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The cranked anisotropic harmonic oscillator is examined in the grand
canonical ensemble as a simple model of hot and rapidly rotating nuclei.
The shape of the nucleus and its phase transitions are studied as functions
of temperature and angular momentum of the system. The results are

graphically presented and discussed.
PACS numbers: 21.60. -n

The leading factors which determine a behaviour of rotating nucleus are:
an effective, average, strongly deformed single-particle nuclear field, Coriolis
and centrifugal forces, residual two-body interactions (like pairing, D-D, Q-
Q etc.) and nuclear temperature. Because of the theoretical and numerical
complexity of this problem many model approaches have been considered.
One of such simple models is the cranked anisotropic harmonic oscillator
which allows for far-reaching analytical calculus. It has been solved in coor-
dinate space by Glas et al. [1]. Ripka [2], Bohr and Mottelson [3], Zelevinsky
[4) have treated the same problem in the Fock space. More recently, this
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problem has been analyzed also by Arvieu and Troudet [5]. In all these con-
siderations the nucleus was treated as an isolated, energy conserving system.
Taking into account, however, experimental conditions it is interesting to
discuss the thermalization of this model.

In the present work we consider the system of A nucleons in cranked
harmonic oscillator potential as a grand canonical ensemble described by
the temperature T and the chemical potential yu. We study the anisotropic
oscillator frequencies w., wy, w, (connected with the deformation parame-
ters, cf. e.g., [5]) as functions of the temperature, particle number and the
angular momentum.

The Hamiltonian of the considered system has the following form:

A
HY =) (h*), (1)
=1
where
hY = ho — bl , (2)
2 2
ho=1—’-’5—t—p”—t&+1m(w2z +wyy +w 22), (3)

2m

w — cranking angular velocity, [ — z-component of the one-particle an-
gular momentum.

The one-particle Hamiltonian (2) can be diagonalized and the one-
particle energies look like:

= hwa(ns + 3) + Aoy (g + 1) + hw_(no + 1), (4)

where {a} = {n;,ny,n_}, and

W} = J] +wl) +w? £ 3/ - w2+ 82w +ud).  (5)

In the framework of the thermodynamic approach (including tempera-
ture) we have to average the dynamical variables over the grand canonical
ensemble. This procedure removes the dependence on the fixed quantum
configuration.

The grand canonical potential Q(T, w, u) is expressed by the grand
partition function:

£ = Tr(exp(~A(HY - ul))), (6)

n=-;§1nz, (7)
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h
where 1

ﬂ=kBT’

and kp is the Boltzmann constant.
The occupation numbers of the fermion levels are

1

= , 8
fo = e —m+1 ®
and the chemical potential y is determined by the condition
(1) =4, (9)
where (...) denotes the statistical averaging, i.e.
) = YlexplB(es — w] + 1177 (10)
a

It is convenient to perform the Legendre transformation and to use the
following new potential (as it is desirable to fix the total angular momentum
L instead of the angular velocity w):

$=0+w(l)+uN), L= (L) (11)

Therefore, we deal with three fixed parameters T, L, A (instead of T, w, u).
The internal variables are wz, wy, w;, w, u — they are, however, not inde-
pendent since the incompressibility condition has been imposed (it corre-
sponds to conservation of the nucleus volume)

WeWyw, = wy = const . (12)

Assuming the system to be in equilibrium state we derive the basic equations
as the necessary conditions for the minimum of the $-potential:

ik 4 ik 4 o¢ ik od
=0, awy—ﬁ, %-;—-0, b:_o, 5;

awz = 0 b (13)

supplemented with the condition (12).
If we choose four independent variables: w,, wy, w, u, the above equa-
tions attain the following form:

,l<np+3> <n_+1>
y"[ +
2 wi w_

2 1
w,,<n,_.+-2->=w
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w3+w§+4w2

<np+i> <n_+i>
2 7 -

)

2 2 2 1
(wy_wz)[(1+ w_z‘._wz ) wy
witw?t+de? <n_+1>
— y z - 2 -—
+(1 wi—wi ) o ] 0, (14)
<1>=A4,

L= mal(5) + () + ozl + B = o+ h-),

with w, = wg/wyw,.

Eq. (14) is a system of coupled, highly nonlinear equations in variables
Wy, Wz, w, p and with parameters T, A, L. The analytical solution of (14)
is not possible.

There exists a rich family of solutions of Eq. (14) — as usual for non-
linear problems. The solution of physical significance is, however, that one
which minimizes the thermodynamical potential #. This solution turns
out to be a piece-wise continuous function and the points of its disconti-
nuity correspond with first order phase transitions of the nucleus shape.
The step-type changes of the variables w:, wy, w, at these phase transition
points correspond to step-type deformations of the nucleus. The minimal
solution of Eq. (14) (for several temperatures and for particle number 100)
is depicted in Figs 1a, b, ¢, 2 and 3 (for variables w;(L), wy(L), w;(L), in
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1.20

Fig. 1. The dependence of w, — (8); wy — (b); w; — (c) versus L at several
temperatures (particle number A = 100). Steps along the curve are due to the
shape changes of the system (wo =1, Ai=1, kp = 1).

Fig. 1a, b, ¢, (L) in Fig. 2 and w(L) in Fig. 3, respectively). The charac-
teristic steps are very transparent for temperatures T’ < 0.5 (in units of wp,

i.e., it was put: wg = 1, h = 1, kg = 1). The interesting result is that the
rigid body angular momentum versus the total angular momentum, i.e.,

Liig(L) = mw((y”) + (%)), (15)

calculated for the equilibrium state (these piece-wise continuous functions
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Fig. 2. The dependence of the chemical potential u versus L at several tempera-
tures, particle number 4 =100 (wp =1, A =1, kp = 1).
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Fig. 3. The cranking angular velocity w versus L at several temperatures, particle
number A =100 (wo =1, Ai=1, kg =1).

presented in Figs 1-3) is exactly the straight line:
Lig(Z) = L. (16)

Note that in many other considerations of the cranked harmonic oscilla-
tor (cf. e.g., [4], [5]) Lyig(L) # L since considered in those papers arbitrary
assumed configurations are usually far from the sole equilibrium state.

Summarizing, we have found, at sufficiently low temperatures (T <
0.5), several shape phase transitions of nucleus within the cranked oscillator
model. We have also proved that, despite the very complicated shape phase
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transitions, the moment of inertia of the equilibrium state of a nucleus in
the oscillator model is of the rigid body type at any temperature.
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