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The problem of how one can learn from examples is illustrated on
the case of a student perceptron trained by the Hebb rule on examples
generated by a teacher perceptron. Two basic quantities are calculated :
the training error and the generalization error. The obtained results are
found to be typical. Other training rules are discussed. For the case of
an Ising student with an Ising teacher, the existence of a first order phase
transition is shown. Special effects such as dilution, queries, rejection , etc.
are discussed and some results for multilayer networks are reviewed. In
particular, the properties of a selfsimilar committee machine are derived.
Finally, we discuss the statistics of generalization, with a review of the
Hoeffding inequality, the Dvoretzky Kiefer Wolfowitz theorem and the
Vapnik Chervonenkis theorem.

PACS numbers: 05.90. +m, 02.50. Le

1. Introduction

How to learn and predict new results on the basis of experience or
available data clearly is a problem of tremendous practical importance. Our
own survival depends largely on our ability to do so. Some of the learning
and prediction tasks have proven to be very hard to tackle on the basis of a
sequential program or of an artificial intelligence type of approach. Typical
amongst those are the tasks performed by “experts”. When asked about the
road they have followed to reach a given conclusion, they are usually hard
pressed to explain it. Parallel systems, such a neural networks, are offering
a promising alternative. They are trained on examples rather than by an
analysis of the rules that allow one to perform a given task. In this brief
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introduction, we will illustrate how this problem — learning from examples
— can be formalized and studied in detail for a few simple scenario’s [1, 2, 3].
We will restrict ourselves to a very simple situation, namely that of binary
classification. This problem corresponds to the mapping of input patterns
into a binary +/— or yes/no classification. The object that performs this
mapping will be called a binary classifier. The learning problem can now be
formulated as follows. One has at one’s disposal a set of training patterns
with their corresponding classification. The classifier is trained on this set.
This is usually done by tuning the internal parameters J of the classifier in
such a way that a more or less correct classification is  reproduced on the
training set. The performance of the classifier can be characterized by 2
basic probabilities, namely the training error v(a), defined as the fraction
of missclassified patterns of the training set, and the generalization error
¢(a), defined as the probability for error on a random new pattern. These
quantities typically depend on the amount of training (size of the training
set) as indicated by the dependence on the training volume a. Our main
purpose will be to either explicitly calculate those functions for specific
scenario’s or to derive general bounds or properties.

2. The perceptron revisited
2.1. The perceptron

The perceptron is one of the simplest classifiers, originally introduced
by Mc Culloch and Pitts as a simplified model of a neuron, and publicized
further by Rosenblatt in the late 1950’s [4]. The architecture of the percep-
tron is schematically represented in Fig. 1. It is reminiscent of the structure
of a neuron. £1,...,£&, correspond to the input values at the n income gates
(corresponding to the incoming electrical signals of other neurons). Each
of these inputs £; is weighted by its corresponding “synaptic efficiency” J;,
and the resulting signals are added in the “soma” of the perceptron. The
total signal is then compared to a threshold value, and the output is set to
+1 or —1 according to whether the threshold is exceeded or not. For the
simple case of a zero threshold, the classification of an input pattern { by a
perceptron characterized by the weight vector J is thus {4yt = sgn(J - £).
The perceptron is a simple hyperplane classifier since the classification of
all patterns E is +1 if they lie on the same side as J of the hyperplane
orthogonal to J and —1 otherwise. This classifier has some nice features.
Its simplicity allows for a detailed analysis of various questions regarding
learning from examples. Furthermore, it is a parallel classifier. Finally, the
classification of a given pattern is not localized on any single weight vector
component, hence one talks about distributed memory.
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Fig. 1. Schematic representation of the perceptron classifier.

2.2. The Hebb rule

The idea of the Hebb training rule goes back to the principle of Pavlov
coincidence training. In his famous experiment, Pavlov noted that when a
dog is repeatedly given food at the same time as a light is flashing, he will
also start to salivate when only the light is flashed. This indicates that a link
has been established between food and light, such that when only the light is
present it stimulates the thought about food. The Hebb rule (5] applies this
idea of coincidence training right down at the level of individual neurons : it
strengthens the connection between two neurons that fire together. When
applied to the perceptron, the idea is to increase the connection J; when
both the input channel i (being the output of some other “neuron”) and the
neuron under consideration are active, i.e. when §; = +1 and €,y¢ = +1. To
make the rule mathematically symmetric, we idealize the situation and use
the updating rule J?*¥ = J;’ld + £;€out- Applied to a number of patterns

E(“), = 1,...,p, with corresponding classification Egﬁz,
J = 0 starting value, one gets :

p
J=Y ewels) (1)

with a tabula rasa

In order to treat all patterns equally, one also assumes that the input
vectors have been normalized, i.e. |§(*)|2 = n, Vu. The Hebb rule has a
number of advantages. It is explicit: no algorithm has to be applied to
find the J-vector. It is additive, new patterns can be easily added. It has
to a certain extent a neurophysiological basis. Finally it also has a simple
geometric interpretation. Indeed, we mentioned that the perceptron is a
hyperplane classifier. The problem to separate the patterns by such a hy-

perplane into those with E(“) = +1 and those with 5(“) = -1, is equivalent

out out —
to getting all the “renormalized” patterns E(“)fgﬁz on one side of the hyper-
plane. A very reasonable prescription is then to take the hyperplane normal
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on the center of mass of these vectors. This is precisely what the Hebbian
rule is prescribing, c¢f. Eq. (1).

2.3. Learning from a teacher perceptron

We are now ready to attack the central problem in our discussion,
namely that of learning from examples. The Hebbian perceptron receives a

training set {E(“),Egﬁz; p=1,...,p} of random patterns with their corre-
sponding classification and constructs its J vector accordingly, c¢f. Eq. (1).
How well is this perceptron doing? Obviously, it is impossible to learn from
examples if the underlying problem is random. The best one can do in such
a situation is just to store the available data, but generalization is impossi-
ble. The storage capacity problem is an interesting problem in its own right,
and has received a lot of attention {2, 6]. Here we will investigate another
even more interesting situation, namely the one in which the underlying
“teacher” that generates the training set has a very regular non-random
structure. More precisely, we will assume that the pattern set is provided
by a teacher perceptron with teacher vector T' [7]. Consequently, the J
vector of the student has the following form N

P
J= Z §(")sgn (T '§("))- (2)
p=1

We also assume here and throughout the text that the pattern £ (#) are
chosen at random and independent of each other. From Eq. (2), we expect
that there is a correlation between the orientation of the student J and that
of the teacher T, i.e. we expect that the student can learn from examples.
In fact the 2 basic quantities that we mentioned in the introduction, the
training error and the generalization error, can be calculated analytically
in a so-called thermodynamic limit. In many applications, the number of
input channels n (which can be thought of, for example, as the number of
pixels of the input patterns) is very large. Consequently, one also expects
that one needs a rather large number of training patterns, ¢.e. p large, in
order to be able to generalize. The limit that one usually considers in the
statistical mechanics literature on the subject is :

p_)oo}withazg fixed . (3)
n — 00 n

The nice feature about this limit is that the training and generalization
error are then found to be self-averaging in most cases, i.e. independent of
the choice of the training set with probability 1. For the above described
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scenario of a Hebbian student perceptron trained by a teacher perceptron,
the following results were found (8]:

1 [, e [a 1

V(a) = -2- + / dz——__—r_-Zx Erf(-—z ; - —'——,——2a)

e(a) = 1 arccos —————. (4)
T 2a

zone of
disagreement

Fig. 2. The generalization error E depends only on the angle between the student
perceptron J and the teacher perceptron T.

To illustrate how one can find such results, we sketch the derivation
for ¢, the probability for disagreement between student and teacher on a
random new question. As is clear from Fig. 2, this probability is equal to
the angle between the J and T vector, divided by x. Hence

J-
| 1]

~3

1
€ = — arccos
T

- (5)

=3

Because of the spherical symmetry of the model, one can choose the
1-axis of the n-dimensional input space along the teacher vector, e.g. T =
(1,0,...,0). Furthermore, the quantities J-T and | J | are found to be
self-averagxng on the basis of the law of large numbers. For example, one
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has that:

J-T= Z §(u) T sgn(g(") -T)

-~

p
= Z £§") sgn Eﬁ“) = p(|£§“)|) + small fluctuation.

Here we have used the property that the patterns 5(" ) are independent
of each other. Furthermore, we assume that the patterns are chosen at
random. This can be achieved by choosing each component of the pattern
vector independently of the others and according to a Gaussian law. From

P 3’53/2
(El) - \/2—77 ]
we conclude that:
2
J-T=py/=. (6)
~ = T
In the same way one finds:
2 2
1= np+ 252, ()

Combining Eqgs. (5)—(7) we recover the result given in Eq. (4).

One may wonder whether the extremely simplified situation presented
so far leads to results which are representative of more realistic situations.
It turns out that the results are in fact typical, so that the student teacher
perceptron scenario provides a simple and didactic example of learning from
examples. The training and generalization error are represented in Fig. 3a.
Let us discuss some of their features. For small size of the training set,
a — 0, one finds that ¢(a) — 1/2 ~ \/a. The generalization error starts
at 1/2, which corresponds to random guessing, and then decreases as \/a.
We have conjectured that this is the fastest decrease of the generalization
error that can take place for a small (see Section 3.2). Consider now the
large a behavior. Both ¢(a) and v(a) go to zero as 1/y/a in this limit.
This is consistent with a general bound, based on the Vapnik-Chervonenkis
theorem, that guarantees that | ¥ — ¢ | goes to zero at least as y/Ina/a (cf.
Section 4.4).
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Fig. 3a. Training and generalization error for the Hebbian perceptron trained on
random examples from a teacher perceptron.

2.4. Other training rules

One of the disadvantages of the Hebb rule is that it does not lead to a
perfect learning of the training set, i.e. ¥ # 0. Of course, nothing prevents
us from picking at random a student that makes no error on the training
set. The space of such students is sometimes called the version space, and
the corresponding rule is the so-called Gibbs rule. For the above mentioned
scenario, this rule leads to the following results [1, 9]:

v(a) =0 (by construction)

e(a) ~ _%g (Gibbs). (8)

Note the very important improvement over the Hebb rule, which is charac-
terized by the weak convergence of € to zero as 1//a. On the other hand,
the Gibbs rule is computationally more expensive, since one has to perform
a search procedure to find a compatible student. The Gibbs rule should be
compared with the best possible result that is available. This is realized by
the Bayes rule. It corresponds to finding all the compatible students, letting
them vote on the classification of a new pattern, and follow the majority
rote [10]. The resulting generalization error is found to be

ela) ~_ = (Bayes), 9)

which is barely better than the Gibbs results (namely by a factor of v/2). Of
course, the Bayes algorithm itself is completely impractical, but moreover
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it seems that it is not even worth the effort. In general [11] one can actually
prove that the asymptotic difference between Gibbs and Bayes does not
exceed a factor of 2.

Finally, one can wonder about the “worst” student in the version space,
in other words, what is the generalization error of the worst student which
has learned the training set perfectly, »(a) = 0. In this case, one finds [12]

3
e(a) oo 3a (worst case). (10)
Again, the difference with the Gibbs result is not very large.
Other training rules have been studied in the literature, see e.g. clipped
Hebbian learning [13], projection rule [14], optimal perceptron [14], and
nearest neighbour rule [15].

2.5. The Ising perceptron

We now focus on an interesting variant of the student-teacher percep-
tron scenario. Consider the situation in which both these perceptrons have
weight vector components with binary values J; = 1 and T} = 1, Vi, and
let us focus on the Gibbs training scenario. Other scenario’s are possible,
see e.g. [13]. Because of symmetry we can choose T; = +1, Vi. In order to
evaluate the generalization error, we have to evaluate the angle between stu-
dent and teacher. Clearly this angle only depends on the number of weight
vector components that are different between teacher and student. Consider

those students for which the number of synapses J; = —1 is k£ = nz. One
has:
. - —k
T-J _ckdn-k_ . . (11)

ITIIl Vrvn

Each of these students has a generalization error given by, ¢f. Eq. (5):
1
e(z) = ;r-arccos(l - 2z).
The number of such students is given by:

.O()(:l:) — (:) ~ en[-—rlnz—(l—t)ln(]*z:)]’ (12)

where we have used Stirling’s formula to estimate the asymptotically dom-
inant contribution. One can now easily calculate the number of students
(£2,(z)) that survive, on average, p = an random and independent training
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examples. Indeed the probability that anyone of these students agrees with
the teacher on p random and independent examples is (1 — €)P. Hence:
(np(z» - (:) (1 _ e)p ~ e{n[—zln z—(l—:c)ln(l—:c)——-aln[l—% arccos(1—2z)}} .

(13)
The intuitive interpretation of this result is at the same time very simple
and appealing. The number of students of type z that belong to the version
space after p = an examples is the result of an entropic factor, specifying
how many such students are available in the first place, and an error (rather
then “energy”) factor taking into account that students very different from
the teacher (z close to 1) are more likely to be eliminated by the training
examples than students close to the teacher (z small). From the above
result it is also clear that, in the limit n — oo, one specific type of student,
i.e. one value z*, will exponentially dominate in average numbers over the
others, namely that value of z that maximizes the exponent. This value z*
depends on a, an therefore also the resulting observed generalization error
e(z*), ¢f. Fig. 3b. One amazing property is that the generalization error
undergoes a first order phase transition at the value a = 1.448, where it
jumps abruptly from a value ¢ = .257 to ¢ = 0. The explanation of this
discontinuity is that there are too few students very similar to the teacher
to survive the elimination by the training set, so that at a ~ 1.448 only the
teacher himself remains. The above transition was first reported by Gardner
and Derrida [7]. It should however be stressed that we have implicitly
assumed that the average (f2,(z)) also gives the typical behavior, i.e. that
£2,(z) is self-averaging. This turns out not to be the case. The correct
self-averaging quantity is (In £2,(z)). It can be evaluated using the replica
technique [16]. It is found that the above presented (so-called annealed)
calculation is not far off. The phase transition is actually taking place at a
critical value a = 1.23. Note that it is also easy to evaluate in the annealed
calculation the behavior of the worst student of the version space. This
student corresponds to an z-value for which the exponent in Eq. (13) is
equal to zero, so that there is on the average exactly one such student left
in the version space. The worst case generalization error is also given in
Fig. 3b.

Finally, we comment on the surprising efficiency of the student percep-
tron in recognizing the teacher. To identify the teacher, one needs at least
n bits of information, 1 bit per weight vector component. Each example
of the training set provides at most 1 bit. It turns out that the overlap of
information between these examples is not very large, since one only needs
p = 1.23n of them to reach the first order phase transition point that zooms
in on the teacher.
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Fig. 3b. Generalization error of the typical and worst student for an Ising percep-
tron trained by an Ising teacher perceptron.

2.6. Special effects

In practical applications, all kinds of tricks and techniques are applied
to improve generalization. Most of these special effects can be studied in
the context of the student-teacher perceptron scenario. We mention a few
of them here.

The student is allowed to ask its own questions, which are then called
queries [17]. The generalization error is found to decrease, but the effect is
not very dramatic.

The student is allowed to reject questions. This is of importance in
situations in which high reliability is required. In the case of a perceptron
J, the patterns £ that lie close to the decision boundary, z.e. J - £ close to
zero, are rejected. The generalization error is then reduced in a monotonous
way as the rejection rate (which is the fraction of random questions that lie
in the rejection zone around the decision boundary) increases [18].

Another important technique, especially in neural networks, is dilution,
also called ”optimal brain damage”. In this case, the weight vector com-
ponents that are not very “useful” (e.g. the ones with small effect on the
output) are removed and the system is retrained [2]. Typically, the gener-
alization error is reduced because the smaller number of parameters in the
network reduces the danger of overfitting. This phenomenon can also be
understood in the context of the Vapnik—Chervonenkis theorem.
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We finally mention that several other modifications of the scenario have
been studied, for example that of a non-stationary teacher, that of several
generations of teachers, non-random or biased patterns, finite temperature
learning, the case of a modest teacher, eic.

3. Multi-layer networks
3.1. Introduction

Interest in the perceptron waned towards the end of the 1960’ when it
was realized that its classification ability is very limited (it cannot imple-
ment the XOR), while it looked like it would be very hard to train more
complicated networks with a multi-layer structure. With the discovery of
the backpropagation algorithm [23] and the formation of the so-called PDP
group (parallel distributed processes) the whole field, and in particular the
feedforward multi-layer networks, received a great boost. The theoretical
analysis of these networks however presents great difficulties, and only a
handful of results have been obtained so far. The Vapnik—Chervonenkis the-
orem can be applied, but it gives bounds that lie way above the results that
one obtains in practical applications. Clearly, there is still a lot of room for
progress in this field. Instead of reviewing the abundant but rather disperse
set of applications and theories, I will focus on two multi-layer networks
that have been the object of my own research.

3.2. The self-similar committee machine

Imagine that one is dealing with a given binary classification problem,
and that one disposes of a specific classifier with training algorithm. As
before, we call ¢(a) the generalization error of this classifier after being
trained on a set of size a. Instead of doing this, however, we can partition
the training set into 2N + 1 non-overlapping subsets, and use these to train
2N + 1 identical copies of the original classifier. Each of these is now less
trained and its generalization error is typically larger and given by & (53777 )-

In order to decide on the answer for a specific input pattern, we let each
subclassifier vote, and we follow the majority rote. The resulting committee
machine has a generalization error ¢'(a) which is clearly given by

w@= 30 () )] e )]
(14)

By repeating this procedure, further test set partitioning followed by
majority vote, dne constructs a more and more complicated committee ma-
chine, with a generalization error that is found by iterating the functional
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map (14). In the limit of an infinite number of such iterations, one obtains
a self-similar committee machine with a generalization error being a fixed
point of the map (14). We denote these “universal” errors by ¢ y(a), with
the subscript indicating the number of members in each subcommittee of
the iteration. £ y(a) obeys the following functional equation:

v = 3o (V) [ ()] e ()]

k=N+1
(15)

We first note that this equation cannot fix the unit in which a is being
measured: when e (a) is a solution, then also e)(Ca) for any value of
the constant C. In fact, it turns out that C absorbs all the information
that is not specified, namely the generalization error ¢(a) of the original
classifier, the unit for a and the question that is being asked. Apart from
this degeneracy, and apart from the symmetry ¢ <& 1 ~ ¢, there exists a
unique smooth solution of Eq. (15) [19]. In the limit N — oo, the explicit
form of the fixed point solution is known:

£oo(a) = 3 Erfc (Va). (16)

We now turn to the approach of the fixed point (also in the limit N —
00). One can prove that under iteration of Eq. (14), the error e(a) of the
original classifier will converge to the following universal error:

e(a) — ex(Ca) (17)

with

C = lim (—":-("—)—'—‘-5-)]/2 . (18)

Note that C = 0 or C = oo when the small a behavior of the original
classifier does not match the small a behavior eo(a) — .5 ~ /a of the
universal error curve.

In fact, if one assumes that ¢(a) decays faster than a /a law for small
a, then it is found that our self-similar committee machine would reduce
the error to zero (C = 00, €00(00) = 0) ! We believe that this is impossible,
leading us to the conjecture that the /a-behavior is the best one possible.
As we have seen above, this is also the result obtained for the Hebbian
perceptron trained by a teacher perceptron!
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3.3. Boolean networks

Another interesting example of a multi-layer network is a feedforward
Boolean network [20, 21]. This network is built from logic gates like the
AND-gate, XOR-gate, NOR-gate, etc..., which are linked together in a feed-
forward but otherwise random way. The input of each of the gates can be
taken from the output of a previous gate or from the input nodes to the net-
work. The output of the network is taken to be the output of the last gate.
It turns out that the properties of this network are relatively insensitive
to the number of logic gates that is used to construct it, once a minimum
number of gates is used. The network has several very intriguing properties.
Firstly, it displays a scaling law, analogous to Zipf’s law [22]. Consider for
example the case of 5 input nodes. Each of the input signals can be a 0
or 1, so that there are 25 = 32 possible input signals. For each of these
input signals the output can be either 0 or 1. Hence there are 232 possible
input-output tables. For every fixed configuration of the network (type and
number of gates and their connectivity) the Boolean network realizes one
of these tables. If the configurations are chosen at random, one finds that
some of these tables appear quite often. This is illustrated in Fig. 4, where
the frequency of appearance in function of the table under consideration is
plotted. Most frequent are the tables whose output is always 0 or always
1. We rank these tables as » = 1 and » = 2, and call their frequency of ap-
pearance f,.. As one continues checking for the frequencies of less frequent
tables, one observes that f, follows an inverse power law in the ranking
fr ~ = <. This is illustrated in Fig. 4 by a log-log plot of frequency versus
rank.

frequency

function rank

Fig. 4. Zipf’s law for the frequency occurrence of Boolean functions in a random
feedforward Boolean network. The Boolean functions are ordered according to
the decimal representation of their output table, and according to their ranking in
function of their decreasing frequency.

Another rather amazing property of the feedforward Boolean networks
is their ability to learn a number of more mathematical tasks. These tasks



916 C. VAN DEN BROECK

are typically rather difficult to learn on ”conventional” neural networks.
In Fig. 5, we give as an example the probabilities of exhaustive learning
of the parity problem (output = parity of the inputs that are equal to
0) through the Gibbs rule, in terms of the fraction of examples that is
used to train the system (fraction 1 = all examples = 2H0PUS) Tt js seen
that, as one increases the number of inputs (in Fig. (5) from 3 to 7),
the network learns faster and more abruptly, suggesting the existence of a
genuine phase transition in the limit of a large number of inputs. It turns
out that one can understand this phenomenon in the same way as that
for the Ising perceptron discussed in section (2.5) [21]: the parity problem
can be learned rather easily because, referring to the analysis of the Ising
perceptron scenario, the parity teacher does not have a lot of students in its
close vicinity. Due to their similarity of the teacher, these would actually
be the most difficult to eliminate since they agree on many input patterns.

probability of
exhax)stivc
learning

fraction of training examples

Fig. 5. Probability of learning the parity problem (of respectively 3, 4, 5, 6, and 7
input variables, the corresponding curves go from right, cf. the circles, to left, cf.
the triangles) in function of the fraction of the total number of distinct training
examples. Exhaustive learning is defined as the absence altogether of errors in the
output table of the selected network configuration.

4. Statistics of generalization
4.1. Hoeffding inequality

One of the basic ways in which we generalize is to check the frequency
of occurrence of a given event in a number of trials. In the optimal case
these trials should be independent. For example, we grade a student in
class on his performance on a number of test questions, and not on the
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exhaustive set of questions. We hope that this grade reflects more or less
the true capacity of the student. In doing so, we are actually applying the
basic theorem of statistics that describes the convergence of frequency of an
event to its probability. If the frequency v(p) is obtained through a set of
p identical and independent tests, then we know that v(p) converges to the
true probability, which we will denote by ¢, in the limit p — co. An elegant
inequality that describes this convergence was derived by Hoeffding [24]:

Prob (Ju(p) — € |> n) < 2e~24°P (19)

More loosely speaking, one finds that v(p) ~ ¢+ order (1/,/p), a result
which is of course closely related to the central limit theorem. To make the
connection with generalization, we just have to state that the event under
consideration is disagreement of the answer of the student with the answer
of the teacher. ¢ is then the generalization error and v(p) the probability for
error on a test set. There is however a basic complication that arises and
that prevents a direct application of the Hoeffding inequality in the context
of learning from examples. It is not our purpose to evaluate the performance
of a single student, but rather to estimate how well each student is doing
in a whole class (possibly with a oo of students). In fact, we are typically
interested in the best student. This student however is not know a priori
but is selected using the test set. In other words, the test set becomes a
training set. Since our selection of the best student is biased, we cannot
directly apply the Hoeffding inequality. Rather we need to evaluate the
following probability:

Prob (S\:p | va(p) — €5 |> 1) » (20)

where v, and ¢, are the test and generalization error of a given student s. If
we can bound the worst possible derivation between these quantities, then
this bound can also be applied to any student that we decide to select.

4.2. The perceptron in 1d and the Dvoretzky-Kiefer—-Wolfowitz theorem

As afirst simple example, we consider the class of perceptrons defined on
the unit interval [0,1] with threshold z € [0,1]. Such a perceptron classifies
an input pattern y € [0,1] as 8(y — z), where #(z) = 1 for ¢ > 0 and 0
otherwise. On the other hand, we consider as teacher the classifier whose
classification is identically 1 (i.e. it is the perceptron with z = 0). Consider
now a test set of questions {y; | 2 = 1,...,p}. The test and generalization
error of perceptron z are obviously given by:

1 Y4
vz(p) == 6(z - y;) (21)
P =1
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Exp =T.

In order to evaluate the worst case deviation, we would like to estimate
the following probability

Prob( sup | vz(p) - €2 |> n), (22)
z€[0,1]

where the probability is with respect to the random variables y;. We now
make the gratifying observation that this problem has been addressed and
solved in an entirely different context, namely that of empirical distribution
functions [24]. The aim of this theory is to estimate (cumulative) probability
densities on the basis of a test sample. Consider a uniformly distributed
random variable z € [0,1]. Its cumulative probability is F, = z. On
the other hand, one disposes of a set {y; | ¢ = 1,...,p} of p independent
samplings of this random variable. On this basis the following empirical

P
distribution function can be proposed E.(p) = % > 8(z — yi). To estimate
=1

how well this distribution approaches the true distribution, one considers
the maximum difference between them. There is a long history of research
on the properties and statistics of this difference starting with a result by
Kolmogorov in the 1930’s. One of the most important results is the so-called
Dvoretsky-Kiefer—-Wolfowitz theorem, which is sometimes called the basic
theorem of empirical statistics. It reads:

Prob ( sup | Ex(p) - F; |> p) < 58e 24P (23)
z€[0,1]

Note the similarity of this bound with the Hoeffding inequality. This
results guarantees that E.(p) converges to F, uniformly Vz € [0,1] in the
limit p — oo with deviations of the order of 1/,/p. It can furthermore be
shown rather easily that the probability in the Lh.s. is actually independent
of F,, as long as this distribution does not contain any discontinuities.

Let us now turn back to our generalization problem. It is clear that
v.(p) = E.(p) and ¢, = F,, hence the Dvoretsky—Kiefer~-Wolfowitz bound
can also be applied to our generalization scenario. We conclude that the
difference between test and generalization error converges to zero roughly
as 1/,/p for the worst student. The test set can then also be used as a
training set to select the “good” student, and the 1/,/p can be applied to
this student.

4.3. Vapnik-Chervonenkis classes

The Dvoretsky-Kiefer—Wolfowitz theorem provides a bound for the
maximum deviation between test and generalization error for the whole
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class of 1d perceptrons with threshold. The basic reason why such a re-
sult can be derived is that these classifiers are altogether not very different
from each other. This rather vague concept of similarity can be made very
precise by the introduction of the so-called Vapnik—Chervonenkis classes.
Consider a class C of classifiers C. A given set of p patterns can in principle
be classified in 27 different ways (assuming again binary classification). To
quantify the classification diversity of the set of classifiers, we can check
how many of those 2P classifications can be implemented. Typically one
finds that for p small all classifications can be implemented, at least for
one choice of p different patterns. However, when crossing a certain critical
value of p = dyc, called the VC-dimension, not a single set of p patterns
can be found for which all the classifications can be performed. An exam-
ple for the hyperplane classifier in 2 dimensions is given in Fig. 6. All the

+1 l
° .
* §
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+1
o L ]
~3
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Fig. 6. All 8 classifications of 3 patterns in the plane can be implemented by a
hyperplane (= line) classifier, but this is no longer the case for 4 patterns.

classifications of 3 input patterns can be performed, but 2 out of the 16
possible classifications of 4 input patterns can not be realized. Hence the
VC dimension is dyc = 3. For perceptrons without threshold (hyperplanes
though the origin) one finds that the VC dimension is dyc = dimension n
of the input space. For p > dyc one can say that the classifiers of the class
under consideration start resembling each other. In fact one can prove that
the number of classifications A(p) that can (at most) be implemented for
p > dyg is bounded by a power law (Sauer’s lemma) [25, 26]:

A(p) < df (:) < (—e—p—yvc p>dvc. (24)

d
k=0 Ve
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This property is the key ingredient to derive the “uniform” convergence of
frequencies to probabilities for such a VC class.

4.4. Vapnik-Chervonenkis theorem

We are now ready to introduce the famous Vapnik—Chervonenkis theo-
rem [25, 27]. Consider a class C of classifiers with VC-dimension dyc. The
following theorem can be proven [27]:

Prob(rgg%cl ve(p) —ec |> p) < A(2P)€‘"2P, (25)

where v.(p) is the observed test error on p questions, and e¢ is the true
generalization error of classifier C' € C. Comparing this result with the Ho-
effding’s inequality, one sees that the main price to be paid for considering
a class of classifiers is the prefactor A(2p) reflecting the classification “rich-
ness” of this class. Combining the above result with Sauer’s lemma, one
finds:
dvc(in(2ea)—p?al
Prob(max | vc(p) —ec [> ) S e ; (26)

where we have introduced the scaled variable a = p/dyc which measures
the size of the test training set in terms of the VC-dimension of the set
of classifiers. This definition is consistent with the one introduced for the
perceptron, where the VC-dimension is precisely equal to the number of
inputs (dyc = n). The above result takes on a particularly pleasing form
in the limit dyc — oo [29]. Indeed, in this limit, the r.h.s. goes to zero for
Inea < p?a. Hence one can define a sharp accuracy threshold p.:

In(ea)

He = o (27)
such that with probability 1:
- < fe o 2
max | v (p) ~ c [< pe (28)

This general result can immediately be compared with the explicit re-
sults for the Hebbian perceptron, trained by a teacher perceptron. In this
case, it was found that v and ¢ both decrease as 1/y/a for a large. This
is in agreement with the VC bound. The Hebbian perceptron is of course
just a specific perceptron, whereas the VC bound applies to any perceptron,
and one can wonder whether the perceptron with the largest difference be-
tween ec and vg(a) is also characterized by a 1//a behavior. It turns out
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that this question can be investigated using rather involved “replica sym-
metry breaking” calculations which indicate that the worst difference goes

as y/VIna/a [12].

The bound (25) is not the most interesting result in the context of gen-
eralization. Indeed one typically focuses not on the entire class of classifiers,
but rather on those classifiers that perform very well on the training set.
If the task that one is learning can indeed be performed by an element of
C, than one can always apply the Gibbs rule and pick a student from the
version space, that is the subclass of C for which v = 0. For this situation,
the following variant of the VC-theorem can be proven [28, 29]:

Prob(zggg&,},&oec > p) <44(2p)27HP. (29)

Again, a confidence threshold u? can be defined in the limit dyc — oo:

« _ In(2ea)
which bounds the generalization error for all the students of the version

space with probability 1:

max ec < pe. (31)
Ceversion space

This result predicts that the generalization error decreases at least as
1%0_! for large a for students of the version space. This can be compared
with the results of the perceptron scenario, where the typical (and in fact
also the worst possible) result goes as 1/a.

5. Discussion and conclusions

We have illustrated how the concept “learning from examples” can be
formalized. For specific scenario’s, such as the student-teacher perceptron,
the quantities of interest — the training and generalization error — can
be calculated in detail. On the other hand, more general results can be
obtained using theorems from statistics or through constructions and ideas
from statistical mechanics and information theory. We stress again that our
presentation is a very incomplete and preliminary introduction to the field.
Probably, the more important discoveries still lie ahead. As promising fields
for further investigation, I would like to cite unsupervised learning (that is
in the absence of a teacher), learning in the presence of noisy data, learning
through self-organization, and the more dynamic aspects of the learning and
generalization process. Another important open question is the explanation
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of why neural networks and the sort generalize much better than what can be
expected on the basis of the VC-theorem (one observes good generalization
for a < 1!). We believe that recent advances and concepts from statistical
mechanics (fractals, chaos, self-organized criticality) may turn out to play a
crucial role in a deeper understanding of the phenomenon of “learning from
examples”.
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