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Quantum field theory of real massless scalar field in two-dimensional
de Sitter space-time is considered. The scalar product in the subspace
of pure Coulomb states is decomposed into irreducible unitary represen-
tations of the three-dimensional proper ortochronous Lorentz group. It
is shown that the Coulomb field contains representations from the main
series if the “fine structure constant” (defined in the text) a > 1. If
0 < a < 1, there is additionally a representation from the supplementary
series. The eigenvalue of the Casimir operator for this representation is

Yo (2 — a).
PACS numbers: 03.70. +k

1. Introduction

Staruszkiewicz [1] has shown that the electric part of the infrared elec-
tromagnetic field can be described as a real massless scalar field § “liv-
ing” in the three-dimensional de Sitter space-time formed by the set of all
unit space-like vectors. Upon quantization this theory allows to make some
a priori statements on the numerical value of the fine structure constant
a = €2 /he [1]. The theory can be summarized in the expressions for the

total action

S:—L dS A*dS

87ra

and the total electric charge
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Here e is the elementary charge, a = e?/Ac is the fine structure constant, §
is the phase which is canonically conjugated with the total charge:

In the action integral one integrates over the whole de Sitter space-time
while in the charge integral one integrates over an arbitrary Cauchy surface.
* is the usual star operator defined e.g. by Thirring [2]. The numerical value
of the elementary charge e adjusts mechanical and electrical units, like ¢ —
units of time and length. Thus one can put e = 1 for short.

The main goal of the present paper is to investigate the analogous theory
in the two-dimensional de Sitter space-time. Our theory is not based on any
physical model. Thus the constant in the action can be chosen arbitrarily. A
natural convention in our case is to take the constant in the action integral
equal to 47 (the double volume of the one-dimensional sphere):

S:—i— dS A *dS.
ira

Analogously, the total charge is defined by an integral over a Cauchy surface
in the de Sitter space-time

1
Q=-——1["1S.
2ra
The above expressions set up completely the classical model and define the
“fine structure constant” a. Variation of the action with respect to S yields

the equation of motion
AS =0,

where A denotes the Laplace-Beltrami operator i.e, the d’Alembert operator
in the two-dimensional de Sitter hyperboloid:

A= 33, + tanh 8y — (coshyp) ™2 3:, ,

¢ and 9 being the elliptic and hyperbolic angles on the de Sitter hyperboloid,
whose metric is

ds? = dyp® — cosh?vy dyp? .
The general solution can be found by means of separation variables. The
result is

§= ) &™¢(coshyp)™!/? [amPl/zl(tanht/))+me_1/12(tanh¢) .
m—3 m—3

m=—00
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Here a,, and b,, are integration constants, P is the associated Legendre
function. Putting this formula into the definition of the total charge we
have

2 by

Ta

Q=

2. Quantization and definition of the vacuum state

We define the vacuum state, as usual, dividing the solution of the equa-
tion of motion into positive and negative frequency parts. Consider the fol-
lowing integral over the light cone kk = 0, k° > 0 in the three-dimensional
momentum space:

3 d%k —ikz tm&pk \/“‘ ime h 1/2
—\75; 0 ¢ ne'™?(coshyp)™

pl/2 -1/2 m
x| 2202, (anh ) + il o )| = 24/ 2 0,
where
0 =¢sinhy,
1= gcoshep cosp, k! =kcosgpy,
2 = £coshy singp, k? = k%sin gy .
Since the integral on the left-hand side contains only positive frequencies in
the three-dimensional Minkowski space-time, we assume that the right-hand
side is a positive frequency solution in the de Sitter hyperboloid. In other
words we define a positive frequency solution in the de Sitter space-time
by means of a projection from the Minkowski space-time. The definition
above makes no sense for m = 0. In this case we postulate for the vacuum
state |0):
Qloy=o0, (0|Q=0.

Using the positive frequency solutions f,,, we quantize our model as follows:

S = 8¢ — aQ arcsintanh ¢ + i emfm(¥, )+ hec.,
m#0
[Q,50) =iy [cmsch] = mn, [Sorem] =0,
(@ em] =0, [cmrem]=0, [cheh]=0,

QI0Y=0, (0]Q=0, cml0)=0, (0Ojch=0.
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3. The set of Coulomb states

We define a pure Coulomb state as the vector e=?50|0) [5]. The constant
term So in the partial waves expansion of S, being a rotational invariant, is
not a Lorentz invariant quantity. Thus S depends on a three-velocity vector
u which indicates the inertial reference frame in which the partial waves
expansion is carried out. The vector u is a unit future oriented time-like
three-vector (in the three-dimensional Minkowski space-time). The state
|u) := e~#50(%)|0) is spherical symmetric in the rest frame of u. Compose
the superposition of the Coulomb states

U%=/d%fWWO

by means of a smooth function f of compact support on the set of all three-
velocity vectors which is identical with two-dimensional Lobachevsky space.

_ dul A du?

d?u
0

is the invariant measure on the Lobachevsky space. We define the bilinear
form on the set of such states by

(91f) = /dz'vdzugmf(u)(vlu).

The matrix element (v|u) can be computed as follows. This element is
Lorentz invariant, so depends only on the hyperbolic angle A between v and
u. Assume, without loss of generality, that the rest frame of v moves in the
z2-direction in that of u. Furthermore

w
1
So= 57 [ v Sl=o-
-

The following identities will be useful:

sinh A sin
tanh¢u|¢,"=0 = Py

\/ cos2¢p, + cosh? ) sin?y,

and

a (cos«pv + icosh )\ sinpv)m

Fm(%us pu)ly,=0 = 2|m| \ sinh A sin ¢, — isignm
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In this way we obtain

cosh A — 1\ /™
So(v) = So(u) + Z 2, ( s::x;/\ 1) em(u) +hee..

mi=—00
m#0

Using this expression, the commutation relations and the Baker-Hausdorff
identity one finds
(vlu) = (cosh I2)7*.

Lobachevsky space is a symmetric space isomorphic to the factor group
5L(2,R)/S0O(2)- Hence one can construct the Fourier transform in it. The
following two equations summarize the Fourier theory. They are derived in
the Appendix.

flew) = [ du s kuyie=d
f(u) = (2—71r)—2—/duutanh(7ru)/dk f(k,u)(ku)"i"_% .
1]

Here k is a future oriented null vector, dk is the Lorentz invariant measure
on the set of null directions.

Let us investigate the form (g|f) in the dual space. Put in the Fourier
transform §, f. We have

[ st)iolu) =

o0

oy [ dvv taahims) [l fikw) [ du (i Hola).
1]

The order of integrations was changed. It is allowed for a > 1, the last
integral being convergent. Owing to the Lorentz invariance one can write
the last integral in the form

/ du (ku) ==} (v]u) = (kv)" "3 K (v, a).

The function K(v,a) can be calculated by means of standard methods in
the rest frame of u. It can be expressed by the beta function:

1 a-1 a-1 | a-1
K(V,a)—2“3(2 T)B( 5t -—w).
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Therefore
2°B (3, °77)
(91f) = e

x/duuta.nh(m/)B(0‘;1 +iu,a;1 —-z'l/) /dkg(k,u)f(k,v).
0

This formula is correct for & > 1. To find the corresponding equation valid
for 0 < a < 1 one has to notice what follows. The above equation can be
rewritten in the form

a 1 a—1
ol = T2 [ oug@is

a-1 ., a-1
x/duutanh(m/)B( 5 + v, 5 —w)Piu_%(vu).

The integrand of the last integral is a holomorphic function of the complex
variable v everywhere except for its poles. Positions of these poles in the
complex v-plane depend on the value of a. Certain poles cross the path of
integral at the point a = 1. Hence the integral over v treated as a function
of a is not an analytic function at the point @ = 1. On the other hand the
original form

(9lf) = [ o Fug@ifoly

is an analytic function for a > 0. Thus the correct expression for the form
(g/f) valid for 0 < a < 1 in the dual space is the analytic extension of the
function of a given by the integral:

[ <]
a-—1 o oa—1 .
/duutanh(ru)B ( 5 + i, 5~ w) Piu_%(vu).
0
One finds the analytic continuation subtracting residua of those poles which
cross the path of integral at the point o = 1. The result is
2°B (3,%5)
(91f) = @

x /duuta:nh(m/)B(a;I +iu,a;1 —iv) /dkg(k,u)f(k,u)
0

3

2722 didk ([, 1-a\;(, 1-a
+[B( 1-a)]? (zk)afzg(l” 2 )f(k” ) )
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for0<ax<l.
The integrand of the first term (the only one for a > 1)

/ dk 50k, ) f(k, v)

is the scalar product for representations of the three-dimensional proper
ortochronous Lorentz group from the main series corresponding to the value
of the Casimir operator

1 4 1 2
-iM# Mﬂa-—z-{-ll .

It is easy to show using e.g. the theory of group representations given by
Gelfand, Graev and Vilenkin in Ref. [4].This term contains continuous spec-
trum of all scalar products from the main series, with the weight

-1 -
utanh(wv)B(a—2—+iu,a2 1 —iz/) .

dldk 1-a) ; 1- a
ek o, l-e ki
(lk)a/2g(’z 2 )f( ’1 2 )!
necessary for a < 1, is the scalar product for representations from the
supplementary series. The eigenvalue of Casimir operator in this case is

The second term

—IMHP My, = a2 - a).

4. The set of charged states at plus infinity

Let us consider the state :e~*5:|0). Normal ordering makes the expo-
nential function of S a well defined quantity. One finds easily that this is
an eigenstate of the total charge operator to the eigenvalue 1:

Q:e7'5:|0) =:e7%S:|0).
A general charged state at plus infinity ¥ = oo is

1) = / dk f(k):e=S®): o)

where k is a unit vector on the circle 1y = 0o and dk is the measure on the
set of such vectors. Consider now the bilinear form on the set of these states

(glf) = /dl dk 70 £ (k) (0] :€:5W:: =506, gy
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Using the commutation relations and the Baker-Hausdorff identity one finds
that
(0] :e85();; e —i5(K), |0) = (2sin39)~

where 9 is the angle between k and l. The vectors k and ! can be under-
stood as the space-like components of future oriented null vectors k and [,
respectively. Absorbing the factor 2~/2 into the functions f and g we have

dl dk

(619)= [ Geyars SOOI

The above form is Lorentz invariant, dk being the Lorentz invariant measure
on the set of null directions, if the integrand is homogeneous of degree
—1. See [3], where the proof for the three-dimensional light cone is given.
This bilinear form in stereographic coordinates was studied by Gelfand,
Graev and Vilenkin [4], as the scalar product for the supplementary series
of unitary representations of the group SL(2,R). It is positive defined for
0 < a < 1 and negative defined for 1 < a < 2. One has to note that for
1 < a < 2 the integral is divergent and must be understood as the finite
value distribution.

The analogous unitarity condition 0 < @ < = in the three-dimensional
de Sitter space-time was found by Staruszkiewicz [1]. The scalar product
was expressed by the integral

dldk

Genjars ISR,

(9lf) =

convergent for a < =. However, one can treat the above integral as the finite
value distribution. Then this form is negative defined for = < a < 27 [4].

5. Conclusions

There is an analogy between real massless scalar field in three-dimen-
sional and two-dimensional de Sitter space-time. In both cases there is a
critical value of the fine structure constant, = in three dimensions and 1
in two dimensions, which separates two kinematically different regimes of
the quantum Coulomb field. Apparently the same phenomenon will ap-
pear in any dimension: there is always a number a(n) which separates two
kinematically distinct regimes of the quantum Coulomb field.

Part of this paper was done during my graduate studies. I am grateful
to Professor Andrzej Staruszkiewicz for helpful suggestions.
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Appendix

In this appendix we derive the Fourier transform and its inverse in the
two-dimensional de Sitter space-time. The general harmonic analysis on a
symmetric space was formulated at the beginning of the sixties. At present,
one can find the Fourier transform theory in some textbooks (e.g. [6]) on
the representation theory of Lie groups.

If a Lie group G acts on a connected symmetric manifold H transitively
and a Lie subgroup K of the group G is the stability group at a certain
point o € H, then the factor group G/ g = H (isomorphism of homogeneous
spaces).

In our case G = SL(2,R), K = SO(2), H is the Lobachevsky space,
and 0 = (1,0,0) € H. The actionge Gonz € H

goz:=gzgl

is defined by means of identification

0 2 1
(0 1. 2y_ (% 2 z
3—(3,33,3)—( z! zo_zz)-

Furthermore, if the Lie algebra § of the group G is semisimple and non-
compact and the group K is connected, then the Iwasawa decomposition of
g into a direct sum (with respect to the Killing form) of subalgebras £, @, n
takes place:

g=foaen n= @ g4,
BEZ
where [ is the Lie algebra of the group K; @ is the Cartan subalgebra of
gol; g4 is the root space of the algebra § connected with the root 8 € 0*
(a* is the dual space of @); X is the set of positive roots for a fixed Weyl
chamber 04 in the algebra a. The group G also can be decomposed, e.g.,
the mapping on the Cartesian product

KxAx N > (k,a,n) > kan € G

is a diffeomorphism of differentiable manifolds. Here A and N are Lie groups
whose Lie algebras are @ and 0, respectively. That diffeomorphism allows
to define the function A on G:

A:G > (kya,n)—acA.

In our case @ is formed by the totality of diagonal traceless matrices.
There are two root spaces s of upper and lower triangular matrices.
Only one of the roots for theIVVeyi chamber

o= {(5 2):e>0}
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is positive:
z

.o 0
a aﬂl.aa(o _z)—»2z€7?,.

The boundary of a symmetric space is defined as the factor group K/ pr,
where
M:={k€ K:Adkjg=id}.
Our M group is very simple: M = {—1,1}. Hence the boundary of
the Lobachevsky space is isomorphic to the set of null directions in the
three-dimensional Minkowski space-time.

Plane wave on a symmetric space ‘H with frequency v € @*, and a
normal kM € K/pf is defined as

ey, km(g 0 0) 1= exp (—v(log A(g™'k))) .

By the Fourier transform of a function f on a symmetric space H we un-
derstand the function f on the Cartesian product a* x K/ pf, given by the
following integral:

F(v, kM) = / du f(u) e— iy g na(t),
H

where g =14 Y BeT, dim @4 8 and du is the G-invariant measure on M.
Using few popular tricks we get

F, k) = / du f(u)(ku) 1.

Here v € R, because the form of @ implies that a* is isomorphic to R.
We find the inversion formula of the Fourier transform constructing the
Harish-Chandra c-function on the dual space 47 of the complexification of

a
I(i
C(V) = I((z::)) ’
where I is expressed by the beta function:
I(v) = H B (% dimgﬂ,%dimgg + %I%) .

BEL

We get the form (-|-) restricting to @, extending onto G¢, and moving onto
az the Killing form.
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In our case the Harish-Chandra c-function is
1 .
c= ;B (%, w) .
The Fourier transform satisfies the inversion formula given by

fw= [av [ dkd) )0 kMess g ra()-

as K/p
The integration is over, so called, dual space of H: 05 x K /M, where
a} :={vea*:vo, >0}.

dv denotes the Lebesgue measure on @*, and the measure d(kM) on the
factor group K/ [ is defined by the integrals

[ aterty [ amptim) = [ arow),
M K

K/mMm

for a measurable function ¢ on K, where dm and dk are the Haar measures
on M and K, respectively.

To return to the Lobachevsky space, the set a3 is isomorphic to R.
The measure on the boundary of the Lobachevsky space is the Lorentz
invariant measure on the set of null directions. In this way we obtain

oo

1 < iyl
fu) = W/duutanh(wu)/dk F(w, k) (k) ~ i~ b

0
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