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The outcome of the dynamical fission process with prescission particle
emission is strongly correlated with the excitation energy and the spin
distribution of the initial compound system. We intend to estimate the
effect of the deformation of heavy ions in the entrance channel on the
spin distribution of the fused system. Classical dynamical calculations
with a fluctuating force based on the Langevin equation and one body
dissipation have been performed.

PACS numbers: 25.70. -z

1. Introduction

The dynamical description of heavy ion induced fission is strongly cor-
related with the excitation energy and the spin distribution of the initial
fused system. The spin distribution weights the contribution of the set of
angular momenta which characterize this system. Hence it is essential to
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reproduce it properly. In the present work we want to estimate the effect
of the deformation of heavy ions in the entrance channel on this distribu-
tion in cases for which the experimental distribution is known. We have
performed the dynamical calculations with fluctuating force based on the
classical Langevin equation [1].

The present paper is the continuation of our previous work [2] and all
details of the model are described there. In Section 2 we estimate the limits
of the Coulomb barrier between two quadrupole deformed ions correspond-
ing to different geometrical configurations. We develop in Section 3 a simple
dynamical fusion model which incorporates in a simplified way the defor-
mation effects and leads to spin distributions of the fused system. Section 4
is devoted to a comparison of these distributions with experimental results
obtained for different systems. Conclusions are drawn at the end of the

paper.

2. Coulomb barrier between two deformed ions
We have calculated the Coulomb barrier between quadrupole deformed

ions for three extreme configurations, see Fig. 1. The barriers are evaluated
assuming a square well form for the nuclear potential and they are given by
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These expressions are calculated up to the second order in the quadru-
pole moments Qf;), i=1,2, Z; and Z; are the proton numbers in the ions
and R is the distance between the charge centers of the touching ions. We
have assumed here an ellipsoidal shape of the nuclei and the radius constant
ro = 1.18 fm.

The results for the projectile #4Ni and the targets *2Zr, ®6Zr and 1°°Mo
are shown in Table I. The estimates of the ground state deformation are
taken from [3]. We have evaluated the barriers for the oblate and prolate
shapes of ?6Zr and 1°°Mo, because calculations done in [3] predict a small
difference between the depths of both minima. The barriers corresponding
to the spherical shapes of the colliding nuclei shown in Table I are the
reference points. One observes that case (a) is very close to case (c) but a
large difference of several MeV is observed between case (a) and case (b).
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Fig. 1. Configuration for two touching ellipsoids: (a) the axes of symmetry of
both fragments are parallel, and perpendicular to the line connecting the mass
centers; (b) the axes of symmetry are aligned with the line of centers; (c) the
axes of symmetry are perpendicular to each other and to the line connecting both
centers.

TABLE I

Coulomb barriers for deformed ions in different configurations as illustrated in
Fig. 1. The ground state deformations are taken from Ref. [3].

Reaction 1) QN @ ) y,(twosph.) V.(a) Vi(b) Vi(c)
- - b - b MeV MeV MeV MeV
84Ni+93Zr  0.05 0.26 0.00 0.00 160.53 161.42 158.69 161.42

84Ni4+%Zr  0.05 0.26 -0.17 -1.47 159.32 156.80 163.57 156.83
%4Ni+98Zr  0.05 0.26 0.15 1.52 163.06 151.49 162.99

84Ni+199Mo 0.05 0.26 -0.23 -2.10 166.07 162.19 172.59 162.13
64Ni+19°Mo 0.05 0.26 0.18 2.01 170.55 156.56 170.44

This is essentially due to the monopole (first) term in the expression of
Vc(R), hence to the distance between the centers of the ions. The estimates
in Table I, evaluated in the quadrupole approximation are very close to the
exact values obtained using the prescription from Ref. [4]. The maximal
error is smaller than 0.3 MeV.

3. Dynamical calculations and spin distributions

In order to get spin distributions of the fused systems we use a classical
Langevin equation which we integrate in time over many trajectories up to
complete fusion (see e.g. [1]). Since an extensive calculation with deformed
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nuclei with all possible relative orientations is out of scope, we try to esti-
mate the large effects due to deformation, which we observed above, in the
following way. We consider the scattering of spherical ions of energy E and,
for fixed E, we introduce an energy distribution of gaussian type with the
width

AE = §E+ A1E + AE, (1)

where §E is the experimental energy beam width (very small in the case
of Van de Graaf accelerators), A; E originates from the slow down of the
projectile in the target (estimated to be < 1 MeV) and A2 E is the difference
in energy induced by the difference of the Coulomb barriers between the two
extreme cases (a) and (b). The average energy of incoming ions is fixed to
E = Ecpm — A1 E/2. In this way we simulate in an approximate way the
different fusion barriers induced by the possible deformation of the incoming
ions.

The Langevin equations of motion for spherical nuclei, in discretized
form, suitable for numerical calculations, can be written in the following
form [1]

3
(@)nt1 = (@) + | D (M)5'P5 ] -7 (2)
j=1 n
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where{¢;} = {p,A, A}, i = 1,2,3 are the shape degrees of freedom and
{p;} are the conjugate momenta. The variables p, A and A are the relative
distance, the neck and the mass asymmetry parameters, respectively [5].
The other parameters in Eqs (2)-(3) have the following meaning: +;; is
the dissipation tensor, M;; is the mass tensor, V is the potential energy,
E} is the kinetic energy and 7 is the time step. The last term in Eq. (3)
describes the Langevin random force. The matrix g;; is the “square root”
of the diffusion tensor [6]

3
Dij =) gitgr;j- (4)
k=1

The quantities w; are normally (Gaussian) distributed random variables for
the corresponding degrees of freedom.
We assume the Einstein relation between the diffusion and the friction
coefficients:
Dij=17;T, (5)



Entrance Channel Deformations Effects... 755

where temperature T is time dependent and is calculated from the dissi-

pated energy E* along each trajectory. The other set of Langevin equations
for the angle of rotation of the whole system @, the angles of rotation of
the fragments (@1,02) and for the conjugate momenta [2] has a similar
structure as Eqs (2)—(3).

For each trajectory the energy of the incoming ion is chosen randomly
taking the gaussian distribution (1) centered around Ecp corrected for the
slow down in the target. Apart from this point, the calculation leading to
fusion events proceeds as usual [1]. In practice, the spin distributions are

given by
_ (dop _2r NtF
al_(dl)t;_kzl'Ni’ ©)

where [; is the angular momentum, N f‘ is the number of trajectories which,
lead to fusion, and N; is the total number of trajectories with I = ;.

4. Results

The liquid drop potential, the irrotational flow mass and the wall plus
window formula were used in the Langevin equations. All the parameters
of our model are standard and they are taken from [7].

We have performed calculations for two different systems, $4Ni4+%2Zr at
energy Ecym = 138.8 MeV and 64Ni+%Zr at Eqp = 139.5 MeV, for which
the spin distributions ¢; have been measured [8, 10]. The results for 92Zr
are shown in Fig. 2. The theoretical curves evaluated in our model for three
widths, AE = 0,1,2 and 3 MeV, of the beam energy are compared with the
experimental distribution (points) obtained in Ref. [8]. The distributions
are renormalized in order to reproduce the total cross section measured in
Ref. [9]. It is seen in Fig. 2 that for AE = 3 MeV we can reproduce the
experimental cross sections for the largest L values. We have got too large
cross section for small L values, but it is easy to remove this effect by a
small change of the nuclear radius constant rg [2].

In Fig. 3, the dependence of o, (L) and (L2) on the width of the energy
beam is shown. The Lh.s. of the figure represents the results obtained for
927r while in the r.h.s. the data for %®Zr are drawn. The total fusion
cross sections vary slowly with growing width of the beam energy, while the
average value of the angular momentum (L) and (L?) of the fused system
depends significantly on AE. As it was predicted in Table I, one has to
use a larger value of AE for °®Zr than for °2Zr in order to reproduce the
experimental values of (L) and (L?). _

Similar results as in Fig. 2, but for the reaction 54Ni+%%Zr at Ecp =
139.5 MeV are plotted in Fig. 4. Now, the theoretical curves are obtained in
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Fig. 2. The cross section % for the reaction **Ni+°2Zr at Ecm = 138.8 MeV. The
theoretical curves obtained in our model for three values of AE are compared with
the experimental distribution (points) obtained in Ref. [8]. The distributions are
renormalized in order to reproduce the total cross section measured in Ref. [9].
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Fig. 3. The dependence of o, (L) and (L?) on the width of the energy beam for
two types of targets: ®3Zr (Lh.s. of the figure) and ®®Zr (r.h.s.).

a simplified model without fluctuating force, which is essentially the same
as used in Refs [5, 7], for five widths AE = 0,1,...5 MeV of the beam en-
ergy. The results are compared with the experimental distribution (points)
obtained in Ref. [8] It is seen that the final energy width, simulating the ef-
fect of different orientation of the projectile and the target nuclei, improves
significantly the prediction of of for higher momenta. This result shows
that the role of the fluctuating force in Langevin equations could be overes-
timated in models which do not take the variation of the Coulomb barriers
into account.
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Fig. 4. The cross section 47 for the reaction ®*Ni+®Zr at Ecym = 139.5 MeV. The

theoretical curves obtained in the model without fluctuating force for five values of
AE are compared with the experimental distribution (points) obtained in Ref. [8].

5. Summary and conclusions

To summarize, we developed a simple model based on transport con-
cepts in order to work out the fusion cross sections and their dependence
on angular momentum. A multi-dimensional Langevin equation was used
for the description of heavy ion collisions. The liquid drop potential energy,
the hydrodynamical inertia and the one body dissipation with a standard
set of parameters, taken from [7], were used. We also relied on the standard
Einstein relation in order to estimate the diffusion tensor.

We have reproduced relatively well the partial fusion cross section as a
function of the angular momentum. Contrary to our previous estimates
made without taking the effect of the deformation into account [2], we
have obtained a relatively good agreement also for higher angular momenta.
There is no more need to increase the magnitude of the diffusion tensor or
the surface friction. Taking into account the effect of fragment deforma-
tions on the height of the Coulomb barrier allows the reproduction of the
experimental value of the average angular momentum of the fused system
and its variance even with a simple model (5, 7] without fluctuating force.

The present model may be improved and refined in several respects.
In particular, the relative orientation of the deformed nucleus of the target
and of the projectile should be chosen randomly when one fixes the shift of
the Coulomb barrier. Qur Ansatz with a gaussian distribution of the beam
energy can be used to get a rough estimate only.
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to him by the Theoretical Physics group of the Centre de Recherches
Nucléaires of Strasbourg as well as a grant from the Institut National de
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