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1. Introduction

Since its discovery [1] Berry’s phase has attracted much attention. Many
physical applications have been found which make this notion very fruitful
and deserving more detailed studies. In particular, the question has been
raised about the structure of Berry’s phase for time-reversal invariant sys-
tems. The basic example given by Berry, spin in an external magnetic field,
is not invariant under time reversal. The simplest system which is time-
-reversal invariant is the spin in a quadrupole electric field proposed by
Mead [2]. This system was studied in detail in [3] and [4]. In particular, in
their very nice paper Avron et al. [4] revealed some very interesting general
features of Berry’s phase for time-reversal invariant families of Hamiltonians.
It appears that the bosonic case is not very interesting. The time-reversal
invariance implies essentially the reality of the space of states. Therefore,
for a generic Hamiltonian, which is non-degenerate, no Berry’s phase can
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appear. On the contrary, in the fermionic case we find a very interesting
structure. It is well known [5] that the space of states carries in this case
the quaternionic structure. The generic Hamiltonian, being quaternionically
simple, has a double degeneracy in the complex sense (Kramer’s degener-
acy). Therefore the typical Berry’s holonomy will be given by 2 X 2 complex
matrix or, more elegantly, by unit quaternion.

In this paper we point out how one can find many examples of finited-
imensional Hamiltonians with quaternionic Berry’s phases/matrices which
are calculable in terms of geometry of coset spaces G/H where G is any
compact simple Lie group. To this end we use a general geometric approach
to Berry’s phase developed in [6] applicable to a wide class of Hamiltonians
generated by the actions of Lie groups.

The paper is organized as follows. In Sec. 2 we give a simple discussion
of the structure of Hilbert space for time-reversal invariant Hamiltonians.
All results given there are known and contained in [4] but we wanted to
summarize relevant properties and give very simple arguments in favor of
them. In Sec. 3 we apply the formalism of [6] to time-reversal invariant
systems. In particular, we discuss the example of Mead system [2]. Using
again the results of [4] we point out advantages and disadvantages of our
method. Finally, in Sec. 4 we sketch the general construction of “spin”
Hamiltonians giving rise to quaternionic Berry’s phase.

2. Physical systems invariant under time reversal

It is well known that the physical systems invariant under time reversal
operation are characterized by the existence of the operator T acting in the
space of states and sharing the following properties:

(i) T is antilinear,
T(a¥ + BF) = aTV + BTS;

(i) T is antiunitary,
(T®,T¥) = (8,¥);
(11t) T commutes with the Hamiltonian
TH = HT;
(iv) if s is a total spin of the system, then
T? = (-1)*I.

Let us consider first the bosonic case, T2 = I. Let Hr C H be defined

as follows
= (L4701 v e
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Hg is a real Hilbert space. R-linearity is obvious whereas

(5 (5 em

follows from T2 = I and the antiunitarity of 7. For any ¥ € Hg we have
T¥ = ¥, s0 T acts as identity in Hg. Let {$,} be an orthonormal basis in
Hg; {®r} is also a basis in H. To see this let us write any ¥ € H in the

form
o= (D)o
and put
(l—J;—T)sp=§n:an¢,,, (1——-) (—i®) = Zb &,
Then

¥ =) (an+iby)d
n
TE =) (an —ibn)n,

n

i.e. T acts in this basis as the complex conjugation. Finally, let us consider
the matrix elements of the Hamiltonian. We have

(B, HEn) = (Tn, HTS,,) = (T, THS,,) = (HE 1, 81).

Therefore H is a real operator acting in the real Hilbert space Hg.
The fermionic case, T? = —I, is much more interesting. Let ¢; be any
unit vector in H. We put $; = T'$,; then ¥, # 0 and

(1,%2) = (81, T%)) = (T°%1,T$1) = —($1,T41) = —($1,82),

so that ¢; 1L &, and, obviously, ||$2]| = 1. Now take #3 to be any unit vector
orthogonal to #; and #,. We put $4 = T¥3; again $4 L I3, ||$4]| =1 and

(®4,81) = (TH3,81) = —(T9:1,%3) = —($2,83) =0

and the same holds true for #;. Continuing this process we obtain an
orthogonal basis ¢1,$,,... (note that this implies H to be either even- or
infinitedimensional). The action of T' can be easily described. Any subspace
spanned by &, _, 5 is invariant under T':

T(abzr—1 + bP2x) = ~bPri_1 + abs - (1)
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In any such subspace T has the form

0 -1 .
T=(1 0)K=—10‘2K, (2)

where K is the operation of complex conjugatxon Let now A be a linear

operator commuting with T, TA = AT. Let [4; kl)] be 2 X 2 matrix defined
as follows

kl . .
( )= (¢2k 2+11A¢21 2+]), ,7=12. (3)
Then, by virtue of Egs (2), (3), we get
(—igz) ACED = ACD(_ig,). (4)
This implies
AY = qi00 — iagoy, ag,ar € R. (5)

But this is just the matrix representation of the quaternion ¢ = ag +
arep. Therefore the matrix representing A can be considered as quaternionic
matrix obtained from the original one by replacing any 2 X 2 block by a
corresponding quaternion.

Let H be a Hamiltonian commuting with T. Then we can start the
above construction with #; being an eigenvector of H; & is then an eigen-
vector corresponding to the same eigenvalue. In this way we obtain the
basis $1, $q,..., in which H takes the form

H(H) = 6klEk‘70 . (6)

This is the celebrated Kramers degeneracy. The above construction
can be formalized by using the notion of quaternionic vector space. Let H
denote the field of quaternions. The quaternionic vector space V is defined
by the following properties [4] (v,w € V, z,y € H).

(v+w)z = vz + wez,
v(z +y)=vz+uvy,

v(zy) = (va)y. (7)
An operator A on V is a quaternionic-linear map of V into itself:
Al(v + w)z] = (Av)z + (Aw)z. (8)

Our space of states can be converted into the quaternionic space as follows.
If e1, ez, e3 are quaternionic units and v € H we define!

ve; = —iTe;, veg = Tes, vez = —iv. (9)

1 Our definitions differ from the ones adopted in [4].
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The quaternionic basis is spun by the vectors &;, ¥3,...,P2n+1,. ... Indeed,
we have

v=Y ((ar — ibp)B2k—1 + ((ck — idk)®2s)
k
=) (ar — ibj + (ck — ide)T) P11
k

=Y Pyi—1(areo + der + crez + bres) = > Bak_14k-
k k

Now, if A commutes with T, it is, by virtue of Eqs (8), (9), a quater-
nionic operator. Let us define the matrix elements AGRD py

Av = Z Frp-1AKDg. (10)
k.l

This definition coincides with the one given by Egs (3), (5). In order to
check this it is sufficient to consider onedimensional quaternionic space. Let

v =(a—1b)®; + (c — id)P; = ¥§, d = a+dey + cez + bes.

Now, let us take A of form (5); the resulting transformation reads in com-

ponents
a—1b [ a0- iag —iaj; — az a—tb
c—1d —ia; + a2 ag +ias c—id )"

The same transformation can be written as
g — 44, g = ao + agex

which establishes the equivalence.

3. The quaternionic Berry’s phase

Let us consider the family of Hamiltonians of the following form

H(g)=U(g)HoUT(9), (11)

where Hj is some fixed hermitean operator while G 5 ¢ — U(g) is an
unitary representation of some Lie group G. It has been shown in [6] that
the Berry phase for such a set of Hamiltonians is essentially determined
by the geometry of homogeneous space G/S, where § C G is the stability
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subgroup of Hg,. Let us briefly recall the result obtained there. First, let
us note that the family of Hamiltonians is parametrized by the points z of
G/S. For any U(z) we put

Ut (2)8,U(z) = n,(2)8: + w(z)Ta, (12)
where w® = widz#, Nt = nf‘d:c“ are the Cartan forms while §;, resp. T,

are the generators of S, resp. G/S.
Let

Hy=) Ell, (13)
n
be a spectral decomposition of Hy and
s =ms.m,, T =0,T.00,. (14)

The Berry matrix for a given closed curve v C G/S, for a given energy level
E,,, is the holonomy matrix obtained by the parallel transport along 4 by
means of the connection

dD _ 0  dz* ( ar(n) | i g(n)

dt ot dt (w“T“ 75 ) ' (15)
Assume now we are dealing with time-reversal invariant fermionic sys-

tem. Let the family of Hamiltonians depending on external parameters be

given as above and let

TU(g9)=U(9)T, (16a)
TH,=MI0,T, n=0,1,.... (16b)

The above conditions obviously imply
TH(g)= H(g)T. (17)

It follows from Eq. (16a) that the representation G 3 ¢ — U(g) is pseu-
doreal (quaternionic); also, by virtue of Eq. (16b), the II, matrices are

quaternionic. Therefore T,En) and S gn) are quaternionic and the Berry ma-
trix, determined by connection (15) can be put in quaternionic form (note
that connection (15) has quaternionic structure due to the fact that w’s and
7n’s are imaginary).

The above presented scheme allows us to determine the quaternionic
Berry’s matrix for a wide class of time-reversal invariant fermionic systems
(there are, however, significant exceptions, see below).
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Let us first discuss the family of Hamiltonians studied extensively in
[4]. For any representation {Ji} of SU(2) algebra and any 3 X 3 symmetric
traceless matrix @ we define

H(Q)= Z Qi;JiJ; . (18)

1,3

One should also impose some normalization condition on @ in order to
exclude the variations of Q which change the energy levels without affecting
the geometry of eigenspaces. One imposes the condition Tr Q2 = 2/3; such Q
is called unit quadrupole. It is not difficult to show [4] that the spectrum of
H(Q) is quaternionically simple, i.e. its degeneracy is minimal one allowed
by Kramers rule.

The geometry of H(Q) can be described as follows.

Let D(g), g € SU(2) be the representation generated by J;’s. Then any
H(Q), with Q being a unit quadrupole, can be written as

H(Q) = D(g9)HoD*(g), (19a)
—'2 "
Hezcos@<J32—J—3—)+§-l—;—§g(J12~J22), og@gg. (19b)

The T-operator is most easily defined in the canonical basis where J; 3 are
real while J3 is purely imaginary. Then

T =e " 2K, (20)

H(Q) is obviously invariant under T. For odd integer J, D(g) is quaternionic
(T? = —I), and Berry’s phase is quaternionic as well. It is also not difficult
to determine the invariance subgroup of Hog. For @ = 0, resp. ©@ = ¥ it is
U(1) — subgroup generated by Js, resp. Jz. For other values of © one has
only discrete subgroup (the so-called quaternionic subgroup).

Let us consider the family of Hamiltonians (19) for @ fixed, g varying
over SU(2). Then we can apply the geometric approach summarized above.
For @ = 0, § our parameter space is basically two-sphere § 2 while for other
values of @ it is the whole SU(2)-manifold (however, in both cases some care
must be exercised due to the remaining discrete symmetry subgroups). The
adiabatic connections are given by the relevant Cartan forms, multiplied
by appropriate generators written in quaternionic form. This makes the
whole structure quite transparent. However, for general J, our geometric
method fails if we consider the families of Hamiltonians with g and @ varying
simultaneously. The only exception (apart from the trivial case J = /)
is provided by J = 3/, then all Hamiltonians H(Q) with Q’s unital are
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unitarily equivalent [4]. The underlying group-theoretical structure looks
as follows. Let Q,, a = 0,...,4 be a basis of the space of quadrupoles,
orthogonal with respect to the scalar product (Q,Q') = 2 Tr(QQ'). Then
the operators

To = H(Qa), (21)

generate fourdimensional representation of fivedimensional Clifford algebra.
The commutators [Ta, Tgl, 0 < a < 8 < 4, span tendimensional Lie algebra
of Spin(5). Let Spin(5) 3 g — U(g) be the representation generated by
[Tay Tl; then

H(Q%) = U(9)H(Q)U(9), (22)

where @ — Q9 is the corresponding action of SO(5) in fivedimensional real
vector space. The stability subgroup of a fixed Hamiltonian is the lift (to
Spin(5)) of SO(4) invariance subgroup of a corresponding Q. Therefore we
can again apply here our geometric approach to rederive the results of Avron
et al. [4].

4. General examples of Hamiltonians with quaternionic
Berry’s phase

The geometrical approach to Berry’s phase introduced in [6] allows us
to construct the whole families of Hamiltonians for which the Berry matrices
can be described in terms of quaternionic holonomies of connections defined
over homogeneous spaces. Let G be any compact simple Lie group, G 3
g — U(g) - a unitary irreducible representation of G acting in the space
of states. Assume that U(g) is pseudoreal (quaternionic). Denote by X}
the generators of G in the representation U. Due to the pseudoreality of U
there exists an antiunitary operator T such that T2 = —I and

TXT™!=-X;. (23)

Let H(X ) be any element of universal enveloping algebra such that H(X) =
H(-X); for example, one can take any even polynomial in X’s. Then H(X)
commutes with 7' and has a quaternionic structure. The same applies to

H(g)=U(g)H(X)UT(g). (24)

Therefore the family of Hamiltonians H(g), g € G, exhibits the quaternionic
structure and Kramers degeneracy. If § C G is the stability subgroup of
H(X), the effective parameter space is G/S. The Berry connection is given
by formula (15) with relevant Cartan forms and is a quaternionic matrix-
valued function.
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It is possible to classify all quaternionic representations of compact sim-
ple Lie groups [7]. This clasification is given below.
SU(n): (A1,...,An-1) is pseudoreal iff:
(3)Ai = Ap—iy 1 =1,2,...,
(b) n =2(2m+ 1),
(¢) Azm+1 is odd;
SO(2n+ 1) : (A1,...,A,) is pseudoreal iff:
(a)n=4k+1lorn=4k+2
(b) A; is odd;
Sp(n): (A1,...,An) is pseudoreal iff:
(a) A1 +...4+ Ap is odd;
50(2n): (A1,...,An) is pseudoreal iff:
(a)n=4k+2,
(b) A1 + Az is odd;
G,, F4, Eg, Eg have no pseudoreal representations;
E7:(A1,...,An_1) is pseudoreal iff Az + A3 + g is odd.
Therefore, we can easily describe all families of Hamiltonians of spin
type (i.e. finitedimensional) obtained by the action of irreducible represen-

tations of compact simple Lie group for which the Berry phase/matrix can
be put in a quaternionic form.
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