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An effective chiral model which describes properties of a single baryon
predicts that the quark matter relevant to neutron stars, close to the de-
confinement density, is in a chirally broken phase. We find for the SU(2)
model that pion-condensed up and down quark matter is preferred en-
ergetically at neutron star densities. It exhibits spin ordering and can
possess a permanent magnetization. The equation of state of quark mat-
ter with chiral condensate is very well approximated by the bag model
equation of state with suitably chosen parameters. We study quark cores
inside neutron stars in this model using realistic nucleon equations of state.
The biggest quark core corresponds to the second order phase transition
to quark matter. Magnetic moment of the pion-condensed quark core is
calculated.

PACS numbers: 21.65.+4f, 97.60.Jd

1. Introduction

Properties of neutron stars are determined by the equation of state of
baryon matter at densities exceeding the nuclear saturation density ng =
0.16 fm 3. In this density range a phase transition to quark matter occurs
which is expected to affect the neutron star structure. Recent studies of
millisecond pulsars stimulated investigations of quark structure of neutron
stars and even possibility of existence of quark stars [1]. Very recent data
[2], strongly suggesting that 7y-ray bursters are located at cosmological dis-
tances, make the collision of quark-rich stars a promising candidate for a
model of this phenomenon [3].

* This work was partially supported by the Polish State Committee for Scientific
Research (KBN), grants no. 2 0204 91 01 and 2 0054 91 01.
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In this paper we study implications for neutron stars of the phase tran-
sition from nucleon matter to quark matter described by an effective chiral
model. This model is based on the assumption that two fundamental phase
transitions predicted by QCD, the deconfinement transition and the chiral
symmetry restoration, are separated in baryon density at low temperature.
Deconfinement is assumed to occur at much lower densities than the chiral
symmetry restoration. The effective chiral model predicts thus that at the
deconfinement transition quarks are liberated from nucleons but the chiral
symmetry remains spontaneously broken, as in the nucleon phase. This
implies that the quark matter in neutron stars has broken chiral symme-
try. Earlier studies of quark matter in neutron stars [4-6] based mainly on
the bag model and perturbative QCD calculations, did not consider such a
possibility.

The SU(2) chiral model for up and down quark matter was studied in
detail in Refs [7-9]. It predicts presence of a chiral field condensate in the
ground state of quark matter. This phase is analogous to the pion con-
densate in nucleon matter, since the chiral field is composed of pions and
sigma-mesons. Presence of the neutral pion condensate leads to a ferromag-
netic ordering of quark spins which produces permanent magnetization of
this phase. The ferromagnetic quark core if present in a neutron star can
contribute to its magnetic moment.

This work is organized as follows. In Sect. 2 we briefly summarize prop-
erties of normal quark matter and quark matter with neutral and charged
pion condensate in the SU(2) effective chiral model. In Sect. 3 we consider
the equation of state of 3-stable quark matter in neutron stars. In Sect. 4
models of neutron stars with quark cores are constructed and magnetic
moments of pion-condensed cores are calculated.

2. The SU(2) effective chiral model

The effective chiral model is described by the o-model Lagrangian with
quark and meson degrees of freedom,

L =iy 3,¥ — g¥(o + iysT - 7)¥ - U(o, %) + 1(8u0)? + 3(8,.7)*, (1)

where ¥ = () is the isodoublet of quarks interacting with an isotriplet of
pions 7 via pseudoscalar Yukawa coupling and with an isoscalar meson o via
a scalar Yukawa coupling. Both Yukawa interactions have the same coupling
constant g. U is the potential which generates spontaneous breaking of the
chiral symmetry,

U(o,7) = §X*(e® + 7° - F7)?, (2)
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where A? is the meson coupling constant, A2 = m2 /2F2, m, is the mass of
the o-meson and F, = 93 MeV is the pion decay constant.

The SU(2) effective chiral model is rather successful in reproducing
properties of the lightest baryons [10]. The nucleon is described in terms of
valence quarks interacting with the soliton of the chiral field. The model
is, in a sense, a relativistic generalization of the constituent quark model,
which was very successful in hadron spectroscopy.

The effective quark mass is generated by the o field: m = go. In the
vacuum we have mg = gog, where the vacuum expectation value of the o
field is 09 = Fr. It becomes energetically favourable at high densities that
o field vanishes and the spontaneously broken chiral symmetry is restored.
This transition to the restored symmetry phase makes the quarks massless.
It is assumed in this model that deconfinement phase transition occurs at
a lower density than the chiral symmetry restoration. In this case the de-
confinement phase transition leads to the chirally broken phase of quark
matter with “constituent”-like masses generated dynamically by the quark
interactions with the o field.

The model parameters mg of the order of 500 MeV and m, around
1GeV give good fits to baryon properties [10]. However the fits are not
sensitive to m, as long as it is large. In Ref. [8] we have studied properties
of quark matter in this model for various values of these parameters.

One can distinguish two different phases of SU(2)-symmetric up and
down quark matter with broken chiral symmetry: the normal quark matter
with nonzero sigma field and vanishing pion field, and the pion-condensed
quark matter with space-dependent pion and sigma fields [8].

2.1 Normal quark matter

In this case we neglect the pion fields and replace the sigma field by a
constant expectation value ¢ = @. The quark mass m = g& is generated
through the interaction term in the Lagrangian, Eq. (1). The energy density
of an uniform quark matter is

nW = (2 )37/d3k(k2+g2 2)]/2 1/\2(0_ _FZ) (3)

where the first term is the energy density of the quark Fermi sea and the
second one is the energy density of the o field resulting from the potential
term U(o, @), Eq. (2). For isospin-symmetric quark matter the spin-flavour-
colour degeneracy v = NyNc7ys is ¥ = 12. The energy density, Eq. (3),
depends on the baryon density through the quark Fermi momentum kp =
(67r2nq/7)1/ 3, where nq is the quark density and the baryon density is
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ng = (1/3)nq. The ground state of the system corresponds to the value of
& which minimizes the energy W at a fixed value of the baryon density ng.
This gives & as a function of baryon density, & = &(ng). Hence the quark
mass is density dependent, m = m(ng). If we obtain in this procedure
vanishing sigma field & = 0 at some baryon density n,, the chiral symmetry
will be restored. In such a case both the Lagrangian, Eq. (1), and the
ground state have the same SU(2)p, x SU(2)g symmetry.

In the chirally symmetric phase, with massless quarks and vanishing
sigma field, the energy density is

kg

=(2—;)—37/d3kk+U(a=0,7‘r’=0). (4)
0

nW
This equation is equivalent to that for the MIT bag model with massless
quarks. The last term in Eq. (4) plays the role of the bag constant,

1

U(e=0,#=0)=B =

mg Fx . (5)

2.2. Quark matter with the pion condensate

If the pions appear in the ground state they will form a Bose-Einstein
condensate. In the pion-condensed phase some components of the pion
field acquire a nonzero expectation value. The following ansatz with non-
vanishing expectation values of the neutral meson fields is assumed [11]

o(F) = acos(q-7), w3(F)=dsin(q-7), m1 =72 =0. (6)
The Dirac equation for quark fields with this ansatz has the form
(—id@ -V + Bmexp(ivstsq - 7))d(7) = E(7), (7

where ¢ is the Dirac spinor and the effective quark mass is m = g&. This
equation was solved in Ref. [8]. The quasiparticle spectrum is:

I o - 1/2
Ea(R) = {m? + B2+ 1@ (@ + (- B} (8)

The ground state of quark matter is constructed by filling the Fermi
seas for two branches of the spectrum (8) up to the quark Fermi energy Eg.
The baryon density is

ng = 5(5-110—3—, [/ LrO(Er — E_(F)) + /dskG(Ep - E+(ic‘))] . (9)
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where the spin-flavour-colour degeneracy for a single branch is 4 = 6. The
energy density of the system is

1 - .
nBW == W‘y [/ dskE..(k)@(Ep - E_(k))
+ / d*kE.(F)O(Ep - E+(ic’))] +15%8 + 1232 — F3):. (10)

It consists of the energy density of the occupied Fermi seas of E_ and E;
quasiparticles and the energy density of the chiral field.

The integrals in Eqs (9) and (10) can be evaluated analytically for the
spectrum given by Eq. (8). The baryon densities n; and ng, corresponding
to occupied Fermi seas of E_ and E quasiparticles are, respectively,

Y
ng = m{(Eg - m? - 1¢®)k, — 1k3

kmax
i%Q(ksz + m21n|kz + Pz|)} , (11)

kmin
where p, = y/m? + k2. The integration limits in Eq. (11) are
0 for m>%q and Ep>m—%q
Emin =<0 for m<%q and Ep>%q—-m , (12)
(Be—2¢)? —m?]'/? for m<1lq and Ep<ig-m
and 12
2
kmax = [(EF + %Q) - mZ] (13)
for all cases in Eq. (12). The E4 quark Fermi sea is occupied only if Ep >
19+ m and the integration limits in Eq. (11) are
kmin =0, kmax= [(EF - %Q)z - m2]1/2' (14)

Energy densities of occupied E_ and E. Fermi seas are

2
ngWy = W—ZP{Egkz - 3ko(m? + k2)*/2 4 §(mPk.p. + mtinlk. + )]
kmu

» (15)

kmin

=3¢ (kaps + mPinlk, + pull £ (Jam®ks + Jakd + 1o°K.)}
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with the same integration limits as for nf, Eq. (11).

The values of the variational parameters ¢ and m in the ground state
are determined by minimizing the grand potential density {2 with respect
to ¢ = |§] and & = m/g at fixed baryon chemical potential. The grand
potential density {2 at zero temperature is

2(q,8) =ngW —un = —p, (16)

where the energy density ngW and baryon density np are sums of contri-
butions given, respectively, by Eqs (15) and (11), 4 = 3Fp is the baryon
chemical potential and p is the pressure. One can notice that the ground
state is determined by maximizing the pressure at fixed p. Minimization
of {2 gives the baryon density ng, the energy per baryon W, the pressure p
and the values of ¢ and m as functions of baryon chemical potentials.
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Fig. 1. Quark matter energy per unity of baryon number as a function of baryon
density. Solid and dashed lines correspond, respectively, to m, = 700 MeV and
m, = 1200 MeV. N and C label, respectively, normal and pion-condensed quark
matter.

The results of this analysis are presented in detail in Ref. [8]. Here we
only display in Fig. 1 the energy per baryon as a function of baryon density
for both normal and pion condensed quark matter in case of neutron-like
quark matter. We show results for two limiting values of the parameter m,,
which are m, = 700 MeV and m, = 1200 MeV. The value of the quark
mass is mg = 500 MeV. One can notice that the pion-condensed phase (C)
is always of lower energy than the normal quark matter (N).
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2.8. Magnetic properties of the pion-condensed quark matter

The quasiparticles diagonalizing the Dirac Hamiltonian are the up and
down quarks with the spin polarized along the wave vector ¢, as shown in
Ref. [8]. Corresponding spin densities are

su@) = 3{(F(1 £ 73)70Z.9). (17)
The magnetization of the system is
M = gq(pusu + pasa). (18)

where gq = 2 is the gyroscopic factor, y, and pgq are the up and down
quarks magnetons. We assume Dirac magnetic moments for quarks which
give uy = —2uq. The quark matter with neutral pion condensate has a
net magnetization. For symmetric up and down quark matter the total
spin density is zero since the up and down quark Fermi seas are oppositely
polarized, but the opposite electric charges of up and down quarks cause
their magnetic moments to point in the same direction.
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Fig. 2. Magnetization of pion-condensed quark matter versus baryon density. Solid
and dashed lines correspond, respectively, to m, = 700 MeV and m, = 1200 MeV.

In Fig. 2 we show the magnetization, Eq. (17), corresponding to spin
densities (17) as a function of baryon density for neutron-like quark matter.
It will be used to find the magnetic dipole moment of the neutron star core
with pion-condensed quark matter.
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3. Equation of state for quark matter in neutron stars
3.1. Equation of state of pion-condensed up and down quark matter

The equation of state of pion-condensed up and down quark matter is
obtained from Eqgs (11) and (15). These give the baryon density and the
energy density as functions of the baryon chemical potential p. The pressure
p(p) is determined by minimizing the grand potential density {2 in Eq. (16).

We treat the o-meson mass as a parameter of the model. Equations
(11) and (15) give a one-parameter family of pion-condensed quark matter
equations of state for a given value of g. We choose g = 5 since this value
gives best fits of single baryon properties [10]. In Figs 3 and 4 we show
respectively the baryon density and the pressure as functions of the baryon
chemical potential for two values of my: m, = 700 MeV and m, = 1200
MeV. The curves in Figs 3 and 4 correspond to neutron-like quark matter
with up quark fraction z = 1/3.

The analytical form of Eqs (11) and (15) in the presence of the pion
condensate is rather complicated. Numerically, however, the energy density
ngW is very well approximated by a simple bag model formula for massless
quarks:

cad(fu faine) = 3723 Y £ny* + B, (19)

t=u,d

where B is the bag constant and f; are flavour concentrations, f; = n;/np,
it = u,d,s. The corresponding pressure and baryon chemical potential is,
respectively

— 1 2/3( Z f4/3 4/3 - B (20)
i=u,d
and
p=a3CY 5P myl. (21)
i=u,d

The bag constant B has to be chosen appropriately for a given value
of the scalar meson mass m,. In Fig. 5 we show B as a function of m,
as obtained by the least-squares fitting of the energy per baryon, Eq. (15),
with the bag model formula (21) for 20 points. The quality of the fit is very
good, with the maximum deviation below 0.2% and it can be safely used in
astrophysical applications.

As a check of applicability of the bag model formulae to the pion-
condensed quark matter in the effective chiral model we use Eq. (21) for
the baryon chemical potential, which does not depend on the bag constant.
In the effective chiral model B is a function of m,. Hence if one plots the
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Fig. 3. Baryon density as a function of baryon chemical potential for pion-condensed
quark matter. Solid and dashed lines correspond, respectively, to m, = 700 MeV
and m, = 1200 MeV.
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Fig. 4. Pressure as a function of baryon chemical potential for pion-condensed

quark matter. Solid and dashed lines correspond, respectively, to m, = 700 MeV

and m, = 1200 MeV.

baryon density as function of baryon chemical potential for two different
values of m,, the two curves should coincide with one another. This is
the case of Fig. 3, where the curves correspond to m, = 1200 MeV and
mye = 700 MeV.

The agreement of the equation of state of pion-condensed quark mat-
ter corresponding to broken chiral symmetry and the chirally symmetric



868 A. KoTLorz, M. KUTSCHERA

160+
—~ 1204
Py ;
£ ]
\ ]
> i
© J
= ]
o 804
40 Fr S —— S —
600 800 1000 1200

Fig. 5. Bag constant as a function of the ¢ meson mass.

bag model equation of state indicates that restoration of chiral symmetry
amounts to change in the bag constant. For m, = 1200 MeV we find the
value B ~ 150 MeVfm ™3 in case of the pion-condensed quark matter while
the value corresponding to the chirally symmetric normal quark matter,
Eq. (5), is B = 200 MeVfm™3. The main reason of such a behaviour of
the pion-condensed quark matter equation of state is the fact that the ki-
netic energy term in Eq. (10) for pion-condensed quark matter is essentially
the same as for massless quarks. The coincidence of the pion-condensed
quark matter equation of state, with broken chiral symmetry, and chirally
symmetric equation of state for massless quarks is studied elsewhere [12].

The fact that the equation of state of pion-condensed quark matter is
to a very good approximation reproduced by the bag model equation of
state simplifies considerably further calculations, in particular construction
of astrophysically relevant quark equation of state.

3.2. Quark matter in neutron stars

Quark matter in neutron stars is generally composed of up, down and
strange quarks. It should be (3-stable and electrically neutral. Charge neu-
trality condition is

ne + %(nd + ns) = %nu . (22)
Here n. is the electron density. It turns out that muons can be neglected
since the electron chemical potential usually does not exceed the muon rest
mass for baryon densities in neutron stars.

To account for the 3-stability we have to add contributions to the energy
density due to strange quarks and electrons. The strange quark energy
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density €5(ns) is discussed below. The electron energy density is
4/3
ee(ne) = 1343x213(f, — 1)*/3n}/3, (23)
The S-stability requires that the total energy density of the system

€(fu, fa, fsinB) = €ua(nu, na) + 6s(ns) + €e(ne) , (24)

is stationary with respect to flavour concentrations. Since the flavour con-
centrations satisfy the sum rule

ftfatfi=3, (25)

only two of them are independent variables.

The charge neutrality condition and §-stability requirement allow us to
determine uniquely the flavour composition of quark matter at given baryon
density ng. The (-stability requirement leads to relations between quark
and electron chemical potentials

Bd = pu + He (26)

and

Ha = ps - (27)
To determine the composition of quark matter we adopt the strange quark
energy density in the form

's(fs,na)z(—zi—)3 / dky k2 +m? g, (28)

k<ks

where ks = (x2 fyng)!/? is the Fermi momentum of the strange quark Fermi
sea.

For massless up and down quarks and neglecting electron rest mass from
Eqs (26) and (27) we find equations for flavour concentrations in the form

fa% = g3 L 3135, - 1)1/3, (29)

17 =VEP + 42, (30)

where y = ms'cﬂ'/(ﬂ'an)l/3. Using Eq. (25) one can solve Eqs (26) and
(27) for fu,fq and fs. At lower densities when the chemical potential of
the down quark is pq < m, g, there is no strange quark component in the
quark matter, f; = 0. The S-stable up and down quark matter is essentially
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Fig. 6. Flavour concentrations of 3-stable quark matter as functions of y2.

neutron-like quark matter, fy, = 1, fg = 2. The exact solution of Eq. (29)
gives fu = 1.006, f; = 1.994.

When the chemical potential of the down quark exceeds the effective
mass of the strange quark, uq > m, g, the strange quark Fermi sea starts
to be populated. The threshold density is ng = m} g/7%fq, where fq is
the above value of the equilibrium down flavour concentration. One should
notice that solutions of Eqs (29) and (30) depend only on one parameter

y2, whose value at the threshold is y% = fj /3~ 1.58. In Fig. 6 the flavour
concentrations are shown as functions of the parameter y2. With decreasing
y? concentration of strange flavour f; increases, fy decreases and f, remains
flat. In the limit y2 = 0 all flavours have the same concentrations, f, =
fa=fi=1

Presence of strange quarks affects the equation of state of quark matter
mainly through the flavour composition of 3-stable quark matter. This fact
is rather evident if we write the energy density of quark matter in the form

€uds(fus fa, fsinB) = %wz/3an;/3 + B + A¢s(fs,np) - (31)

The first two terms represent the bag model energy density for three massless
flavours, with

a= Y fP43B(f -1, (32)
i=u,d,s
The last term in this formula is the electron contribution, which can be

neglected as f, is always close to unity. The parameter a for 3-stable quark
matter is shown in Fig. 7.
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Fig. 7. The parameter a as a function of y*.

The correction A€ ( f5, np) accounts for deviations of the strange quark
energy density from the massless quark formula which are mainly due to
higher effective mass of the strange quark,

1
Befura) = 3w 10 [zt (Vo2 270 - 2)
0

= %xz/sn;/sAa . (33)

This expression shows that the correction Aa is small near the threshold,
where f; is small, as well as at higher densities, where y? is small. In Fig. 8
we show Aa/a as a function of y?. The relative correction has a maximum
value 0.092 for y% = 0.7.

0.1 q
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Fig. 8. The relative correction Aa/a as a function of y°.

To obtain actual values of A¢(fs, np) in the effective chiral model one
should specify the effective mass of the strange quark, m, .. In general
this mass depends on density, m, .g(ns). It can be obtained by extending
the effective chiral model to the SU(3) group. This is beyond the scope
of this paper and will be studied elsewhere [12]. Here we shall only find
some constraints which the parameter y? should satisfy for quark matter to
be present inside neutron stars. These constraints are related to the fact
that the quark equation of state, Eq. (31), allows for presence of sizable
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quark cores inside neutron stars only for values of the parameter a close to
a specific value a = a; which depends on the nucleon equation of state, as
discussed below.

4. Quark cores in neutron stars

The form (31) of the bag model equation of state is very useful for astro-
physical considerations as it shows that there are two relevant parameters
in this equation of state: The coefficient a of the kinetic term and the bag
constant B. Both of them are subject to considerable uncertainties. In the
effective chiral model considered here the parameter a is determined by the
value of y2.

In Ref. [13] we have studied presence of quark cores inside neutron stars
for the bag model equation of state, Eq. (31), using realistic equations of
state to describe the nucleon phase. We have found that the maximum
quark core inside neutron star corresponds to a continuous phase transition
from nucleon matter to quark matter. For a given equation of state such
a continuous phase transition can occur only for a specified value of the
parameter a = a4, provided the deconfinement density has a proper value.
The values of ay, corresponding to the three equations of state from Ref. [13]
are in the range 3.19 < a; < 3.34. Requirement that a = a; for a given
nucleon equation of state is a necessary condition for presence of a sizable
quark core inside neutron star. If the parameter a differs considerably from
ay, there are no astrophysically interesting quark cores inside neutron star,
for any value of the bag constant.

In order to construct a phase transition from nucleon matter to quark
matter in a neutron star we use three equations of state, AV14+UVII,
UV144UVII and UV14+4TNI, derived by Wiringa, Fiks and Fabrocini [14].
The results discussed here were obtained by fitting with a polynomial the
values of the energy per particle, E, of the 3-stable matter given in Table
V of Ref. [14]. This fit, which is given in the Appendix, was then used
to obtain the baryon chemical potential, xpy, and the pressure, Py, of the
nucleon phase according to the formulae:

and
Py =(uny —m — E)ng. (35)

Here m is the nucleon rest mass.
An important observation is that from Eq. (21) one can obtain the
baryon density of the quark phase as a function of the baryon chemical
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potential, ng(u) ~ p3, which is independent of the bag constant B. For
the nucleon phase one finds ng(p) ~ p® with a generally below unity,
a < 1, for any realistic nucleon equation of state [13]. The functions ng(u)
for quark and nucleon phase have opposite curvatures. This allows us to

find such a value a; of the parameter a that ngQ)(p) for quark matter is

tangent to ngN)(p) for nucleon matter. The value of the baryon chemical
potential at the tangency point, u,, is distinguished, as the phase transition
occurring at u, is continuous (second order). To construct a second order
phase transition a suitable value of the bag constant has to be chosen {13].
In Table I parameters of the second order phase transitions are given, for
the three nucleon equations of state.

TABLE 1

Parameters of quark equations of state for which continuous phase transition from
nucleon matter to quark matter occurs. The columns contain respectively speci-
fication of the nucleon equation of state, the bag model parameter a;, the baryon
density n,, the corresponding value of parameter y?, the bag constant B; and
corresponding value of the sigma meson mass m,.

Equation of state: a, nffm=3]  y*  BiMeV fm~3] m,[MeV]
AV14+4UVII1 3.191 0.510 0.88 90.0 861
UV14+4+UVII 3.335 0.481 1.19 80.3 808
UV14+4TNI 3.265 0.566 1.05 86.3 841

The values of a; for the three nucleon equations of state are in the
range 3.19 < a; < 3.34. From Fig. 7 where the parameter a is plotted as a
function of y2 one can find values of y? corresponding to the values of a; in
Table I. These values of y? are given in the Table I. We also give in Table
I the values of the sigma meson mass corresponding to the values By of the
bag constant for which the second order phase transition occurs.

We have constructed neutron star models corresponding to the second
order phase transition to quark matter for the three nucleon equations of
state. In this case the quark matter occupies the biggest fraction of the star.
The neutron star models were obtained in a standard way by numerically in-
tegrating the Tolman-Oppenheimer—Volkoff equation (see e.g. Shapiro and
Teukolsky [15]) for the equations of state with the phase transition from
nucleon matter to quark matter described above. At subnuclear densities
we used the equation of state derived by Baym, Bethe and Pethick [16].
In the crust we employed the equation of state due to Baym, Pethick and
Sutherland [17] and, at low densities, the one due to Feynman, Metropolis
and Teller [18].
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Fig. 9. Neutron star mass M and quark core mass M, as functions of the central
baryon density. Solid, long-dashed and short-dashed lines correspond, respectively,
to AV14+4UVII, UV14+UVII and UV14+TNI equation of state.
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Fig. 10. Neutron star magnetic field due to magnetized quark core as a function

of central baryon density. Solid, long-dashed and short-dashed lines correspond,
respectively, to AV14+UVII, UV144UVII and UV14+TNI equation of state.

The results are shown in Fig. 9 where we show the neutron star mass as
a function of the central density. Only those stars are considered which con-
tain quark cores. The quark core appears when the central baryon density
ny, exceeds the deconfinement density n,. For equations of state constructed
in this paper quark cores exist inside neutron stars heavier than about 1Mg.
Maximum masses Mmax of neutron stars which contain quark cores
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in Fig. 9 differ by about 0.1Mg, i.e. they are much closer to each other
than maximum masses of corresponding pure nucleon stars, with no phase
transition to quark matter, which are 2.20Mg, 2.12M¢ and 1.84Mg. One
should also note that the values of My, ,x in Fig. 9 exceed only slightly the
lower observational limit of 1.55M¢.

The quark core can contribute to the magnetic moment of a neutron
star if the quark matter is magnetized. Using magnetization (18) we have
calculated the magnetic moment of the quark core and its contribution to the
polar magnetic field Bp of the star. In Fig. 10 the magnetic field is shown
as a function of the central baryon density ny,. The order of magnitude is
Bp ~ 10'5G. This value exceeds magnetic fields observed in pulsars, which
are typically 1012G. Very strongly magnetized neutron star, with magnetic
field exceeding 104G, was proposed recently as a model of repeating soft
v-ray bursters [19].

Appendix

The energy per particle of neutron star matter for the three equations
of state from Ref. [14] is fit with the following polynomials:
The AV14+UVII equation of state:

E(np) = 2.65511 + 76.744np — 183.611n2 + 459.906n3 — 122.832n5, (36)
the UV14+UVII equation of state:

E(ng) = 7.57891 — 1.23275np + 227.384n3
— 146.596n3 + 324.823n% — 120.355n3, (37)

and the UV14+TNI equation of state:
E(ng) = 6.33041 — 28.1793np + 288.397n2 — 65.2281n3. (38)

In the above formulae ng is in fm~3 and E is in MeV.
The sum of squares of residuals for 18 entries from Table V Ref. [14] is,
respectively, 1.5927 MeV?2, 1.9629 MeV? and 1.2946 MeV?2.

REFERENCES

[1] C. Alcock, A. Olinto, Ann. Rev. Nucl. Part. Sci. 38, 161 (1988).

[2] C. A. Meegan et al., Nature 355, 143 (1992).

[3] P. Haensel, B. Paczyniski, P. Amsterdamski, Astrophys. J. 375, 209 (1991).
[4] G. Baym, S.A. Chin, Phys. Lett. B62, 241 (1976).



876 A. KoTLoRz, M. KUTSCHERA

[5)] W.B. Fechner, P.C. Joss, Nature 274, 347 (1978).
[6] B.D. Serot, H. Uechi, Ann. Phys. 179, 272 (1987).
(7] M. Kutschera, W. Broniowski, A. Kotlorz, Phys. Lett. 237B, 159 (1990).
(8] M. Kutschera, W. Broniowski, A. Kotlorz, Nucl. Phys. A516, 566 (1990).
[9] W. Broniowski, A. Kotlorz, M. Kutschera, Acta Phys. Pol. B22, 145 (1991).
[10] M.C. Birse, M.K. Banerjee, Phys. Lett. 136B, 284 (1984); Phys. Rev. D41
118, (1985); S. Kahana, G. Ripka, V. Soni, Nucl. Phys. A415, 351 (1984);
G. Kalberman, J.M. Eisenberg, Phys. Lett. 139B, 337 (1984).
[11] F. Dautry, E.M. Nyman, Nucl. Phys. A319, 323 (1979).
[12] A. Kotlorz, M. Kutschera, in preparation.
[13] M. Kutschera, A. Kotlorz, Astrophys. J. 419, in press.
[14] R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C38, 1010 (1988).
[15] S. Shapiro, S. Teukolsky, Black Holes, White Dwarfs and Neutron Stars,
J. Wiley, New York, 1983.
[16] G. Baym, H. Bethe, C. Pethick, Nucl. Phys. A175, 225 (1971).
[17] G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971).
[18] R.P. Feynman, N. Metropolis, E. Teller, Phys. Rev. 75, 1561 (1949).
[19] R.C. Duncan, C. Thompson, in Gamma-Ray Bursts, Huntsville, October, 1993,
eds G.J. Fishman, J.J. Brainerd, K. Hurley, Am. Inst. Phys., New York in
press.



