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The dynamics of classical motion of a nucleus is investigated. The
Hamiltonian consists of harmonic oscillator potential and spin orbit cou-
pling. It is shown that the classical dynamics of the nucleon motion in such
a mean field is very rich. The trajectories live in submanifolds with di-
mensions ranging from 3 to 6, depending on initial conditions and control
parameters. This reflects a transition from ordered to chaotic dynam-
ics. The calculated Poincaré sections, Lyapunov exponents, correlation
dimensions and power spectra describe quantitatively this transition.

PACS numbers: 24.60. Lg, 05.45. +b
1. Introduction
The model discussed here was already described in details in two previ-

ous papers [1, 2]. One of our aims was to prove that spin-orbit coupling can
be indeed the source of chaos in single particle nucleon motion. Therefore
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we choose a model which is integrable when the spin orbit term is switched
off. Quantum Hamiltonian takes form:

H=T+Vao-«(l-s), (1)

where Vyjo is an axially symmetric harmonic oscillator potential (spheroidal
deformation). “Classical Hamiltonian” can be constructed with the use of
coherent states technique,

H=<CS|H|CS>, (2)

where | CS > is a coherent state. More precisely, | CS >=| a >| 8 >| v >|
¢ >, where | a >, | 8 >, | ¥ > ~ HO coherent states and | { > - SU(2)
(spin) coherent state. Here a,f,7,( are complex variables. There is one
to one correspondence (a, a*) <= (Q, P). Then the classical Hamiltonian

H can be expressed in generalized coordinates and momenta spanning 8-
dimensional phase space ¥ = H(X, P.,Y, P, Z, P,, ¥, Ps), where {$,0}
are angles defining the position of s and Pg = % cos@ = s,.

H= %{“’.L(X2 + Pcz) + “’J.(Y2 + Pyz) + “’Z(Zz + Pzz)}
- ln%,{(d“—’YP; - 1/2£Z’Py) sin@ cos @
2 W Wz
w] Wy . .
+ (‘/--——--ZPm - —XPz) sin@ sin® — (XPy, —YP:) cos® }.(3)
wz w_L

Classical equations of motion (EOM) are Hamiltonian equations:

. oH R 0H
Qi—ﬁzy Pi—_aQi' (4)

Alternatively, the same “classical” EOM can be derived from variational
principle [2]. EOM are nonlinear and are solved numerically.

2. Poincaré sections and Lyapunov exponents

In previous papers [1, 2], mainly the cases with rather large J, (J, = 2)
have been investigated. For such trajectories we found only a soft chaos for
small deformations and standard nuclear value of spin orbit coupling con-
stant k. The Poincaré sections showed also that for many initial conditions
trajectories can not penetrate the full phase space. Lyapunov exponents
for chaotic trajectories are also small, from A=0.002 for shapes close to
spherical to A=0.02 for deformations corresponding to ground state defor-
mations of deformed nuclei. Trajectories corresponding to large J, lie close
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to the equatorial plane and experience only weakly the potential deforma-
tion. Therefore searching for more chaotic trajectories, occupying higher
dimensional fraction of the phase space one should concentrate rather on
the cases with the lowest J,. In the present paper we investigated cases
with J, = % Some of the results are presented below and compared to the
earlier results for completness of the discussion. Indeed, the motion of the
particle with low angular momentum is much more chaotic. The typical
Poincaré sections are composed of random swarm of points. The calculated
Lyapunov exponents are also up to one order of magnitude larger, reaching
values A=0.2-0.3.

3. Trajectory dimension

The calculation of the dimension of a dynamic system embedded in
high-dimensional phase space is generally a very difficult task. Here we
used the same method as in the previous papers, based on the concept of
the correlation dimension, introduced by Grassberger and Procaccia [3]. We
applied it with a few technical improvements. According to this method,
the number of trajectory points IV; which drop into a phase space sphere of
a given radius r; should scale as

Ni=nP, (5)
where D is the dimension of the manifold filled by the trajectory. Then in
log-log plot of N; as a function of r; the slope represents the dimension.

With some care, the method works very effectively and precisely for many
systems.

Lyapunov exponents
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Fig. 1. Lyapunov exponents for trajectories listed in Table I.
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Figure 2 contains results on dimension calculation for the trajectory 4 of
Table I. The analysed trajectory contained about 2.3 - 10° points (data files
occupying over 100 M bytes of the disk space). Only such long trajectory
enabled us to determine the dimension with good enough precision. The
solid line in the figure stands for slope a = 6, dot-dot—dashed line for the
slope a = 5. The calculated data are displayed by full squares and lie almost
exactly on the solid line (the best fit to the data corresponds to the slope
a = 5.94). As there are 2 constants of motion in our system (E and J,) the
dimension has to be an integer not greater than 6. Therefore we conclude
that results presented in Fig. 2 strongly indicate D = 6 as the proper value of
the dimension. Depending on the initial conditions and control parameters
(in this case both deformation £ and spin orbit coupling x), the trajectory
can span 3, 4, 5 and 6 dimensional subsets in 8 dimensional phase space.
The examples of such trajectories are given in Table. I. The result D = 6
for the last trajectory shows that, in general, there is no room for integrals
of motion other than F and J,.
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Fig. 2. Dimension of the trajectory 4 of Table I.

TABLE 1

Examples of the trajectories with different dimensions

No € K J: L0 D Amax
1 0.02  0.06 s 4.6 3 0.0
2 0.02 0.06 2 4.7 4 0.002
3 -0.3 0.6 g 4.1 5 0.02
4 0.3 0.6 : 0.1 6 0.2
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5. Power spectra

To complete the discussion of the dimensions we calculated also power
spectra from the time series of one of the coordinates along trajectory. The
results appear to be closely related both to dimension and Lyapunov ex-
ponent. Fig. 3 displays the power spectra for four trajectories which are
described in Table I. It is striking, how the differences in the dynamics of
the particular trajectories are exhibited in the power spectra. The transi-
tion from regular trajectories with low dimension to chaotic ones with high
dimension is accompanied by increasing power in higher frequencies.

— ! I—-
10° - -
3 - =
T 100+ -
§ [ ]
3 R
v 107} -1
e - i
g B [ i} I'- f
@ 0TF pegt V u‘.o-t N
10-9 [t i : 1 1 l':
0.00 0.05 0.10 0.15 0.20
frequency

Fig. 3. Power spectra of the trajectories listed in Table I.
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