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Statistical fluctuations in one-body dissipation are considered. A
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applied to a specific example. Quantal corrections are discussed.
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1. Introduction

In this seminar I will present results concerning fluctuations in one-body
dissipation during a dynamical nuclear process.

The study of one-body dissipation begins with the question, Given a
gas of independent particles moving about (chaotically) inside a slowly time-
dependent potential well, how does the total energy of this gas evolve with
time?

In the case of a hard-walled infinite potential well, this question is an-
swered by the Wall Formula, developed by Blocki, Swiatecki, and others
[1], which gives Ep, the rate of change of the total energy of the gas, in
terms of the changing shape of the container and the average speed of the
particles. For a more general potential well, Koonin and Randrup [2] have
used linear-response theory to obtain an analogous expression for the rate
of energy dissipation. In both cases, no knowledge of initial conditions be-
yond the initial distribution of energies is assumed. Now, since an exact
evaluation of E7 as a function of time (t) can be obtained only by following
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the individual trajectories of the particles, the results of Refs. [1, 2] neces-
sarily represent an average rate of dissipation; for a particular set of initial
conditions, Ex(t) will fluctuate around this predicted average, resulting in
a final change in total energy, AET, somewhat different from the predicted
value. These are the “statistical fluctuations” on which I will focus.

2. Caléulation of fluctuations

For a given time-dependent potential well, and a given set of particle
energies at t = 0, let (AET) denote the average amount by which the
total energy of the gas has increased, after a time 7. This average is taken
over all possible realizations of initial conditions consistent with the known
initial energies. Let o7 denote the standard deviation in AET, again with
respect to all acceptable realizations of initial conditions; this gives the
typical accumulated effect of the above-mentioned statistical fluctuations in
Ep(t). The ratio of o1 to (AET) reveals to what extent such fluctuations
are important: if op/(AET) < 1, then the approximation

AET ~ (AET), (1)

is valid; otherwise, the total change in the energy of the gas for a particular
set of initial conditions can differ significantly from that predicted by the
formulae of Refs. [1, 2].

Since the particles in the gas are independent of one another, computing
o7 reduces to computing separately the standard deviations in the changes
in the individual particle energies:

N N
AEr =) AE;, ok =) oi. (2)
Jj=1 j=1

Here N denotes the number of particles, AF; is the change in the en-
ergy of the jth particle (for a particular realization of initial conditions),
and o; is the standard deviation in AE; (over all realizations). Defining
P(E,T;E®0) to be the probability distribution for finding a particle to
have energy E at time 7, given that at ¢ = 0 its energy was known to be
E°, we have

o} = / dE(E — (E;))*P(E, 7; EY, 0)

(Ej> = /dEEP(E’T; E?’O)’ (3)
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where E;? is the known initial energy of the j-th particle. Our task there-
fore is to solve for P, for N different values of the initial energy: E° =

E},...EY,.
The central result of Ref. [3] gives the following evolution equation for
p:
P 1 8%
rriaie ( 91P) + 5503 (92P). (4)

This is a Fokker-Planck equatmn, explicit expressions for the drift and dif-
fusion coefficients g; and g2, both functions of energy and time, are given
in Ref. [3], and are not reproduced here. My point is that we may use this
equation, along with the initial condition

P(E,O;Eo,0)= 5(E—E0), (5)

to solve for P(E, T; E »0),7=1,...,N, from which we obtain the different

UJ ’s, and ultimately o, the size of the statistical fluctuations in the total
energy absorbed by our gas of particles.

3. A specific example

Ordinarily, the method outlined above for obtaining o1 must be imple-
mented numerically. An exception is the case of a hard-walled infinite poten-
tial well, i.e. a gas of particles inside a closed cavity whose shape changes
slowly with time. While not an astonishingly realistic nuclear mean-field
potential, this serves well as an instructive first step toward understanding
one-body dissipation. [1] As shown in Ref. [4], if one ignores correlations
between bounces in the motion of particles inside the cavity, then the coef-
ficients g; and g in Eq. (4) are greatly simplified, and one obtains:

33_1:_ (2m)1/2fd .2 0 [Ezaf';; (E—I/ZP)]' (6)

Here, m denotes the particle mass, V the constant volume of the cavity, and
§ dan? is the integral, over the entire surface of the cavity, of the normal
outward wall velocity squared (as in the Wall Formula).

From Eq. (6), it is straightforward to obtain, to leading order in the
wall velocity n,

(2m)1/2 f . 2 = 04y1/2
AEp) = —— [ dt ¢ dan E?) (7
(aEr) = 22 oj ¢ (8

1/2 7 N
o = (2"“,) /dtfdaiﬂ Y (B2, (8)
0 i=1



684 CH. JARZYNSKI

The first of these equations is the Wall Formula prediction for the amount
of energy dissipated (confirming that the present approach agrees with the
approach originally taken in deriving the Wall Formula; see Ref. [5].)

If we further take the distribution of initial energies to correspond to
one particle per each of the lowest N energy levels, and use a semi-classical
approximation for the density of energy levels, then after some algebra we

arrive at
1/2
or _ (101 )
(AET)  \ 9 Nf)

where f = (AET)/E}, and E% is the total initial energy of the gas. (f is
the average fractional increase in the energy of the gas.) Eq. (9) provides
an immediate estimate of the size of statistical fluctuations — around an
average given by the Wall Formula — in the energy absorbed by a gas of
particles inside a slowly time-dependent cavity.

4. Quantal aspects

We now discuss the question of classical-quantal correspondence: to
what extent do our classical predictions apply when we consider this problem
quantally?

In the quantal formulation, one has a many-body wave function ¥ evolv-
ing under a Hamiltonian H(t) describing N independent particles in a time-
dependent potential well. The quantities of interest are then

(AET) = (P|H|¥) - (¥|H|¥) (10)

. R 2
o= (@l(f - @ED) 1), (1)

where ¥, is the N-particle wave function at ¢t = 0.

Consider first the case in which we ignore spin statistics, and write ¥
as a simple product of N single-particle wave functions. Then the particles
are truly independent of one another, and the question of classical-quantal
correspondence reduces to that of whether or not we are in the semi-classical
regime, i.e. whether or not the single-particle wave functions evolve so that
expectation values of operators follow the microcanonical averages of corre-
sponding classical observables. This question has been considered in detail
by Wilkinson and Austin [6]. If one is indeed in the semiclassical regime,
then Eqs (7) and (8) provide decent substitutes for Eqs (10) and (11).

Now consider the case in which ¥ is a Slater determinant (Fermi statis-
tics). A straightforward evaluation of Egs (10), (11) yields the comparison
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(AET)s) = (AET)sp

- 2
ohs1 = hap — 2 |(#ild " hiiles)]| - (12)
i#j

Here, the subscripts “S1” and “sp” denote evaluation using ¥, a Slater
determinant, and ¥, a simple product of single-particle states, respectively.
The ¢’s represent the single-particle states initially filled (¢,7 = 1,---,N),
h(t) is the single-particle Hamiltonian, and @ is the single-particle time-
evolution operator. We see that anti-symmetrization of the wave function
does not alter the expression for (AEr), and so in the appropriate limit
the classical predictions for the average energy dissipated apply. On the
other hand, anti-symmetrization introduces an extra, non-positive term to
the expression for a%. Until a way of easily estimating this term is found,
our classical results for o1 (e.g. Eq. (9)) provide only an upper limit on
the size of statistical fluctuations in dissipated energy, for a system obeying
Fermi statistics.

5. Summary

To summarize, one may use a general result from chaotic adiabatic dy-
namics (Eq. (4)) to predict the size of statistical fluctuations in the amount
of energy lost to one-body dissipation. For the instructive case of a hard-
walled potential, this yields a simple formula for estimating the importance
of such fluctuations (Eq. (9)). The applicability of such classical predictions
to a quantal gas (within the independent-particle approximation) hinges on
two questions. First, are we in the semi-classical regime? Second, by how
much does the Exclusion Principle suppress these fluctuations?
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