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The nonlinear development of thermal bistability in fluids is inves-
tigated. One-dimensional models of interacting fronts, treated with the
help of singular perturbation theory yield for exponentially (in their size)
long time on the way to phase separation. Spatial and temporal per-
turbation of the cooling may give rise to complex steady patterns. In
two dimensions we perform numerical simulations and find for the purely
thermal case and for the hydrodynamic case with open boundaries a qual-
itatively similar behavior — overall growth of the majority domain as a
power of the time. Again, stationary complex pattern may be achieved by
locking onto spatio-temporal perturbations The hydrodynamic case differs
from the purely thermal case in the value of the dynamical exponent (the
power with which the correlation length grows in time). The probability
of occurrence of critical conditions in an observed astrophysical system is
assessed using statistical considerations.

PACS numbers: 95.30. Tg, 05.70. Fh, 05.70. Ln, 68.10. -m

1. Introduction

Inhomogeneities in astrophysical fluids can be sometimes modeled by a
two phase medium with dense, cool clouds and hot, tenuous intercloud re-
gions. Optically thin plasmas subject to radiative cooling and heat diffusion,
which are thermally unstable and cloudy have been invoked in a number of
astrophysical contexts (see e.g. Field, Goldsmith & Habing 1969, Karpen et
al. 1989, Balbus & Soker 1989, McKee & Begelman 1990). These systems
are characterized by a heat equation, which for isobaric conditions can be
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cast in a reaction-diffusion equation form, resembling the real Ginzburg-
Landau equation with a bistable potential functional (¢f. Elphick, Regev
& Spiegel, 1991, hereafter ERS1). However, since the medium is a fluid and
the different stable phases have different temperatures (and thus densities),
mass advection in addition to heat diffusion is expected and fluid motions
have to be included in the model.

The linear analysis of the thermal instability and its properties have
been thoroughly studied starting from the work of Field (1965) and the
problem has also been approached numerically in various astrophysical con-
texts (see above references). We shall describe here some recent works on
the nonlinear aspects of the instability. In contrast to previous linear and
numerical treatments, our attempts have focused on the front and pattern
properties combining perturbative, numerical and statistical methods. The
key role played by the fronts between the cold and hot gas in such systems
has firstly been recognized by Zel’dovich & Pikel’ner (1969). The existence
of a stationary front in 1-D for a special value of the pressure was proven,
but important questions still remained open. Among them the effects of
interactions between fronts, fluid motions, spatio-temporal perturbations,
pressure variations and boundary conditions on the dynamics both in 1-D
and in the multidimensional case. We shall address these questions in what
follows.

2. Formulation of the problem

Neglecting the gravitational, magnetic and other body forces the fluid
is described by the basic equations reflecting the laws of mass, momentum
and energy conservation (see Field 1965):

dp
L - _v. .1
2 = Y- (pv), (2.1)
Dv
;= VP, (2.2)
1 Dp v i
oy S, Tl A pL(p,T)+ V- (xVT), (2.3)
R
r= —PT, (2'4)
U

where D /Dt is the Lagrangian derivative. Eq. (2.4) expresses the assump-
tion of a perfect gas equation of state connecting p, the pressure, p the
density and T the temperature. p is the mean molecular weight and R
the gas constant. The heat equation (2.3) contains the effects of the “mi-
croscopic” processes responsible for the cooling and heating (through the
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function £, the net energy losses per unit mass) and heat transport (through
the coeflicient of thermal conductivity, ). v is the adiabatic exponent.

The crucial role of the topology of L for stability has been established
by Field (1965). An S shape of the curve £(p,7') = 0 in the p — T plane,
for example, will guarantee bistability for certain pressures (see Fig. 1).
For a given pressure, such a bistable £ can be expressed with the help of a
potential functional having the form of two minima around a maximum (see
below). For a special value of p, which we shall call the “critical pressure”,
Pc, the depth of the minima is equal giving rise to the possibility of existence
of two equally stable phases. In 1-D the front between such two phases is
stationary and this is the afore mentioned Zel’dovich & Pikel’ner (ZP) front.
A single front in 1-D would move only if p # p., because of the asymmetry of
the phases. We shall refer to such front motions as “pressure driven”. In 2-
D, however, the curvature of fronts induces motion even when p = p.. Such
“curvature driven” motion towards curve shortening (Rubinstein, Sternberg
and Keller 1989) is the primary cause of pattern evolution in this case (see
also Gringrod 1991 and ERS1).

Cooling Function

- LI T T v T Y T

log(P/Pc)
0
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loq(T), arbitrary units

Fig. 1. The bistable cooling curve. Locus of points in the log(p/p.) — log(T) plane
for which cooling equals heating. For p = p. three equilibria, the middle one
unstable, exist.

Equations (2.1)~(2.4) can be cast in a non dimensional form if all the
physical variables are scaled by their representative values. The natural
length unit (the so called “Field length”), Iy, is the typical width of a front
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between two thermal phases in the presence of thermal conduction (the
effects of heating and cooling balance conductivity). The time unit, the
cooling time, is normally much longer than the acoustic time (characteristic
time scale of the equation of motion). We shall use henceforth nondimen-
sional equations.

3. Front dynamics in one dimension

In a typical astrophysical application the systemns are three dimensional.
Therefore the assumption of a 1-D system is not realistic, its only virtue
being simplicity. Multidimensional fronts may behave in a radically different
way from 1-D fronts (see above and in the next section). Still, the 1-D case
may serve as a first step in understanding local properties of fronts, front
interaction and other basic physical ingredients of the problem.

ERS1 simplified the problem by neglecting fluid dynamical effects, ob-
taining essentially a single reaction-diffusion-like equation for the tempera-
ture related field Z(z,t) defined as some power of the temperature (related
to the constant a arising from the assumption that x « T¢).

aa—f = F(Z;p) + ZPV?Z, (3.1)
where F is a nondimensional function related to £ and 8 is a constant ex-
pressible as a function of a. In 1-D V2 denotes the second spatial derivative.
Since isobaricity was also assumed, p plays the role of a parameter in this
equation. For p # p. fast phase separation results, however for p sufficiently
close to p. motion is caused just by front interactions. By using singular
perturbation theory ERS1 were able to reduce the problem of 2N front (N
clouds and intercloud regions) evolution into a system of 2N ODEs. In
this case phase separation is slow and the timescale of “cloud” lifetimes
are exponential in the cloud sizes (large structures could persist essentially
indefinitely). It was also demonstrated that the inclusion of a spatial per-
turbation in the cooling function, which can be undoubtedly expected in an
astrophysical system containing also discrete heat sources, may give rise to
steady complex patterns. (see Fig. 2).

It is very easy to include fluid flow in 1-D, by using a Lagrangian ap-
proach (as was first shown by Meerson 1989). Our next step (Elphick, Regev
& Shaviv 1992, henceforth ERS2) was, thus, to use the Lagrangian variable
m, defined by dm = pdz, instead of z, the spatial coordinate in the above
problem. The following set of nondimensional equations is obtained:

v
s a2
p - P a ] (3‘2)
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Fig. 2. Time evolution of a fifty front system including a spatial perturbation in
the cooling. Steady chaotic pattern persists due to locking (for details see ERS1).

2
ts\° . _ Op
(g) v = —67’}?, 3 (3.3)
. 2T, 0 p 0T
7= 225 L(rn) + gD 5, (3.4)
p=pT. (3.5)

In these equations the dependent variables are functions of ¢ and m (an
overdot denotes the derivative with respect to t) and vy was set to be 5/3.
In equation (3.3) the square of the ratio of the acoustic time, ¢, = lo/Vsound>»
to the cooling time, tg, appears multiplying o. The smallness of this ratio
justifies the isobaric approximation. The excess (or decrease) in pressure
due to the transition of matter from one phase to the other is rather slight
and the same pressure prevails in the bulk of both thermal phases.

In this case the problem can again be completely described by a sin-
gle reduced equation, identical to (3.1), but with m being now the spatial
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variable and not z. Thus, all the findings regarding phase separation and
possible complex patterns induced by spatial perturbations carry over to

this case too (see Fig. 3 and ERS2).
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Fig. 3. Same as Fig. 2, but without the perturbation and using the Lagrangian
mass variable. Phase separation occurs after a very long time.

Before concluding this section we sketch below the method of deriving
front equations of motion in a rather general case (see ERS1 and ERS2 for
a detailed derivation).

Consider a cooling function of the generic bistable type (as shown in
Fig. 1) denoted, for a given fixed p, by F(Z;p). Let G(Z,p) = Z~RF(Z,p)
and let U(Z, p) be defined by G = —0U/8Z. Using this “potential”, U, the

following ”free energy” functional can be defined:

Fiz)= [1322 + U(Z,p)lim, (3.6)
where the integral is taken over the whole system in question. It can be
shown (see ERS2) that the functional derivative of this functional satisfies:

§F — _Z—ﬁ?.g

= g (3.7)
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A steady solution of (3.1) extremizes F. In addition, F has the property of
a Lyapunov functional for that reduced PDE. Thus, for t — oo one of the
steady and stable states will be approached. Consequently, any initial data,
which are not a stable steady solution will develop in time in such a way as
to increase the extent of the stable phase.

These general considerations remain valid as long as the general shape
of U is appropriate (a double “well” potential). Moreover, the behavior of
a front solution far from its core and thus near the minima of U (Z; and
Z3, say) can be shown to be one of ezponential approach.

For example, if the cooling function is approximated by

F(Z,p) = ZP[A%(Z - Z3) - (Z - Z2)® ~ flog(p/pc)] (3.8)

with f constant and giving, for p = p. two equally stable states Z = Z; —
A=2Z1yand Z = Z; + A = Z3 the front for this case has the form of a
hyperbolic tangent (see ERS1,ERS2).

A solution consisting of several fronts is not a superposition of front
solutions (the basic equation is nonlinear). For example, a combination of
a stationary front followed by its mirror image (ZP antifront) is no longer
stationary. It is useful to consider the case in which typical front separations,
d, are much larger than their widths (~ lp). In such a case the solution
differs from a suitable superposition of two fronts by only a small amount
and we may have recourse to approximation methods.

Let K(m—m;) be a front (kink) located at m; connecting Z; at the left
to Z3 at the right and K(m —m2) an antifront (antikink) whose asymptotic
behavior is a mirror image of that of XK. Up to a small correction the
function including both structures can be written as:

2y (m) = -Z%K(m — my) B(m ~ my). (3.9)

The approximation here is up to order ¢, which must be ~ exp(—d/lg), since
the overlap is only in the expomnential tail. This overlap is responsible for
the interaction between the fronts and introduces a small correction into
their undisturbed (as if there were truly solitary) motion.

The functional F (3.7) for the function (3.9) differs from the sum of
such functionals for K and K and the difference reflects the presence of an
interaction “energy”, defined to be:

Uini(mg — m1) = FlZpg] — (FIK] + FIK)). (3.10)

Substitution of (3.9) into (3.10) and the use of the properties of the
steady solutions K and K gives rise, in lowest order in ¢, to the following
form of the kink-antikink interaction energy:

Uine(mz — my) = —gexp[—7o(m2 — m1)], (3.11)
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where g and 4¢ are positive constants. As the original PDE is first order in
time, we obtain for the kink position:

. 0
P, = -a—ml[uint(mz — m1)] = g0 exp[—70(m2 — m1)], (3.12)

where I' is a constant. The antikink position, ms, satisfies a similar ODE
(for a symmetric U the constants are also the same).

The life-time of an isolated “cloud” (a high density, low temperature
and thus low Z region described by an antikink-kink pair) or “intercloud”
region can easily be estimated by considering a cloud of size M consisting
of fronts at my and mg,, with M = my — mj. If the cloud is isolated it will
evaporate as its boundaries (the fronts) attract.

d
EZM = —2Bexp(—vo M), (3.13)

where B = gvo/I". This implies that an initial cloud of “mass” My evapo-
rates completely in time

1
tew = 2370 [eXp(’)’oMo) - 1] . (3'14)

The case of many interacting fronts (with F given by (3.8)), in the

nearest neighbor approximation, gives the following equation of motion for
the i-th front:

dm;

I‘dt

= exp[-AV2(mis1 — m;)] — exp[-AV2(m; — mi_1)].  (3.15)

These equations fully describe the system’s evolution towards phase separa-
tion (Fig. 3) or a stationary pattern pinned onto an external perturbation
(if it is included), like the one described in Fig. 2.

4. Two dimensional effects

When one tries to examine the problem in more than one dimension
the effect of the interface curvature has to be taken into account. We have
already mentioned the fact that even for p = p. phase separation is expected
due to the shrinking of closed domains. Aharonson, Regev and Shaviv
(1994) have treated the reduced equation (3.1) numerically in 2-D (in the
z — y plane). In order to reduce the full equation set to (3.1) in this case
it is necessary, in addition to the isobaric approximation, to neglect fluid
motions in the plane. It is possible, in principle, to think of conditions in an
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astrophysical systems in which motion is restricted only to the perpendicular
direction (by, say, magnetic fields). In any case, as will be shown in the next
section, we have found (a posteriori) that the results of the full treatment,
including advection, produce qualitatively the same type of patterns, the
difference manifesting itself mainly in dynamical exponents and effects of
boundary conditions.

ARS have concentrated on cases where p = p. as they are the most inter-
esting. It seems that such conditions should be rather rare, however because
of selection effects (see the next section) it is conceivable that these critical
conditions prevail in the observed cloud complexes. In addition, Aranson,
Meerson and Sasorov (1993) (see also the next section) have shown that even
if arbitrary pressure is assumed initially, it relaxes after a short transient
to the critical value giving rise to the slow dynamics of front interactions in
1-D, or curvature driven motions in more than 1-D. A system with a finite
size with velocities vanishing on the boundaries has to be invoked for this
purpose, conditions which seem more appropriate for laboratory plasmas
than for astrophysical systems (however see below).

The initial conditions for all the numerical calculations consist of a
random distribution of Z in the following form: in each square of size 5 X 5
(out of total 200x 200) grid points we set Z = Z2+6Z, where §Z is a random
number in the interval [-0.5,0.5] (Z; is the uniform unstable solution).

The parameters chosen in the function F(Z,p) in equation (3.8) are
Z; =2, A = 1.9 with p = p. (as in ERS1). The runs typically have a
duration of about 1000 cooling times.

4.1. Shrinking of a circular domain and merging of two domains

The evolution of a single circular “cloud” of radius Ry has been found
with the help of our code to follow the typical curvature driven front motion
(see Rubinstein et al. 1989) very well. Since the local velocity of the front is
proportional to the curvature, the radius of a circular front evolves according

to:
dR 1
it * "R’
with the solution L(t)> = R2 — R? « t, where R is the initial radius and
L is the typical length scale of the growing domain.

If two circular clouds are initially present, they shrink independently
and vanish if they are far apart. However, if they are close enough, their
mutual interaction causes them to touch (resembling the form of the figure
8) and merge first before the circularization and shrinking. The interaction
of two fronts is exponential in their separation, while the shrinking of each
of them is proportional to their curvature. Thus we expect that the critical
distance, I., between the two circular fronts for merging to occur before

(4.1)
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shrinking be such that exp[—bl.] = a/R, where R is the radius of the smaller
circular cloud and a and b are constants. When the distance is less than
I = }log(R/a), the fronts will merge before shrinking. We have verified
numerically that indeed [ is linear in log R.

4.2. Shrinking of arbitrary domains and the influence of
asymmetry of the potential.

It is known, that domain growth kinetics in systems without conser-
vation laws, of the type we have here, follows the rule that the majority
domain (the one imposed in our case on the boundary) typical length scale
grows like L o /t when the potential functional is symmetric (Kandel &
Domany, 1990 and references therein). This is plausible when we assume
that the solution to (4.1) holds also for arbitrary domain forms.

In the case where p # p. the velocity of the front is proportional to the
asymmetry parameter ¢, = p — p. and we have for a circular domain:

— X Cp, (4.2)

with the solution L(t) = |R¢ — R| x t, thus the typical length scale of the
growing domain goes like ¢ in this case.

We have calculated numerically the correlation length, £ in the system
for a variety of random initial conditions of the type described above, and
found that after a sufficiently long time £ « v/ (for p = p.). Thus, starting
with a complicated pattern (like the one depicted in the first panel of Fig.4),
the structure develops rapidly (vie merging and shrinking) and after a few
tens cooling times looks like one simply connected blob, with the typical
length of the bright domain growing in time as v/t. The structure develops
later via curve shortening towards a circular domain and disappear after
a long time, with the area of the growing domain changing linearly with
time, see Fig. 5 where the fractional area of the shrinking (shaded) domain
is depicted as a function of time. It is apparent that the relation becomes
linear after a sufficiently long time and it is possible to estimate that the
shaded structure will disappear after another ~ 1000 cooling times. In
this case we see that an initially complex cloud structure evolves towards
a simpler form, persists for a rather long (compared to the cooling time)
period and ultimately decays.

As a measure of “complexity” we propose to calculate the fractal di-
mension of the cloud boundary. Since we are limited by the numerical
resolution, the fractal dimension has to be calculated down to some suitable
lower cutoff. The method of calculating the fractal dimension is the well
known “box-counting method” (see Barnsley 1990). As the lower cutoff we
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Fig. 4. Short term (up to 20 cooling times) evolution of the system starting from
random initial conditions. Cool phase regions are shaded. The four panels are
labelled by the time (in cooling times).
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Fig. 5. The area fraction occupied by the dense phase as a function of time for
long scale evolution. The clouds area starts to decay linearly with time after a
sufficiently long transient.

use a box of 10 X 10 units and the error bars reflect the changing of this
lower cutoff by +5 length units. In Fig. 6 the fractal dimension is plotted as
a function of time and we clearly see that it becomes practically 1 (“simple”
1-D curve) after a sufficiently long time and stays so.
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Fig. 6. The fractal dimension of the boundary between the two stable phases as a
function of time for the same system as in figure 5. As soon as the cloud boundary
smoothens the fractal dimension stays equal to 1.

4.3. Evolution under the influence of spatio-temporal
perturbations — complezity.

In a typical astrophysical system the cooling function may include a
spatio-temporal variation due to a spatial distribution of the heating sources,
which may vary also in time (e.g. stars which are born shine and die). Heat
sinks may also be present, due to the conversion of heat energy into other
forms or increased radiative losses. While these processes may be extremely
complicated, we attempt here to model them within our simplistic model
as a random perturbation on the averaged cooling function. We thus add
to equation (3.1) a term of the form §F(z,y,t) = £ f(z, y) sin[(wt + ¢(z, y)]-
The domain is divided into 100 squares and in each square f(z,y) = f; ;
and ¢(z,y) = ¢;,; (1 < %,j < 10) are constants. f;; is a random number
between —1 and 1 and the phases, ¢; ; are also random (between 0 and 2x).

The results for the case w = 0.05wp (wg = 27/tg,te is the cooling
time) and ¢ = 0.1) are depicted in Figs 7-9. In Fig. 7 we see that a rather
complicated cloud pattern persists for a very long time. It is caused by
the persistent spatio-temporal forcing which (not unlike in the 1-D case,
see ERS1) gives rise to the “pinning” of the structure by the perturbation.
Indeed, in Fig. 8, it can be seen that the area of the shaded region appears
to reach a constant value and thus does not continuously decay with time.
Moreover, complexity, as reflected by the boundary fractal dimension, is
now persistent with the fractal dimension of 1.2 £+ 0.1.

Experiments with smaller values of ¢ gave rise to results which could
be regarded as intermediate between no forcing (¢ = 0) and this case. The
area of the clouds decreased with time, but more slowly that in the unforced
case (as o t9, with 0 < ¢ < 1). The fractal dimension continued to decrease
towards 1, however its rate of change became extremely slow already for
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t=600 t= 900

Fig. 7. Same as Fig. 4, but for a long term evolution with a spatio- temporal pertur-
bation on the cooling function of the form described in the text. The perturbation

amplitude is 0.1 in this case.
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Fig. 8. Same as Fig. 5, but with the perturbation.

€ > 0.02.

For other values of the forcing frequency, w, we have found that if
w < wg, a complex pattern pinned on the spatial perturbation persists
even for very small e. The value of the critical amplitude (¢ below which
no pattern persists) grows with w until w ~ wp. When w is significantly
larger than wy no pinning can be achieved, since the quickly oscillating
perturbation averages out to zero over a cooling time.
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Fig. 9. Same as Fig. 6, but with the perturbation. The fractal dimension levels off
at a value ~ 1.2.

5. Effects of advection on multidimensional pattern evolution

When motions are allowed in all directions and we consider a multidi-
mensional problem the full set of equations (2.1)-(2.4) can not be reduced
any more to a single equation of type (3.1). The problem may be then
approached numerically. Shaviv and Regev (1994) have performed such nu-
merical calculations for various initial and boundary conditions and have
found that the results resemble qualitatively the above reported results of
the two-dimensional purely thermal-diffusive case. However, the advective
motions, necessary for mass conservation, obviously affect several important
characteristics of the pattern evolution. Our findings on two such effects are
sketched below.

5.1. Dynamical exponents

Equations (2.1)-(2.4) cannot be reduced to a single equation because
it is impossible to define a suitable Lagrangian coordinate in the multi-
dimensional case. Still, it is possible to examine a spherically symmetric
configuration and define the mass coordinate, m, by dm = corP?~1dr where
7 is the spatial coordinate, D the dimension and ¢g is a constant related to
the density of the inner phase. Assume that the spherical front satisfies an
eikonal equation (see Gringrod 1991) of the type

Np+ K =cm, (5.1)

where N, = dm/dt is the front velocity in the mass space, K the front’s
curvature and c,, is proportional to the asymmetry of the phases (p — p.).
In addition, by definition N,,dt = cgrP~1dr.
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We distinguish now between two types of behavior.
(1) When we are near the critical pressure, p ~ p. and thus ¢,, ~ 0. Using
equation (5.1) with K = (D — 1)/r for this case we have:

corPldr = —g—-q—r:lldt. (5.2)
Integration yields:

D? -1
D+1_,D+1 o _ t (5.3)
Co

r

which means that, as expected, the spherical cloud will shrink because
of curvature driven motion. Defining the typical length scale of the
growing domain, L, by LP+! = ré)+1 — rD+1 we see that L(t) grows
with time in this case as:

L(t) « tTFT . (5.4)
We get in 2-D: L(t) « t!/3, and in 3-D:L(t) o t}/4.

(ii) When p is far from p., ¢;, > K and we have N,,, = ¢,,. This is the
case of a pressure driven motion. Now ¢,,dt = corP—1dr, yielding:

mD
PP = ‘mZt. (5.5)
co

The cloud will grow or decay according to the sign of ¢,,, and defining
again the typical length scale of the growing domain as LP = |»D - r(? |
we get:

L(t) < tD . (2.14)

Hence in 2-D: L(t) « t1/2, and in 3-D: L(t) x t'/3.

We now make the assumption that the power law behavior of L(t)
t1/m, is the same for both L as defined above (i.e. L™ = |r™ — 7P| for the
system with a spherically symmetric front) and the correlation length, £, in
a general cloudy system viewed as a disordered medium.

Numerical simulations indeed confirm this assumption (up to the accu-
racy we can measure) as depicted in Fig. 10.

5.2. The occurrence of critical pressure
In the astrophysical context the boundary conditions are notoriously

problematic and we have essentially no control of the parameters. It is, thus,
relevant to ask what is the probability to have in an observed cloud system



1020 O. REGEV, N. SHAvVIV

Correlation Length Growth, For several Cases
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Fig. 10. Numerical result for the correlation length growth in 2-D systems. The
correlation length grows as a function of time, giving different asymptotic powers
for the relation between L and t.

a certain parameter value, in particular e.g. critical pressure. Consider an
ensemble of cloudy systems having a given distribution of initial cloud sizes
different ambient pressures. What is the probability as a function of time
to observe a system in the critical conditions? This question is particularly
relevant to previous works since it was usually assumed that since clouds
for which p = p. live much longer and prevail, systems in which clouds are
observed have to be close to the critical conditions.

We first look at a certain system from the ensemble, with a specific
pressure. The correlation length behavior, as a function of time, depends on
how close is the system to the critical point. As explained before, there are
two limits to the behavior of the system’s correlation length. Assume that
the system is started from some random initial configuration, containing
structures on small scales. We expect, thus, that curvature driven motion
will be important as long as the small structures are present. Later on,
when only large structures are present the role of the pressure in driving
the motion becomes dominant.

(i) For smallt we are effectively close to p = p. (i.e. to the critical pressure),
and the correlation length goes like L; = a; t1/(P+1) where a; is a
constant.

(i1) For large enough t we are effectively far from p = p., and we have
Ly = ayt!/P with y = +|p - pcll/D since ¢,, is to the first order
¢m X (p — pc) and a; is a constant. The + sign refers to the case
p > pc while the — is for the opposite case. We have thus effectively
two symmetric branches for L as a function of y. The correlation length
behavior as a function of time for a fixed y can be seen in Fig. 11.
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Fig. 11. Correlation length growth in hydrodynamic systems as a function of time.
For small t, the correlation length grows while the curvature is dominant, thus
L o t1/(P+1) For large t the correlation length grows under the influence of the
pressure, i.e. L o t'/P. In between there is a cross over from one behavior to
another. This happens at approximately t = t.,, depending on the pressure.

Assume now that the correlation length is given by a dimensionless
function f(z) of a dimensionless variable z, containing time and y:

L= Lof(z). (5.7)

The temporal variation will enter only through z (i.e. z x t) if we assume
that scaling exists. Under this assumption:

fe>1)=2b & f(z < 1)=2D4, (5.8)

z = 1 is the crossover point where Ly = L,. The crossover time is:

wm (2)77 9

and since z = 1 at t = t., we have:

az D*+D
= | — t. .1
z (aly) (5.10)
Thus:
aj D2+D 2
Ly = a, (a—) y!~P-D7, (5.11)
2

We next look at an ensemble of systems of clouds placed in different
pressures. In Fig. 12 we can see the general behavior of the correlation
length as a function of the boundary pressure. In the center there is a
region of width

e R
Ay=2 =2t D%+D (5.12)
az
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corresponding to pressure width
a\?P -_p_
Ap=2 {— ) t D*+D, (5.13)
az

where the correlation length behaves as if the pressure is critical for any

fixed t.

L |
|
» R R ” _ Rb-Typical initial
/ size of the clouds
/ La=hyt1d
/
|- = — = = 7~ = — — = Li=atld+)
NI
N4
y=0 y

Fig. 12. Correlation length behavior as a function of the deviation of p from its
critical value for a given time. For details see text.

Consider now an initial distribution function of cloud sizes for a given
ambient pressure given by the function g( Ry, p), defined in such a way that
g dR dp is the number of clouds in a given volume having initial sizes
between R¢ and Ry + dR for a system in which the pressure is between p
and p + dp. We write:

R
9(Ro,p) = —%5 R—g) (5.14)
with Rj being the typical initial size of a cloud, gg a suitable normalization
constant and § dimensionless function, whose p independence reflects the
fact that we consider the same cloud size distributions for all pressures.
One can now calculate the number of clouds in the central region (where
we have curvature influenced behavior). It is equal to the integral over the
relevant pressure region (i.e. Ap) and over the sizes of clouds that still exist
(those with initial sizes greater than the correlation length).

o0

N.=Ap [ g(L)dL, (5.15)
/

with L; = a;81/(P+1) a5 given above in (i). This can be rewritten as:

Ne =20 (2)P ¢4 hu(c), (5.16)
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with ( = L,/R;.
Like §(u), hi(u) is a dimensionless function defined by:

hi(u) = /uoo g(v)dv (5.17)

The number of clouds in the y-region in which there is pressure driven
motion is:

(> s e o]

N, =2 / / o(L)dLdp, (5.18)
Ap/2L;
where Ap/2 = (aj/az)P t=(3/D+1) and L, = a; y t1/P as given in (ii).

This can be written also as

L,

o0
Nside = 290 / hy (-1-2-;) dp. (5.19)
Ap/2 0

Remembering that dp = DyP—1dy (for y > 0) and defining another
dimensionless function:

oo

ha(u) = / DvP 1y (v)dv (5.20)
gives:

N, =2 R—leh(c) 5.21)

p =290 | 7 ha(C). (5.

Therefore the ratio between the number of clouds of the different regions
is:

Ne _ om0 (5.22)

Np ha(€)

Let us examine this result for two typically expected initial cloud size
distributions. If we start with an exponential distribution having a typical
radius of Rj, for the initial radii of the clouds, the ratio between the number
of clouds in the curvature driven zone and in the pressure driven zone would
be proportional to (. Therefore most clouds will seem to develop according
to pressure driven evolution (i.e. p effectively different from p.) until the
correlation length in the system will reach the typical initial cloud size (i.e.
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¢ = 1), then the majority of the most clouds will seem to develop then
according to curvature driven evolution (z.e. p effectively equal to p.).
In the case of an initial power law distribution, we have

1 N,

g{(Ro)
Thus, for a power law initial distribution, there will always be a constant
ratio between the number of clouds in the curvature driven zone and the
pressure driven zone. It will be less than one (i.e. dominated by pressure
driven clouds) only if we have 1+ D < -y < 2 + D since because of obvious
constraints, we must always have ¥y > 1 + D.

It is, therefore, not obvious that while looking at an ensemble of cloudy
systems at different pressures, we will indeed see, as time goes on, more and
more clouds in the curvature driven zone, relatively to the number of clouds
in the pressure driven zone. Hence, the assumption made previously that
the clouds in the pressure driven zone, that live longer, will be seen more
frequently by observers, is not necessarily correct. In the case of an initial
power law distribution of the clouds, this assumption will be correct only if
we have enough small clouds (7 is large enough). When we have an initial
distribution of clouds with a typical initial radius, such as an exponential
distribution, this assumption will be correct if the correlation length in the
curvature drive zone is larger than the typical initial cloud size, which of
course happens always for large enough t.
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