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1. Introduction

The physics is disordered electronic systems has been a very active area
for the past 15 years. In the weak disorder limit the properties of a single
electron interacting with random impurities are basically understood and
quantitative comparison with experiment is successful if theory stays at
the phenomenological level [1-4].The theory of electron-electron interaction
in the presence of impurities is in a worse shape for semiconductors [5].
It has been found in 1984 [5] (and since then there has not been too much
progress) that (1) 7;, was 10 times larger than indicated by theory, (2) 1-F,
where F is the factor that reduces static screened interaction, was 5 times
the expected value, (3) temperature-sensitive negative magnetoresistance
in parallel magnetic field was unexplained. The reason may be the use
of contact potential assumption for electron impurity approximation. The
electron-electron interaction will not be discussed here, although because
weak localization (WL) and electron-electron interaction appear together
in many cases they cannot be separated. There is parallel progress in WL
in the hopping regime [6].

The purpose of this review is to address assumptions made in applying
the standard WL to transport in semiconductor systems. The transport
in such systems is a many respects different from transport in disordered
metals. In particular we will raise the following questions: (i) contact poten-
tial assumption, (ii) effect of impurity correlations, (%) spatial distribution
of impurities and wave function modulation in superlattices (%v) origin of
weak-antilocalization in strictly two-dimensional semiconductor systems.

The question we concentrate on is whether upon relaxing some standard
approximation the physics of localization is changed.

2. Standard theory of weak localization

Weak localization effect is caused by quantum interference. Classically
probability P for electron to get from point A to B with two possible paths
(Fig. 1(a)) equals P = P; + P,. Quantum mechanically one has to add
amplitudes first and square the result

P = |A1 + Azl = A;Al + A;Az + 2R8A;A2 . (21)

With A; equal A; quantum probability is twice the classical one due to in-
terference. Among the paths connecting points A and B there are ones that
form loops as shown in Fig. 1(b). Inside the loop an electron starting from
point 0 (Fig. 1(c)) can execute forward trajectories and its time-reversed
counterparts. Such pairs of trajectories interfere constructively increasing
probability of locating an electron at point 0 in absence of time-reversed
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terms. In describing the quantum interference as a diffusive process three
lengths play the role: elastic scattering length I, phase breaking (inelastic
scattering) length Iy and magnetic length. Phase breaking length radius is
visualized in Fig. 1(c) as a radius of a circle enclosing a typical trajectory
which has to be much larger than the elastic scattering length in order that
the diffusive process occurs. The size of magnetic length is related to a
radius of area equivalent to the one encircling a trajectory for which the
change of phase due to perpendicular magnetic field is of order 1.

a)

b}

c)

d A S — <~ =B

Fig. 1. Schematic representation of paths entering calculation of electron transport
(a) interference in the presence of two paths, (b) looped trajectory (c) interference
in the presence of many scatterers — [ is the mean-free path, [, is the phase-
breaking length, (d) an important trajectory in the hopping regime
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The description of weak localization for disordered metals is to be con-
trasted to interference effects for systems in the hopping regime for which
the important trajectories lie inside narrow tubes connecting points 4 and
B due to the fact the transport follows through the overlap of exponentially
decaying wave functions, Fig. 1(d) [6].

2.1. Quasiclassical theory of weak localization

In this part we follow the excellent paper by Chakravarty and Schmid
[7].

The starting point is the Feynman’s expression for the propagation
amplitude

1
K(rg,rijts,t;) = /d[rt] exp (ES[rt]) (2.2)
with the action given by

ty

S[re] = / dtL(ie, 7).

t;

L=1Lo+ Ly,
1 .
LO = 51’711'3 - VR(‘Pt) . (2.3)

Here Vg is random potential representing disorder, Lo is dominant part
of the Lagrangian, and L; — electromagnetic interaction is small but is
important because it breaks symmetry with respect to time reversal.

In the quasiclassical limit the path integral = sum of all paths with
stationary action

K(rpritpt) = Y Ailexp (£50051) (24)
{r'}

where A represents Gaussian fluctuations around the classical path.
Conditional probability for an electron on Fermi surface is

W(f‘f,r,';to) R —— Z E A

cl}{scl}
X exp{g(S[r, - 5[31 1}
x {6(elr§') — eF) + 6(elst'] — eF)} - (2:5)
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Due to irregularities of Vg, it is assumed that no correlations between phases
5[rS']/h and S[rt)/h exist on two different paths

Wirsmista) = —s 3 [ABTIPEEDT - er).  (20)
cl}

Conditional (quasi)probability of pairs of time-reversed paths takes the form

W(rs, risto) = (E ) 1A 6] - er)

cl}
X exp(2¢[1‘t}) ) (2.7)
with .
dr< c
dt =i, (2.8)

higlr.] = S[r{'] - S[rel,]

- /dt{L(i't,rt)—L(#v_t,r_t)}
=
5?

- /dt{Ll(i't,rt)—Ll(—v‘t,rt)}. (2.9)
S

In calculation of probability of classical paths summation over paths and
averaging over Vg can be combined in one step. Selecting an interval of
length tg, a path R, and a neighborhood [R;]---[R¢] + d[R:] in the func-
tion space, probability of tlassical paths for a realization of the potential is
defined

Py[Ri] = <2 AL 28l - ep)6<[r:‘}—Rt)>. (2.10)
cl}

Classical probability density

Wi, = / d[R.JP, Ry, (2.11)
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is related to a probability Wtodth for a classical path to return to a volume
d?R, near a starting point. The phase dependence can be included as

Wi, = Weg((exp(ig[re]))) » (2.12)
where

(YR = W' [ dRIPGRIYIR. (2.13)

W(r¢,ri;to) can readily be calculated for a Boltzmannian motion in which
an electron undergoes sharp changes of direction upon collision with im-
purities. Such approach is often used in weak localization problems which
involve velocity at boundaries (8, 9].

In general, it is much easier to use a Brownian motion, in which when
kgl > 1 the result obtained from Boltzmann equation agrees with the one
from diffusion equation. Then the probability for a realization of a path is
given by the Wiener measure

s

1 )

P, [R;] = exp ( ~iD / dth) , (2.14)
t

where
ty
WﬁﬂmQJQ:/ﬂ&km(—/&ﬂRn&n, (2.15)
t;

. 1 .2 12
F(R¢{,R;)= —R, — n

4D
In the absence of time-reversal terms the standard diffusion equation in
obtained

(Li(Ry, Ry) — Li(-Ry, Ry)).  (2.16)

0 9% .-
[E - DM] W(rg riststi) = 6(ty - t:)6(rg — ri), (2.17)

with the solution

) _ 2
W(rs,rist0) = (47 Dtp) /2 exp (~4D0to) . (2.18)

As a consequence the probability of return is

W(rf,rf; to) = (4‘R'Dto)~d/2 . (219)
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Taking into account damping due to phase breaking collisions

- - t
Wiy = Wy, exp (—'r_q;) . (2.20)
P

Correction to conductivity is obtained by invoking that conductivity
and diffusion constant are related

o =2e%g(Ep)D. (2.21)

Diffusion constant can be obtained from the time-integrated velocity-velocity
correlation function and as a result

62 =
Ao = _§7r_2f:/dt0Wto . (2.22)
T

This leads to the following result

9 (-;3;)’1’1‘1 - (Dv'ph)_’iT ford=3

Ao = YT ln(Igl) ford =2 (2.23)
(ZW)(DTP}I)% ford=1.

If size of the sample is smaller than the phase breaking length it takes over
the role of the characteristic length.
In a presence of magnetic flux time-reversal term due to

L1 = ey - A(rSY) (2.24)

gives the phase proportional to the enclosed flux

to/2
cl
sird =2 [ i ey =2n 208, (2:25)
h Y
—t0/2

where ¥y = h/2e is the quantum of flux for two electrons. This is closely
connected with the Aharonov—Bohm effect demonstrated by Shavrin and
Shavrin (see, Ref. [10]) in doubly connected geometry

+ oo
Wto = Z (47K'Dt0)“d/2
n=-—oo
n?L? vy to
— ITIN ——t — ——
X exp ( 4Dty +2min 7, Tph)

v
= — 2r—=1 . 2
cos(ww) (2.26)

0
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Phase coherence in presence of magnetic flux is obtained from the diffu-
sion equation in which momentum is substituted by a canonical momentum.
Such a modified diffusion equation reads

0 .0 2e 2
[ et D(—lg;;' - fA(rt)) -+

5 ]W:

L
Tph

§(ty —t;)o(rp —ri). (2.27)
Choosing the gauge A = (0, Bz, 0) one obtains

2 2¢B
L
f Ty
6(tf - t,')6(:cf —z;)6(yy —y:i). (2.28)
The solution is in terms of ¥, (z) normalized eigenfunctions of the operator
D(ai:f + (2¢B)?) with eigenvalues w,, = (2E2)(2n 4+ 1)

- dk hk hk
szn:/z—ﬂ_kf'n(:c —ﬁ)!pn(zi—ﬁ)

t
X exp [ik(yf ~ Yi) — wpto — _,,2_} . (2.29)
Toh
Forry =7r;
- 2eB t
W =22 S e (-2R)en 0 - L) (2a0)
h = Tph

This leads to the following correction to magnetoconductivity

e2

oo
- to to
_m / dtOWto {exp (“T—‘) - eXp( - )]

h
0 p

= ezz PRV N M S
T 2%2h — ) 4eBDTyy 2  4eBDr

e? 1 g8 1 B
-wn{"’ (3+72)-#(5+ _h)} (231

where 75 = h/4eDB and ¥ is Digamma function. Ao increases with in-
creasing magnetic field.

Ao =

i
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Analyzing the derivation scheme the type of noise occurs in two places.
Firsts in Eq. (2.7) where it is assumed that due to irregularities of Vg, it
is assumed that no correlations between phases S[r!]/k and S[r§l)/A exist
on two different paths. Second, when the averaging over noise is made.
The choice of Gaussian white noise is motivated by the facts that it exactly
corresponds to the Green’s function technique in which only nonintersect-
ing impurity interactions are taken into account. This suggests that using
coloured noise may be closer to reality [11]. Unfortunately, Feynman paths
for correlated noise do not lead to analytic result [12]. Likewise, we are
not aware of any analytic result for the probability of return. The use of
correlated noise is even more pressing for systems with correlated impurities
such as spin glasses or semiconductor systems with the 2-D electron density
approaching 1012 cm™2 [13, 14].The presence of traps can be simulated by
diffusion in random media

3 62 . -
[5—5 - D@] W(rg,risty, ti) — AV(rg)W(rg, risty, ti) =

6(ty — t;)o(ry — i), (2.32)

where A is a constant and V(r¢) is time-independent §-function correlated
Gaussian potential. This equation was studied by Tao [15] in 1-dimension
and found to be diffusive for times small compared to 7 = (16D/9A4)1/3
and completely dominated by random medium for times large compared to
T when probability of W (0; ¢ #,t;) grows with time exponentially. In view of
the fact that traps also dephase electrons this interesting theoretical possi-
bility is not applicable. Large classes of dynamical processes in disordered
media differ from simple diffusion. Anomalous diffusion is characterized by
different from 4 = 1 exponent in dependence of the mean-squared displace-
ment [16-20]

<>~ tT. (2.33)

This can be achieved by either using
[-3% - %k(r,t)%] W(rs,rists,ts) =0, (2.34)

or o o
[57}; - D@} W(rg, rists,ti) =0. (2.35)

There exists an analogy of weak localization in dynamic systems manifested
by diffusive regime in e.g. kicked rotor [21, 22] or periodically driven anhar-
monic oscillator [23]. When time-reversal symmetry is preserved quantum
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survival probability is twice its classical counterpart [23]. These authors
reported that introducing 10% of random noise in the field destroyed all
interference effects. It would be interesting to study the counterpart of
this effect in electronic transport. The diffusive nature of the motion exists
for kicked rotor even though as shown by Atland [24] the kicks are not §-
function correlated. This resilience of diffusive nature of dynamics is also
corroborated by field-theoretic results [25, 26].

2.2. Quantum theory of weak localization

In this part we will concentrate on momentum dependent scattering.
For introduction to the subject the reader is referred to the classic textbook
by Mahan [27] and the review by Bergmann [3]. Here we start from the
general form impurity averaged double scattering probability W illustrated
in Fig. 2

NimpV 2
W = nimp(ViVj)i=j = %ﬂpl +P2—P3—P4)9(P1, P2, P3. Ps) » (2.36)

where 7y, is the impurity density.

p1—¢7—>p3
‘v
X
Y
pz——9 L] ——)pL

Fig. 2. Schematic representation of the impurity averaged double scattering prob-
ability.

There have been several calculations for important anisotropic cases.
Beal-Monod and Forgacs [28] analyzed the correlated binary alloy occupying
a D-dimensional hypercubic lattice with the host atoms B of concentration
1 — c and the concentration of impurities A represented by a small number
c. They used the following correlated alloy scattering probability Wwca)

e(l - c)AV

w(p—p') = c(1-¢)(Va-Vp)* |1 -
kBT

Z expi(p—p')-d| ,

(2.37)
where AV = V44 + Vpp — 2V4p with V;; energy of neighbouring pairs of
atoms 17, T is the characteristic temperature of ordering, and d is a lattice
vector.
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Fig. 3. Diagrams contributing to the classical conductivity.

Beal-Monod, Theumann, and Forgacs [29] considered screened Coulomb
potential in 2 dimensions

V(r) = 2’3‘;811)(:7’”') ,

The application of this potential leeds to the following form of the screened
Coulomb impurity averaged scattering probability W(*¢)

(2.38)

kR
k%

-1
wiee) = NimpV 2 (lg - K'|) = zn'?m-g (coshd) - ) , (2.39)

where cosh ¢ = (j;) +1.

Szott, Jedrzejek, and Kirk [30] constructed a tight-binding model of a
superlattice for general impurity profile and wave function modulation. W
contained the angle-dependent part g

g(Pl,pg,P3,P4) = g(p1z$p229p3zvp4z)

4
= a1 +2a3 Y  cospiza + 2az[cos(p1. + p2:)a
=1
+ cos(p1, — p3z)a + cos(p1z — paz)al. (2.40)

In contrast to previous cases they obtained momentum dependent scat-
tering lifetime 7

1 . 1
iy = 2 IR, i0%) = ~(1+ beosp,a), (241)
with
1 83(0) _ 2mgy(eF)nimpV2b3(0) (2.42)
70 - 1’6' B a : .

and where X is the self-energy, gy(e¢) is the projected density of states
per spin, a is the superlattice period and b, b; and coefficients a; represent
various impurity averages defined in Ref. [30].
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Fig. 4. Propagators contributing to the quantum correction to conductivity: (a)
maximally crossed diagrams, (b) representation of the particle-particle diffusion
propagator (Cooperon).

The contribution to the static conductivity consists of the classical
Drude and ladder diagrams, where the hatched rectangle in Fig. 3 repre-
sents a diffuson. The weak-localization effect is related to maximally crossed
diagrams shown in Fig. 4(a), with the particle-particle diffusion propagator
(Cooperon) shown in Fig. 4(b). It has been demonstrated by Vollhardt and
Wolfle [31] and Bhatt, Wolfle, and Ramakrishnan [32] that all diagrams rep-
resenting WL conductivity oprc reduce to one diagram with the Cooperon
propagator (see Fig. 5).

@@'
X0

Fig. 5. Diagrams contributing to the quantum correction to conductivity.

A

NS

/
/

Using the Matsubara formalism one obtains static WL conductivity
from the diagram in Fig. 5 as a term linear in external frequency

2e2 d*k d¢ d%
k k)G(k, e,)G(k
oiited) = 5 3 [ Gryaiomav O = DG @)k + )

X G(q - L, €)G(q — Ryen + w)\W(k, -k, q, €n,w¢), (2.43)
where the Matsubara frequencies are w, = 27T (Il + %), with T being the
temperature. The condition ¢,(€, + w;) < 0 of nonvanishing Cooperon
W(k, —k, q, €n,w,) is assumed.
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The easiest way to calculate the Cooperon W, (k, k', g, wn 4., wn) is to
use the recurrence relation [29]

§i+l)(k’ k', q’wn-i-u,wn) = G(p’wn'f'V)G(p q’w"‘)

(2 )d
X nimpV2(1g — KW (R, K, g wntrywn) s
(2.44)

In the standard approximation V2(|q — k'|) reduces to the constant. Then
the right-hand side of Eq. (2.44) does not depend on k' and neither is
,S"H) (k, k'). Thus Wgt)(k, p) is independent of p and can be pulled out
in front of integral which reduces the integral over p to the product of the
two Green’s function and leeds to the geometric series for W-.
For a contact potential the Cooperon reads

1 1
= ey 7k (2.45)
where D = vi7/d, where d is the dimension.
For a contact potential the Drude conductivity has the form
2
:wl ford=3
DR =\ %&! ford=2 (2.46)
%} ford = 1.

For independent impurities and the contact potential the classical conduc-
tivity consists of only the Drude part. For general potentials, such as con-
sidered in Refs [28, 29] also the ladder diagram contributes with the effect
of replacing the elastic scattering length by transport scattering length.

For the correlated alloy [28] the Drude diagram ag;) remains un-
changed compared to the isotropic contact potential. The WL correction to
conductivity also has the functional form of the contact potential but with
the changed cut-off (I — ')

2 (—217) fOrd=3
In(%) for d =2 (2.47)

(2r (L —=1") ford=1.

Ac(e?) = gy

For screened impurities [29] the WL correction to conductivity in 2
dimensions has exactly the functional form of the contact potential, however,
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the classical conductivity decreases when the range of potential increases (¢
decreases)

kr expo+1
2% Nimp 2 )

Finally, for the superlattice with arbitrary contact impurity profile the
result for conductivity is [30]

Tclass =

(2.48)

2¢2 d3q 1 e? 1
o wL=——D / = (249
I ~h I @r) Dy + Dot 47y | 7h/Diren (2.49)
and
02, WL = 2550” WL (2.50)
Z, - y L] .
Dy

where D, = D, .+ D, j, with D, . is the coherent part of the diffusion coef-
ficient in z-direction and D, j is the hopping part of the diffusion coefficient
in z-direction. Here the standard procedure of introducing dephasing time
7pn Was followed. This equation provides the largest modification among
systems with momentum dependent scattering probabilities compared to
the uniformly distributed impurities interacting with the contact potential.

750~ impurity distribution: 0.025 K
7 .. uniform
] — .. interface
=~ -4 e ini—barrier
: i
E 500
@ i
= |
[ p
<}
250
0 =
1 Impurity distribution: 7.0 K
] T intertae
150fg  —— jnterface
g N
n 100-:
g J
] i
50 -
0]
~0.03 -0.01 0.01 0.03

B (T)

Fig. 6. Weak localization corrections to magnetoconductivity in superlattice SLN
— high barrier, narrow miniband, at two different temperatures [33]. Squares

represent experimental points. Curves are theoretical results for three different
impurity distributions.
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j Impurity distribution: 0.02 K
-4 ——— uniform
200 - — — interface
— n —— in—barrier
0 4.
B 50 >~
m n ~
[ . <
~
E 100 - NN
< . N
. 50
0]
1 Impurity distribution: 821 K
N — uniform
_ ---. interface
50 & . in-barrier

Aow, (S m™)

-0.08 -0.02 0.02 0.08
B (T)

Fig. 7. As in Fig. 6 for superlattice SLW - low barrier, wide miniband. Note the
agreement over three decades of temperature up to %B, in magnetic field.

Recently Szott, Jedrzejek, and Kirk {33] reported measurements of
quantum corrections to the magnetoconductivity in two superlattice sam-
ples of GaAs/Al,Gaj_As differing in the Al.Ga;_.As alloy composition
(and therefore in the miniband width). The sample with a smaller band-
width displayed a larger correction to magnetoconductivity; however, this
result could not be described by a 2-dimensional theory. Using both a sys-
tematic and detailed analysis of the transport data they found that weak-
localization (WL) rather than electron-electron interaction dominated the
quantum transport corrections. An extensive quantitative interpretation of
the transport results was done with an advanced weak localization theory for
superlattices, incorporating dopant distribution, wave function modulation,
and a higher magnetic field range beyond the eikonal approximation [34].
However, this advanced theory still assumed a delta-function impurity scat-
tering potential. The theoretical fits to the data were not compatible with
the as-grown impurity profiles, but were best fit with an effective uniform
impurity distribution. This is shown in Figs 6 and 7. While silicon dopant
migration smeared the impurity profile (35] we think some effect came from
the inadequacy of the point scattering assumption commonly adopted in
WL theory, which suggests that the long-range potential scattering in WL
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effects was operative. The most conclusive results for indicating the need to
go beyond the contact potential in describing quantum transport could come
from vertical transport measurement in superlattices. Such measurements
were so far performed in only 2-terminal geometry [36]. Four terminal mea-
surements present a major fabrication challenge. Even for classical vertical
transport it is difficult to ascertain validity of the Bloch picture [37].

3. Weak antilocalization in 2-dimensional systems

Recently there has been a resurgence of interest in weak-antilocalization
that as is well-known is due to spin-orbit scattering. In the classic paper by
Hikami, Larkin and Nagaoka [38] the Cooperon has been shown to be

1 -1
Wepse = gegtimyme (P — w4 2zt 32))
_%(Dq2__iw+2('7‘;2}'+:r-1;;))_1+2(Dq —zw+2(;_:;+—~)) }

(3.1)

Here q is the sum of momenta of the initial and final electron states in
the particle-particle propagator, w is the frequency, g(ef) is the density of
states per spin at the Fermi energy, 7 is the total scattering, 7}, and 7 are
spin -orbit and magnetic scattering times, respectively in ith direction. Now
there are three cases that determine conditions for weak antilocalization in
two dimensions (2-D):

1. If there is neither the spin-orbit interaction nor the spin interaction
(Tso = 00,Ts = 00) the last two terms cancel each other, and the first
term gives the diffusion pole (localization)

2. If the spin interaction is strong (7, = finite) there is no diffusion pole
(no localization).

3. If there is no spin interaction and the spin-orbit interaction is strong
(7% = finite, 7, = oco0) than from the second term the logarithmic term
appears with the coefficient —1/2 (antilocalization).

For thin metal films (of thickness less than 100 A) a coherence length
can be larger than a film thickness rendering the quantum transport two-
dimensional [3], yet the spin-orbit scattering has a three-dimensional nature
and 7% = finite. It is not so in strictly 2-D systems (to which one subband
semiconductor heterojunction is a good approximation at small electron
densities). This comes out by inspecting the scattering matrix element (see,
Fig. 8)

(K', 8,n'|V(r) [k, a,n so-zhzuml(q) Tap X q) - kexp[—ig- Ri]. (3.2)
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In strictly two dimensions the cross product of p, p’ is perpendicular to the

2-D plane and the scalar product with 0,3 involves only the z-component
of o,5.

A P'B
poc

scattering act

strictly 2-dimensions

Fig. 8. Geometry of quantities involved a spin-orbit scattering

Yet weak-antilocalization has been seen in systems with no strong spin-
orbit scattering of the alloy (impurity) type, such as GaAs/GaAlAs [39-42].
There are two possible explanations of weak antilocalization in 2-D electron
gas. First, is a band-structure induced spin-orbit level splitting [39, 43]
based on Dyakanov and Perel [44] mechanism. Actually in the context
of weak localization this mechanism was first invoked in the semimagnetic
semiconductor Cdg.95Mng, ¢5Se:In, however, for the 3-dimensional system
by Sawicki et al. [45]). Upon neglecting confinement in the z-direction
the Hamiltonian that conforms to Ty crystal symmetry has two additional
terms of a spin-orbit character: inversion asymmetry term H; and interface
or Rashba termm Hp [46]. The total Hamiltonian is:

H =Hs+Hy+ Hp, (3.3)
where
R2k?
Hy = -— +gupeo - B, (3.4)
2m
Hy=90-k, (3-5)
Hp=n(oxk)-z. (3.6)
Here
hk=p+eA. (3.7)

The vector K is given by

ke = 3lka (k] — k2) + (k] — k2)k2], (3.8)
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Ky = 3lky (k7 — k2) + (k] — k2)ky], (3.9)
ke = 3[ko(k3 — k2) + (k2 — E2)k.]. (3.10)

Both these terms give nonzero contributions involving o, and o,.
On a more fundamental level the band-structure induced spin-orbit level

splitting has its origin in the Aharonov-Casher [47] effect for which the time-
reversal symmetry breaking term is

Ly =—-p-7x E(r). (3.11)

This leads to modified diffusion equation in presence of crystal field [43]

i} . 0 7 P V=
R

6(tf - ti)&(‘l‘f — 1',‘) . (3.12)
Another possibility proposed ad hoc by Taboryski and Lindelof [40] and

put into quantitative form by Jedrzejek, Szott and Kirk [48] is the existence
of two subbands. If one takes a spin-orbit Hamiltonian for a free electron

. \%
Hg = uso(k)(o x ik) - 7 (3.13)

then the matrix element
T8
(Z(r)C1(2) | Hsol P (r))C2(2)) = / C1(2)5;¢2(2)dz # 0. (3.14)

In the simplest version for one subband

o0

[a@ia@i=1 [ faE@a@=0, (215

— o0

for localized functions. Note that if in Hy, thereis additional z-dependence
[49, 50] the effect can occur even for one-subband.

According to Dresselhaus et al. [39] crystal-field induced spin-orbit scat-
tering leads to inversely proportional relation between spin-orbit scattering
time and elastic scattering time.

1 (AE?)
- = T7e13 (3‘16)

Tso
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with
H,, = nn?, (3.17)

where AE. is the spin-orbit energy splitting, n is constant dependent on
nature of crystal, and n electron density

Contrary to the point scattering from spin-orbit impurities spin-orbit
scattering time and elastic scattering time are proportional, because they
come from the scattering on the same centre

1 1
— =2n(g - 2)°R*n— 3.18
Tso (9 ) Tel ’ ( )

where ¢ is the band electron giromagnetic factor, and R the scattering
cross section. In Dresselhaus et al. experiment [39] the electron density
was changed by a gate. Although in Ref. [39] H,, has indeed been found
proportional to square density of carriers very different (fair to say opposite)
dependence was found by Hansen et al. [41]. This means that changing the
gate voltage causes other changes in a sample in addition to the carrier
density. Moreover, the Dresselhaus et al. [39] assumption of zero pseudo-
vector  in the z-direction was criticized on theoretical [51] and experimental
[52] grounds.

Even more challenging is to explain the WL results which display sec-
ondary peak in the magnetoresistance for systems into nonstandard way of
introducing impurities [40], Fig. 9 and [53], Fig. 10.

L e e i i T T

-1} T=42K E

&
L A Te27K

-1F T=21.2K g

.3l J
4k L J

I E T B N T Y B A W W B |

“2096 12 8 -4 0 & 8 12 16 20
B [10-¢T)

Fig. 9. Magnetoresistivity for a helinm-ion implanted sample [40] displaying a
satellite peak
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358
T = 002K

356 ’.

H
354 3 H

Ry (Ohms)

Fig. 10. Magnetoresistivity for a superlattice with magnetic field perpendicular to
the superlattice growth direction [53]. A satellite peak does not come from the size
effect.

To investigate this case Jedrzejek, Szott and Kirk [48] extended the
two-band calculations by Iwabushi [54] avoiding the parallel conduction in
two bands as assumed by Taboryski and Lindelof [40]. With the assumption
of the phase breaking time common in two bands.

o(B)wr = — ,rzh{[z CW( TnI)]

n=1,2

¥ B
g 3_+__)+lg7( +_)_ltp(l+~—) . (3.19
(2 T 2 TII 2 2y ( )

where
Dy,gn(eF)

C, = 3.20

D1gi(er) + D2g2(er)’ (3.20)
1 1 1 1 1 1 1
— = t—t 3 (ot —+ ),
Tn,1 Tnn,0 Tnn,0 3 Tnn,so Tnn,s  Tni,so  Tna,s
1 1 1
L=t Y tpaler) (ot + ;
T TP nZn’ nn’,so T'rfn’,so T'rtn’,a )
1 1 2
A SR
TII Tp Z ol n',s Tffn',a ,

2

L -1 Z2Pn(5F)( + = ) (3.21)

TIvV Tph Tan! 8 Tnn’,ao
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Here i = z,vy, 2,
n,n' = 1,2 and the axial symmetry is assumed.

gn\EF
prler) = gl(ep)gngz(ep)‘ (3.22)
D = Dypi(er) + Dap2(cF). (3.23)
92(eF) * Tia s = 91(EF) ¥ T3 5 - (3.24)
TB = 4623 . (3.25)
Also
Tclas =€ Y Dngn(er), (3.26)
n=1,2

where ,

D, = 2leF)™ (3.27)

2

The formula depends on many parameters, yet for no fit we succeeded in
producing the secondary maximum in the magnetoresistance. Even includ-
ing the spin-scattering [55-57] will not likely explain this effect. There is
some hope that semiclassical studies of systems with time-reversal broken
symmetry (transitions between Gaussian orthogonal, Gaussian unitary, and
Gaussian symplectic ensembles [58]), can shed some light on this problem.

4. Scaling theory of localization and conclusions
The analytic results for weak-localization are important to verify whether

one-parameter scaling theory is operative. Weak scattering theory is valid
for (kpl)~! < 1. For a metal with L >> [, the Ohm’s law is fulfilled

g(L) = oL%72, (4.1)

In the hopping regime with L > £ we expect
L
g(L) = exp " (4.2)

Abrahams et al. [59] introduced a scaling function

_dlng

A= dinL’

(4.3)
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interpolating between these regimes. They postulated one parameter scaling
theory-8 depends on L only through g independent of dimensionality. For
example for small conductance

B(g) =In gi : (4.4)
For weak disorder a
ﬂw)=(d~2)—;- (4.5)

Whether this is generally true cannot be conclusively stated. Numerical
studies of the Anderson model either confirm [60] or indicate against [61]
the one-parameter scaling theory. Extensions to weak-localization beyond
the contact potential, although do not change the structure of the theory,
introduce another scale.

New systems such as these reported by Wang et al. [62] and Jiang et al.
[63] in which the change of magnetic field brings the experimental system
(strongly disordered 2-D layer caused by the presence of the gate above)
from the insulator to the quantum Hall effect state (quantum Hall insulator
[64]) pose even greater change.

To answer the old and new questions progress in the electron-electron
effect [65] is needed.
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