel function, which more detailed speclﬁcatxon is not needed for further
purpose, we can solve the overlap eigenequation:

Wl )(9) = AN LY, (9), (6)
where
(Nu)(g) = j dg'(p; 99" u(g") (7a)
SU(3)
and

uf).(9) = VAm[NIDY, .15 (9)- (7b)
The eigenfunctions of the overlap operator which belong to nonzero eigen-
values furnish the complete set of normalized functions (see [9, 10] and
references therein)

Win(0) = —ullnlo) ®)

orthonormal with respect to the scalar product:

(l¥)z = / dg / dg'"p*(9)(p 9~ 1a")' (") - 9)

SU(3) SU(3)

The space spanned by the basis (8) is unitarily isomorphic to the space K
and we shall identify them.

Now, using the formula (9) one can calculate matrix elements of any
single-particle operator O acting in K, as follows:

(BomlOWe = [ o [ 4980015700 W fim(s)
SU(3) SU(@3)
= 8nr (N + 1(I"s")j'm'|O|N + 1(Is)jm). (10)

The equation (10) says that the representation O of any operator O in the
‘pseudo’ space K is built from some matrix elements of the original operator
O in the usual harmonic oscillatar basis (1). On the left-hand side of the
formula (10) we have states and quantum numbers of the pseudo harmonic
oscillator. On the right-hand side of (10) we have the usual harmonic oscil-
lator exgenvectors with proper quantum numbers. The quantum numbers I
and [ are given by the equation (3).

An interesting feature of the transformation (10) is that the image O
of the operator O does not couple the pseudo-oscillator shells even if its
original O does.
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Fig. 1. The single particle energies of the axially symmetric Nilsson Hamiltonian
for neutrons, plotted as a function of the quadrupole deformation parameter . The
solid lines indicate the positive parity levels and dashed ones the negative parity
levels.

The transformation rule (10) allows us not only to repeat all results
presented in [7] but to find out the matrix representation of any pseudo-
observable whenever it is diagonal in the spherical basis (1) or not. Thus
we have got the practical and exact method to apply the pseudo-SU(3)
symmetry to an arbitrary single-particle problem, even for deformed Nilsson
or Saxon-Woods potentials.

In order to investigate the influence of the pseudo-SU(3) symmetry
on the deformed Nilsson orbits we have constructed the representation of
deformed Nilsson Hamiltonian in the space X with the aid of its known
matrix elements in the spherical basis (1), as it was described in (10), and
then we have diagonalized the obtained matrix.

In Fig. 1 the standard single-particle spectrum of the Nilsson Hamil-
tonian [11] for neutrons is shown to compare it with the corresponding
spectrum of the pseudo-Nilsson Hamiltonian in Fig. 2.
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Fig. 2. The spectrum of the pseudo-Nilsson Hamiltonian obtained after transfor-
mation (10) from the Nilsson Hamiltonian spectrum displayed in Fig. 1.

At first sight one can notice the difference between Figs. 1 and 2. In the
spherical case (for deformation parameter ¢ equal to zero) the Nilsson single-
particle levels form the closed shells shown in Fig. 1, and for higher shells
(N > 4), the positive parity levels (solid lines) and the negative parity levels
(dashed lines) are mixed. The spectrum of the pseudo-Nilsson Hamiltonian,
see Fig. 2, is much simpler because all orbitals with the maximal total
angular momentum j = N + 1 in each shell (intruder levels) are removed
and, in consequence, each pseudo-shell contains levels of the same parity.

The Figs. 1 and 2 can be compared only qualitatively because of their
rather complicated structure. More details can be seen in Fig. 3 and Fig. 4.

The fragment of Fig. 1 with only one NV = 5 neutron shell is displayed in
Fig. 3. The Nilsson states are labelled by the asymptotic quantum numbers
[NnAlQ=m=A% % and, like before, by the parity (x = +, solid lines;
x® = —, dashed lines). Between normal parity orbitals (dashed) one can
see a unique parity (7 ] in the spectroscopic notation) intruder orbital from

the shell above (N = 6). In the lower part of Fig. 3, the orbital h;} with
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Fig. 3. The Nilsson neutron single-particle levels for 82 < N < 126 (N = 5 shell)
from Fig. 1. The states are characterized by the asymptotic quantum numbers
[Nn,A)Q, where N is the principal quantum number of the oscillator shell, n,
the number of oscillator quanta along the z-axes, A and €1 the components of the
orbital and total angular momenta along the symmetry axes , respectively.

Jmaz = N + % is presented. This orbital, pushed down by the spin-orbit
interaction, belongs (as intruder) to the next lower N = 4 shell.

In Fig. 4 one can compare normal parity Nilsson levels from Fig. 3
(dashed lines) with their pseudo-Nilsson partners obtained after transfor-
mation (10) (solid lines) and presented before in Fig. 2. The pseudo-
Nilsson orbitals are labelled by the pseudo-asymptotic quantum numbers
[N N-1,f,=n, A=A+ I]Q Q. It is easy to find that Nilsson
levels labelled by (A, =A+3})and (A+2, Q@ = A+ 2) form pairs of
close lying levels. These pairs can be viewed as pseudo-spin doublets with
pseudo-asymptotic quantum numbers A = A+ 1and Q = A+ % In ad-
dition, pseudo-shell N = 4 contains three pseudo-spin singlets with = 1

and A = 0, and these singlets correspond to A = 1 and Q = %- Nilsson
orbitals.

In Fig. 4 it can also be seen that in spherical limit (¢ = 0), when Nilsson
Hamiltonian [11] is diagonal in the spherical harmonic oscillator basis (1),
the normal parity levels and their pseudo-partners are exactly the same.
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Fig. 4. Comparison of the normal parity single-particle levels from Fig. 3 (dashed
lines) and their pseudo-partners from N = 4 pseudo-shell of the pseudo-Nilsson
Hamiltonian (solid lines). The pseudo-Nilsson levels are labelled by the pseudo-
asymptotic quantum numbers [N=N -1 @, =7, A=A+ 10 =qQ.

At non-zero deformations pseudo-Nilsson levels differ from normal Nilsson
orbitals and discrepancies are proportional to the absolute value of the de-
formation parameter. These differences, among other reasons, are caused by
the projection of the original single-particle space K on the pseudo-subspace
K without high-j intruder orbitals. In the case of finite deformations, for
prolate as well as oblate shapes, the pseudo-Nilsson levels are pushed down
with respect to the normal-Nilsson levels and deviation grows with j for
orbitals in one shell.

We have shown here the method which allows to use the pseudo-SU(3)
scheme for arbitrary single-particle problem. Our calculations for the Nils-
son potential allow to expect similar results for Woods-Saxon model.
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