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Using the macroscopic-microscopic model, the masses and quadrupole
moments for Cs and Ba isotopes are calculated. It is performed in the six-
dimensional deformation space {8:}, A = 2,3,4,5,6,7. The quadrupole
moments are evaluated in single particle, pairing and macroscopic models.
The results are compared with the experimental data.
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1. Introduction

A continuing progress in the precise measurements of nuclear masses [1]
imposes increasing demands for the theoretical description of ground state
properties [2, 3] as energy and quadrupole moments. In the present work the
ground-state potential energy [4] and quadrupole moments for the isotopes
of Cs and Ba are analyzed. The energy is calculated in a multi-dimensional
deformation space by the macroscopic-microscopic method. The Yukawa-
plus-exponential model [5] is used for the macroscopic part of the energy.
The Strutinski shell correction [6] and Lipkin-Nogami approach to pairing
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[7], both based on the Woods—Saxon single-particle potential [8], are taken
as the microscopic part. The six axially-symmetric deformations 82, 83, 84,
Bs, Be, B, are taken into account. The pairing force strength is parametrized
according to {3].

The quadrupole moments for protons are calculated in microscopic and
macroscopic approaches [9,10]. The microscopic approach consists of the
two steps:

(a) for each proton orbit the single particle quadrupole moment is evalu-
ated,

(b) the moments are summed up to the Fermi level, forming the single
particle quadrupole moment of the nucleus (Q3F), or are added to-
gether with the weights equal to the occupation probabilities from the
Lipkin-Nogami model, yielding the quadrupole moment accounting for
the pairing interactions (Q5N).

The macroscopic quadrupole moment QM is calculated by integration
over uniformly charged nuclear shape (deformation is taken from the mass
calculations).

2. Results

In the mass calculations both pairing and macroscopic parameters are
adjusted for each isotopic chain separately. The minimization in multidi-
mensional deformation space reveals existence of octupole deformation for
the neutron-rich isotopes of Cs (N=85-94) and Ba (N=86-92). The values
of 3-deformations for even-even Ba isotopes are in agreement with [11], ex-
cept for N=94. The f(3;-values in some cases rapidly change from positive
to negative value as a function of N. This indicates the possibility of shape-
coexistence in these nuclei (existence of both prolate and oblate shape for
a given nucleus). This effect is important in the calculation of quadrupole
moments.

The final results of the mass calculations are compared in Fig.1 with
another macroscopic-microscopic model predictions [12], where the model
parameters were fitted globally for all known nuclei.

The root mean square (RMS) deviations of the theoretical values of
nuclear masses from experimental ones are calculated for our points (circles)
and those of Ref. [12] (triangles).

Because of locality of our fit and a greater deformation space as com-
pared to [12}, we have better overall description of all the masses. For Cs
and Ba, in the vicinity of N = 82 the discrepancy between theory and ex-
periment is increasing, probably due to the deficiency of pairing correction
close to magic numbers. The model description is also worse for the light-
est isotope of cesium, which might be due to one-particle instability of this
nucleus.
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Fig. 1. The difference between theoretical and experimental mass [13] as a function

of neutron number. See text for explanations.
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In Fig. 2 both theoretical and experimental intrinsic quadrupole mo-
ments Qg are presented. The experimental ones are extracted [9] from the
formula (valid for well deformed nuclei):

(I+1)(2I+3)
QO = 1(21_1) Qs: (1)

where I is the spin, Q, — spectroscopic quadrupole moment of the nucleus.

It is seen that the QFN moments are close to Q3F ones (discrepancy
about a few per cent). The macroscopic Q%’t moments are generally lower
than the microscopic ones (see [14]). For Ba isotopes the discrepancy be-
tween theoretical and experimental values is rather small (except for N = 87
where the signs of the theoretical and experimental quadrupole moments are
opposite). For Cs isotopes the theory describes well the experimental data
only for the nuclei with large deformation 82, e.g. in the vicinity of neutron
numbers N = 90 and N = 66. Around the magic number N = 82 experi-
mental moments are close to zero — in agreement with the theory. However,
for N = 69, 71, 73 the experimental data have larger absolute values and
opposite sign compared to the theoretical ones.

This discrepancy could possibly be removed by including the y-deforma-
tion and rotor plus particle coupling in our model. The existence of y-de-
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Fig. 2. The experimental [15, 16, 17, 18] and theoretical quadrupole moments
for Ba and Cs isotopes. Full circles: experiment. Open symbols: circles — QLN,
squares — Q3F, triangles — QM.

formation for even Ba isotopes (N = 72, 74, 76, 78) has been found previ-
ously [19].
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