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Matrix models are a powerful technique to solve some models of sta-
tistical mechanics on random planar lattices. A simple introduction is
given, to illustrate the basic analytical methods and a few applications.
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1. Introduction

The 1/N expansion, where N characterizes the dimension of a symmetry
group of the system, is an effective technique to achieve non perturbative
results widely used in physics. In quantum mechanics, the radial equation
for a O(3) symmetric problem with a complicated potential can be solved
approximately by a 1/N expansion after transferring it in N dimensions
and setting finally N = 3. Fields in the vector representation of O(XN) or
U(N) occur in statistical mechanics or field theory, and the solution becomes
simpler in the large N limit, the starting point for a 1/N expansion.

A great challenge in physics is the understanding of the structure of
hadrons from QCD, a theory based on the local symmetry gauge group
SU(3). Strong interactions between quarks are described by the exchange
of colour-charged particles, the gluons, which mathematically correspond
to self-interacting 3 X 3 matrix fields. Though high energy physics, be-
cause of asymptotic freedom, is well described by this simple picture, quark-
gluon bound states require a non perturbative analysis, where elementary
exchange processes are summed to all orders.

A brilliant idea by ’t Hooft [1] was to introduce in the theory a new
expansion parameter 1/N, by raising the physical Yang Mills symmetry from
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SU(3) to SU(NV). Qualitative arguments suggested that yet the leading term
is significant for the physics of mesons. Although the project still remains
very ambitious, the paper by ’t Hooft contained a beautiful result, that
was the source for a wide research in matrix models, with applications in
different and unexpected directions. He showed that, for matrix models, the
1/N expansion of the partition function or Green functions corresponds to a
topological classification of the Feynman graphs arising from their ordinary
perturbative expansion. A Feynman graph is constructed with propagators
crossing at interaction vertices: to draw it on a surface may require handles
that avoid intersections not corresponding to vertices. The leading order
in the 1/N expansion is the “planar limit”, and corresponds to the sum of
Feynman graphs which can be drawn on the surface of the sphere. The next
term is given by the sum of graphs which can be drawn on the surface of a
torus, and so on. This property is true in any dimension D of space-time,
and for any polynomial potential.

In a fundamental work, Brézin, Itzykson, Parisi and Zuber [2] were able
to compute analytically, by a saddle point integral, the planar limit of the ¢3
and ¢* models in D=0. Their solution was shortly afterwards obtained by
Bessis {3], with a very elegant and powerful technique based on orthogonal
polynomials.

The solution of the planar limit in D=0 attracted much interest since the
planar Feynman graphs that are so generated and exactly summed, can be
viewed as random lattices for 2D statistical models. Vertices are the lattice
sites, connected in all possible ways by propagators which, by a suitable
definition of the potential, can have different weights. The thermodynamic
limit corresponds to the large order limit in the perturbation expansion of
the planar term.

Kazakov and Boulatov [4] have shown that a two-matrix model, which
can be solved exactly in the planar limit in D=0, corresponds to an Ising
model on 2D planar random lattices with constant magnetic field. The
critical exponents turned to be different from those found by Onsager and
Yang for the regular lattice.

An important difference to note between a statistical model on a regular
lattice and the same model on the random lattices given by the planar limit
of a matrix model is that, in the latter case, the lattices themselves are
configurational variables. For example, the partition function of the Ising
model by Kazakov not only involves a sumrmation over spin configurations
on k sites, but also a summation over all planar graphs with k vertices
allowed by the potential of the matrix model. Such a tremendous task
is accomplished quite easily through the very effective analytical tools of
matrix models.
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One-matrix models with cubic or quartic potential generate, through
a duality relation, all random triangulations or quadrangulations on the
sphere, on the torus etc. [5]. A summation on random lattices can then be
viewed as the discrete formulation, or even the definition, of a functional
integral on surfaces, as occurring in 2D quantum gravity or string theory,
provided a continuum limit exists. This is indeed the case, when the param-
eters of the matrix model are suitably chosen. For this reason, the above
statistical models on random lattices are also described as models of matter
coupled to gravity, for which a fundamental work by Knizhnik, Polyakov
and Zamolodchikov [6] predicts correctly the critical behaviour.

2. The topological expansion

Before showing the basic property that the 1/N expansion coincides
with a topological classification of Feynman graphs of matrix models, it is
useful to spend a few words about their definition in D=0.

A field theory in D=0 is extremely simple, all is sitting on a single
point: a real scalar field is a real variable, the partition function and Green
functions are ordinary integrals. Nevertheless, Feynman graphs can still be
built from the perturbative expansion, although with building elements that
are constants. A theory in D=0 is then a way to count them.

For example, the euclidean partition function for the ¢* model in D=0
is:

+o0 oo v
Z(g) = C / dge=tm?¢*-ee® - 3 (—%) Vlfr(zv- %) (2.1)
o V=0

where C is a constant such that Z(0) = 1. The perturbative series can be
given a graphical counterpart in terms of graphs with quartic vertices, with
weight g, connected by lines with weight 1/m? always ending on vertices
(vacuum graphs). If V and P are the numbers of vertices and lines in a
graph G, the relation 4V = 2P holds, and the graph contributes a factor
2V C(G), where z = g/m*. The number C(G) counts all possible ways to
connect lines to produce the graph, modulo some symmetries. To a given
order V, many different graphs contribute, and the coefficient of zV is, up
to a sign, their total number. Some of these graphs are the union of distinct
graphs of lower order: to remove all disconnected graphs, one introduces the
free energy E(z) = — log Z, whose perturbative expansion counts connected
vacuum graphs

E(z) = 3z — 48z% + 15842 — 783362 +.... (2.2)
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The number of graphs grows factorially with the number of vertices, a reason
for the perturbation series to be divergent. To reorder Feynman graphs
into a topological expansion, the scalar variable ¢ must be replaced with
N? variables in a Hermitian N x N matrix, and the partition function is
rewritten with rescaled parameters as follows

Zn(9) =CnN / H dH;; H dRe H;; dhnHije_%szr(Hz)—ﬁTr(H‘) (2.3)
; i<j

For short we shall denote by [dH] the integration over matrix variables.
Note that for N = 1 we obtain (2.1). One can again expand the partition
function in g and evaluate the free energy; the first two terms are

En(z) = (2N% + 1)z — (18N% +30)z% +.... (2.4)

Each coefficient of z¥ corresponds to the sum of Feynman graphs with V
quartic interaction, but different weights in N. To calculate the weight in
N of a Feynman graph, it is useful to introduce a double line notation,
corresponding to the flow of the two matrix indices. A propagator is couple
of oriented lines, like a road with two opposite traffic flows. A quartic vertex
is the crossing of four roads with the rule that the driver must always turn
right. A planar graph is a road net with no bridges. In a vacuum graph
each line is a loop and implies a summation on the flowing matrix index,
thus a factor N. To obtain meaningful results for ¥ — oo, it is necessary
to scale appropriately the weights of vertices.

We recognize, for example, that the only graph of first order in z has
multiplicity 3 (2.2); when the three realizations are drawn in double line
notation, two are planar, the other (where opposite legs of the vertex are
connected) is non planar and has the topology of a torus (2.4).

When the perturbative series is reordered as a series in 1/IV, one obtains

En(z) = N? {Eo(z) + —Niz-El(;c) + -]%E’z(x) +...0, (2.5)

where Eg(z) = 2z — 1822 + ... is the planar term, sumining all planar
Feynman graphs.

To show that a coefficient E;(z) of the 1/N? expansion corresponds to
the sum of Feynman graphs with the same topology, we consider the general
potential in D=0:

m2 g
V(H) = o T (H?) + )~y T (H"). (2.6)
k>2
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Let us fix our attention on a vacuum Feynman graph G with V}, vertices
of coordination k = 3,4... . Since there are no external lines, the number of
double line propagators is P = % i kVi, and the total number of vertices
is V.= Y, Vi. Each closed single line can be viewed as the boundary of the
face of a polyhedron, with two faces joining along a double line propagator,
and k faces merging into a vertex of coordination k. The total surface is
closed and can have a complicated topology described by Euler’s number
X = 2—2h, where h is the number of handles (x = 2 for the sphere, 0 for the
torus etc.). If F is the total number of faces, the following famous relation
holds: x =F -V + P.

The Feynman graph contributes to the partition function through a
product of terms: (i) a combinatorial factor C(G), due to the fact that the
same graph can be built in various ways, (i) a space time factor, which is
a constant in D=0, (%) the following factor related to the structure of the
graph (we include the propagators, coming from (%)

O(m) (%) v =r (&) e

by the above relations. This proves the assertion that equal weights in N
correspond to the same topological structure (Euler number) of the manifold
where the graph is drawn, such that all intersecting lines correspond to
vertices. The planar vacuum graphs are generated by the planar free energy:

Eo(z) = — lim ﬁl—ilogZN(:c) (2.8)

— 00

whose evaluation is described in the next section.

3. Analytical methods

The first step in both the analytical methods that will be described,
saddle point and orthogonal polynomials, is to express the integral over
matrix elements as an integral over eigenvalues. This reduction is possible,
since the potential is constructed with traces. Writing H = UAU?, with A
real diagonal and U unitary, the measure transforms according to

N
[dH] = [AQ, - AP ] dxi[dU] , AQg,..An) = [J (i - 2),
i=1 i<j
(3.1)



930 L. MOLINARI

where 3 = 2, and [dU] is the Haar measure of the group SU(N). One
could also consider real symmetric (8 = 1), quaternionic self-dual (8 = 4),
complex matrices, or even rectangular matrices [7]. Once the eigenvalues

are rescaled to extract a factor v IV, one obtains

IN = c/ HdA A(A, ... AN)? exp( NZV (A; )) (3.2)

=1

where V(@) is the potential for N=1. The quadratic case is very important,
and defines the Wigner and Dyson Gaussian ensembles of random matri-
ces, that were introduced to describe the statistical properties of spectra of
complex and chaotic systems [8].

3.1. The saddle point integral

The method is very effective to evaluate the large N limit of the free
energy and Green functions. Another advantage is that it gives the bound-
aries, in the space of the parameters of the potential, of the various phases
that characterize the large N limit of matrix models.

In the large N limit the integrals of the partition function can be com-
puted in the Gaussian approximation around the saddle point configuration,
which minimizes the effective potential

N
1
UQr,.AN) = & > V() - el Zlogu (3.3)
k=1 i<j
The saddle point equations are:

—V () Z

j#i J

i=1...N. (3.4)

In the quadratic case, these equations are exactly solved by the zeros of a
Hermite polynomial of order N. In the general case, and for large IV, one
introduces a density of eigenvalues p(A) for the saddle point configuration,
solving

/dAp(A):l, -;—V'(A):P/d )f’( L AeL. (3.5)
L L

L is the support of the distribution, which is also unknown. The first
equation is the normalization of the eigenvalue density. The second is a



Introduction to Matriz Models and Statistical... 931

singular integral equation for the density; the symbol P stands for Cauchy
integration, where the segment A & € is avoided. Once the density is found,
the planar energy and Green functions are:

Eo= [awe)- [ar [dupptlogh-ul  (3.69)
L L L
Gl = fim_ Tvi—ﬂ-mm") - / dAN"p(A). (3.6b)
L

To solve the integral equation there are various methods; the simplest is
based on the analytic properties of the resolvent, and works well for a poly-
nomial potential. Another possibility rests on a formula by Poincaré and
Bertrand, concerning the exchange of two Cauchy integrals [9]. In the first
method one introduces the function of complex z ¢ L

F(z) = I}Enw-jtr—(Tr[(z— H)™ ') = /duz”—(_’%. (3.7)

The Cauchy integral equation for p(A) and Plemely’s formulae:

1 1 )
/\_#iie_P/\_#$z7r6(/\—p) (3.8)

imply the following boundary equations for F(z), z = A £ i¢, A € L:

F(X\ +ie) + F(A —ie) =V'()) (3.9a)
F(X +ie) — F(X —i€) = — 2wip(A). (3.9b)

The first equation is solved by F(z) = (1/2)V'(z) — Fo(z), where Fy(z) is
an analytic function that changes sign across the cut L, typically a square
root. To proceed, one must make an hypothesis on the support of the den-
sity p(A). Since in the quadratic case L is a segment in the real line, the
“perturbative” solution corresponding to the planar graphs of the pertur-
bative expansion, is found by taking L = (a,b). In this case one obtains:
F(z) = (1/2)V'(z) — P(z)y/(z — b)(z — a), where P(z) is an unknown poly-
nomial. The polynomial and the endpoints a and b are completely deter-
mined by the requirement that for large z, due to the normalization condi-
tion of the density, F(z) = 1/z+ 0o(1/z). Once F(z) is found, the density is
obtained through Eq. (3.9b):

PN = SVE- NG aP(), sA)=0 A¢L  (310)
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which generalizes Wigner’s semicircle law valid for the Gaussian ensembles.
However, for certain values of the parameters of the potential, the above
single cut solution may develop a zero in the polynomial part, for A inside
the support. This marks a transition to a new phase with a splitted support,
Ly U Ly, to ensure p(A) > 0 on it. The multicut solutions have first been
investigated by Shimamune [10]. A particular occurrence is the vanishing
of the polynomial part at one edge of the support. The “edge singularity”
produces a different edge behaviour of the density and is related to the
radius of convergence of the perturbative expansion of the free energy.

3.2. Orthogonal polynomials

The partition function for Hermitian matrix models can be formally
computed by introducing a suitable family of orthogonal polynomials, as
suggested by Bessis [3]. For a polynomial potential this method is very
powerful, allowing also to evaluate the 1/N corrections to the planar free
energy.

The method exploits the invariance properties of determinants. Since
A(A1...AN)in (3.1) is the determinant of the Vandermonde matrix [/\f_l],
i,k = 1...N, one can replace its matrix elements with monic polyno-
mials Pi_;(X;) = /\f_l + ... without altering the value of A. The N
polynomials are chosen orthogonal with respect to the positive measure

du(A) = exp[-NV(A)]dA:

+oco
/ d(N)Pr(A)Py(A) = Byl . (3.12)

-0

These constraints completely determine the polynomials and the positive
numbers h,, in terms of the moments of the measure. For example, Py(A) =
1 and ho = [du(A), P1(A) = A — p; and hy = pyho — hou? etc., where
i = (1/ho) [ du(A)AE,

Because of the orthogonality requirement, expanding the squared de-
terminant, one can get rid of all integrals in the partition function (3.2)

Zn = CN'hohy ... hy_1. (3.13)

For large N, to compute all coefficients h, is certainly hopeless, and a
recursive scheme must be searched. To this end, note that the orthogonality
condition involves a truncated recurrence rule

AP.(A) = Pr+1(’\) + ArPr(’\) + R.Pr._1(}A), (3.14)
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where Ry = 0, and Ap = pq. Multiplying (3.14) by P,_1()) and integrating
in du() one gets Ry = hy[/hy_y, positive for k > 0. These coeflicients will
play the relevant role: for example the free energy is

En = N2 log(CN!) - ——Iog ho — — Z (1 - ——) logR;  (3.15)

and it is suited for the continuum (planar) limit 2 = k/N, R(z) = Ry,
N — oo.
To compute the coefficients Ry and Ay, one starts from the identities

o0

o0
d d. _
khy_y = /d#(/\)Pk—l(A)E\"Pk(/\), 0= / dr—le NVIPE(N)].
—o0

-0

An integration by parts, gives the following equations, which for polynomial
potentials become two finite recursive relations, with the aid of (3.14):

“+ oo
¥ = [ GOV OPLOPN), 0= / duAWV')PE(N)

(3.16)
To solve the recursive equations one needs a finite number of initial con-
ditions Ry, Ry ..., Ao, A1..., which must be calculated by hand. In the
large N limit the two sets may collapse on two single values, 0 and py;,
or may take different limit values. In the first case only two interpolating
functions R(k/N) = Rj and A(k/N) = A, are needed, and solve two cou-
pled algebraic equations resulting from the continuum limit of (3.16), with
boundary conditions R(0) = 0 and A(0) = u3. This case corresponds to
the single cut saddle point solution [11]. The other case, investigated by
myself [12], requires more functions and more equations and corresponds to
multicut solutions [13].

3.8. The quartic potential

To illustrate the two methods, let us solve the planar limit of the matrix
model with quartic potential:

V(A) = 2ad? 4+ gxt. (3.17)

Since the potential is symmetric, we expect the density to be symmetric,
with support L = [~2a, 2a]. Following Brézin, Itzykson, Parisi and Zuber
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[2] we write and expand F(z) = oz + 2gz° — (2¢92% + B)V22 —4a? =
z(3a—B+4ga®)+1(2a® B +4ga%)+.. . To meet the normalization condition
F(z) — 1/z, the first coefficient must be set to zero, and the second is set
to one. The final result is:

p1(A) = 3=V4a? — A% (4g7% + o + 8ga?), 12ga*+ aa® -1=0. (3.18)

A positive solution a? exists for (g/a?) > —1/48. At this particular value,
indicated as the “edge singularity”, P(+2a) = 0, so that the density p())
vanishes at the edge of the support with an exponent different than 1/2.
Setting = = g/a?, the planar free energy, subtracted of its ¢ = 0 part, is

po ]
Eo(z) = 35(aa? — 1)(9 — aa?) — 1 log(aa?) = - E:’;l(-mz)k% .

(3.19)
By Stirling’s formula we get the asymptotic behaviour of the terms in the
perturbative series: (1/2,/7)(—48z)*k~7/2 where we read the finite radius
|2| < 1/48. The same exponent 7/2 is found for cubic graphs, supporting
the idea that the edge singularity is the point where to compute the contin-
uum limit of random surfaces [5]. Brézin et al. have shown in D=0,1 that
planar graphs, although outnumbered by all non-planar ones, provide the
main contribution to the free energy even for N=1. This fact supports the
1/N expansion as a good nonperturbative approximation. We are however
concerned in the 1/N expansion as the tool for generating planar graphs.
For a < 0 the potential is double-well, and if g/a? = 1/16 the density
(3.18) vanishes at A = 0. Beyond the critical value 1/16 one has to consider
a double cut solution on L = [-B,—A] U [4, B]

1 a 1 a 1

= Z92qi\ 2 _ )2)(\2 — A2 2 o AT
PN = Z20 (B2 - (2 - 4), B = - W
3.20)

Nonsymmetric solutions with one or two cuts are also allowed, but they are
non-unique.

Let us illustrate the solution with orthogonal polynomials [3]. Since the
potential is even, the polynomials have definite parity and A, = 0. Using
repeatedly (3.14) to remove A factors coming from the potential, the first
equation in (3.16) gives

7’% = Rk[a + 4g(Rk+1 + Ry + Rk—-l)] (3.21)

with the initial conditions Ry = 0 and Ry = p2. For a > 0 and large N,
a saddle point integration gives u; = (2alN)™!, so that it is reasonable to
interpolate all R, with a single function R(z), with z = k/N between 0 and
1. The continuum limit equation is

z = aR(z) + 12gR*(z), R(0)=0 (3.22)
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and the planar free energy is

1
—/d:c(l — z)log R(z). (3.23)
0

In the case of double well potential (a < 0), Ry = —2g/a is finite, and
the interpolation requires two distinct functions [12], Ro(2k/N) = Ry, and
R1(2k + 1/N) = Rypyq, with Rg(0) = 0 and R1(0) = R;. The solution
corresponds to the symmetric two-cut density.

3.4. Beyond the one-matriz problem

Models with two or more coupled matrices are in general very diffi-
cult, since they involve integrations over the angular SU(XN) variables. An
exception is provided by the following models with p Hermitian matrices
(14]

p -
Znp(c) = / [l e Sho ViCH) -2 TI T (HHL)  (3.94)

which can be reduced to integrals on eigenvalues by means of a remarkable
formula by Harish-Chandra [11][15]

/ [dU]eSTHAUBU") (H k') —————det[exl’fg)’], (3.25)

where A and B are Hermitian matrices with eigenvalues {a;} and {b;}.

4. Ising models on random lattices

In the standard Ising model, a certain 2D lattice G is given, with a
finite number of sites V, connected in a definite way by bonds (ij). A spin
variable o; = 1 is located on each site, giving rise to 2V different spin
configurations of the lattice. Each bond (ij) carries a spin-spin interaction
energy proportional to ¢;0;. Including a uniform magnetic field H, the
partition function is

Z(G) = ) exp ZMJ + HZU, : (4.1)

{s} (tJ)
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The computation of the partition function is, in general, an extremely diffi-
cult task. The above planar lattice, however, can be thought as the Feynman
graph of the V-th order perturbative expansion of some matrix model, for
example with quartic potential if the lattice has coordination four. It is
much simpler to compute exactly a partition function where a sum over all
planar lattices Gy with V' quartic vertices is performed, each weighted by
its combinatorial factor C(Gy). As Kazakov has shown in the case of zero
magnetic field [16], and then Boulatov and Kazakov [4] for H # 0, matrix
models can provide the exact evaluation of

Zv(8,H) =) C(Gv)L(Gv). (4.2)
v

For coordination four, this partition function can be calculated exactly from
the solvable quartic two matrix model

N =/[dM1][dM2] exp—Tr (M7 + M2 -2cM i Mo+ Fe M+ feHMYE)

(4.3)
where M; and M, are Hermitian N X N matrices, H is a real parameter,
0 < c<1andg > 0. The planar free energy of the model Eq(c, g, H) is
the sum of all connected quartic graphs. At the perturbative order V in
the g expansion, we meet graphs with V = Vi + V3 vertices, where Vj are
“spin up” vertices generated by TrM; giving a factor geX and V5 are ”spin
down” vertices generated by ‘1‘ng with a factor ge"H. These vertices are
connected by p and p double line propagators with weights

(1) = (1) = (F (M) = (FTe(ME) = 57—, (44a)

(1) = (1) = (F T (ML M)) = 5=

Up to the combinatoric and the planar N2 factors, the weight of the graph
with V = V; + V; vertices and p + p = 2V propagators, is

gVeH(i=1) (2(1 - cz))p (2(1 - 62))13

fater] (o

1-¢2 c

(4.4b)

The perturbative expansion of the planar free energy is

14
Eo(g,0, H) =S | —25=| Fv(e H), (4.6)
s 2 |y
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where Fy(c, H) coincides with Zy (8, H) with the identification ¢ = exp(-2),
and H the magnetic field in both cases.

By means of the Harish-Chandra formula, the partition function of the
two matrix model can be written in terms of eigenvalues:

N
N
Iy = / [T dridui A A(p)e™N Zima Wiwa), (4.7)
i=1

where W(A, p) = A2 4 p? — 2chu + gefIAt + ge~Hyut | Following Mehta
[15] and Boulatov-Kazakov [4], one defines two sets of monic orthogonal
polynomials,

[ drauemNF BP0, = hiti (4.8)
that allow all integrals in the partition function to be done. Assuming that

the relevant ratio Ry = (6g/c)hi/hi—1 has a continuous limit R(z), with
z = k/N, one obtains the planar energy

1
Bo(g H) = }log(69/¢) - [ de(1- 2)log R(=) (4.9)
0

and a fifth order equation for R(z), resulting from several equations for the
recurrence coefficients of orthogonal polynomials

c? c? 1 R
=—~R'- —R+ -
=7 3T 3Ry

R2
(1- R?)?

1
+—3- B, B =2chH -2. (4.10)
To study the critical behaviour one is interested in the thermodynamic limit,

given by the large V behaviour of Fy (¢, H) which can be found by studying
the radius of convergence of the perturbative series (4.6) of Eo(g,c, H):

-V
Foe = (£205) (a11)

where g(c) is obtained from the conditions z'(R) = 0, z(R) = 1. Quoting
only results, for a weak field H two different critical relations g = g(c)
are found, corresponding to a phase with spontaneous magnetization for
0 < ¢ < 1/4, and a high temperature phase 1/4 < ¢ < 1. The critical
exponents are different from those of the Onsager solution (in parenthesis),
and coincide with those of the 3D spherical model: 8 = 1/2 (1/8), v = 2
(7/4) and § = 5 (15). Widom’s scaling relation y = B(8 — 1) is satisfied.
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With cubic planar graphs, the same critical exponents were obtained.
This supports the hypothesis of universality, or independence in the limit of
random surfaces, from the discretization procedure. Matrix models, there-
fore, appear as a good route to study models on random surfaces.

The Ising model on the dual lattices was investigated by Johnston [17],
and the critical points were found to obey the usual duality relation. A
generalization to a g-state Potts model on random planar lattices, corre-
sponding to g-matrix model, was studied by Kazakov [18].

5. The O(n) model on cubic graphs

The Boltzmann weight for the Ising model with H = 0 can be rewrit-
ten as chBY [[;(1 + thBeio;), the starting point for a high temperature
expansion. A generalization is provided by the O(n) model, where the site
variable is a real n-component vector S;, of fixed length n

ZQZC/HdnSiH(1+K§i-§j). (5.1)

(i5)

C is a normalization constant for K = 0. The Ising model corresponds to
the case n = 1. The critical behaviour of the O(n) model on the regular
honeycomb lattice was explored by Nienhuis [19]. The same partition func-
tion (5.1) also works for a generic cubic graph G. In any case, expanding the
product only integrations with even powers of a site variable contribute, so
that the product is restricted to closed nonintersecting paths on the lattice.
Equivalently, we may think to replace the graph with a collection of replicas
where some links are “coloured” to form closed nonintersecting loops. Since
there are n colours, each loop yields a factor n, and each visited site gives a
factor K. The result is a counting problem of self-avoiding closed random

walks on G: _ Z Ll
g = n b (52)
L

where |L| is the total number of loops on the replica and Vj is their total
length. As Kostov [20] has shown, if the planar graphs G are allowed to
vary in the class of cubic graphs, with any number V of vertices, and the
partition function extended to

Zomy =Y. C(G)e P g (5.3)
g

one obtains a statistical model that can be described exactly by the planar
free energy of a matrix model with cubic couplings
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ZN(Z,9)=/[dM]H{d¢i]
i=1
Ly 9 4 1N g2 2 S g2
exp—Tr(QM WM +2§4&, \/N_;MQ,), (5.4)

where M and &;, i = 1...n, are Hermitian N X N matrices. In the large
N limit it generates planar graphs with cubic vertices of weight z, where a
line of the field M interacts with two “coloured” lines of type &, and cubic
vertices of three M lines, with weight g. Each graph can then be viewed
as a configuration of the O(n) model: if V; and V; are the two types of
vertices, with V3 + V5 = V, and |L| is the number of loops with lines &, the
graph contributes a factor zV1gV~%1nlLl, Comparison with formula (5.2)
gives the identification g = e=#, g1z = K.

The Gaussian integrals on the n matrices #; can be done, and one
remains with an integral involving only the eigenvalues of M, with a nonlocal
interaction

ZNI/ﬁd,\jAz(A)exp—N i(‘ "9’\) Zlog( )

1=1

(5.5)
The saddle point equation for the eigenvalue distribution could not be solved
by the standard technique, and was translated by Gaudin and Kostov into a
Wiener-Hopf problem [21]. The model has an interesting critical behaviour,
that is described in detail in [22]. We are currently investigating the model
(5.4) with n complex matrices, replacing $2 with #!&#. Loops are now
charged, and in the large N limit are empty of lines and have a definite
orientation: this leads to the interpretation of a statistical models of random
surfaces with holes.

6. A colouring problem

The graphical interpretation of the large N limit of matrix models,
makes them an interesting tool for the theory of graphs itself. The most
famous problem in this context, which actually was the source of the the-
ory of graphs, is the Four-colour conjecture, by Guthrie in 1852. It states
that any planar map can be coloured with four colours in such a way that
countries with a common border always have different colours. For higher
genus maps the number is greater, and found by Heawood at the turn of the
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century. Apart from a long computer proof (Haken and Appel, 1976), no
analytical proof of the conjecture for planar maps exists. It has been shown
that a proof for maps with only cubic vertices is sufficient, and that the
four-colouring of regions is in correspondence with the three-colouring of
bonds of the same map. We therefore introduced the following three-matrix
model [23]

Zn(g91,92) = /[dAHdB][dC]e_%Tr(AerBZ-FCz)_%Tr(ABC)—%T'(ACB) .

(6.1)
When g; = g2 the model describes cubic graphs with bonds of colour 4, B
and C joining in each vertex. To show that all graphs of this theory also
appear in the graph expansion of the one-matrix cubic model [2], which
generates all cubic graphs, means that any cubic graph is three-colourable,
thus proving the conjecture. We were not able to do so much, but inves-
tigated the critical behaviour of the model, which has similarities with an
O(n) model. Integrating over one matrix one obtains

Zn(91,92) = /{dA}[dB]e_ JTe(A%+B?)+ §(91+92) T (ABAB)+ §rg192Tr (A% B?)

(6.2)
with quartic vertices where lines of colour 4 and B cross and touch. Putting
g1 + g2 = 0, the model describes a gas of self-avoiding loops with similar
properties of the dense phase of the O(n) model on random graphs.

The author is grateful to the organizers of the Symposium in Statis-
tical Mechanics in Zakopane and to Dr. Karol Zyczkowski for their kind
hospitality.
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