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We study the transport properties of two models of disordered media.
In both cases we consider the motion of a particle which is not in thermal
equilibrium with the environment. The first example is a hopping process

No 6

in a one-dimensional lattice with random spacing, the second one is a

random telegraph process in a random potential. We show, by computing

the average stationary flux for a finite segment of the system, that the

transport is subdiffusive if the temperature of the particle is lower than

the temperature of the medium.

PACS numbers: 05.40. +j, 05.60. +w, 66.30. Jt

1. Introduction

The diffusion of a particle among random scatterers or its motion in a
static random potential has been the subject of many works (see a review in
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[1]). As it is now well known, it can lead to an abnormal diffusive behavior,
either subdiffusive or surdiffusive, depending on the statistics of the poten-
tial and of the precise rules for the coupling of the particle to the external
bath, and it seems rather difficult to find general reasons for a given behav-
ior. This behavior is often characterized by the mean square displacement
of the particle, which varies as the square root of time for normal diffusion.
Another quantity of interest, however, is the transmission flux of a parti-
cle in a random potential in an interval of length L. The normal diffusive
behavior for the transmission probability (i.e. the probability that the par-
ticle released at the extremity 0 of the interval is transmitted through the
whole interval) is O(L™!) for large L: this is the classical result obtained for
a Brownian particle. It was proved that a short range spatial correlation
between the values of the potential can lead to a superdiffusive behaviour:
the transmission probability is then O(L~1/2).

Here we investigate two different mechanisms that can produce a sub-
diffusive behavior for the flux. The first one is a hopping process on a one-
dimensional lattice with random spacing: this spacing and the transition
rate for hopping obey exponential laws, the exponent constants correspond-
ing to the “temperatures” of the lattice and of the particle, respectively.
The trajectories, the mean square displacement and the average transmis-
sion flux are studied; it is even possible to compute the distribution of the
probability current. All these quantities depend critically on the ratio of
the exponent constants, and the transport is shown to be subdiffusive if the
“temperature” of the particle is lower than the temperature of the medium.

The same conclusion holds for our second model, which considers a
particle moving with constant absolute velocity v on a line, but changing
the sign of its velocity with a space dependent transition rate which rep-
resents its interaction with an inhomogeneous stochastic medium. In this
model, we assume that the particle reaches a thermal equilibrium at inverse
temperature 8 in a potential created by the environment, but due to the
randomness of this environment, the potential is itself stochastic and is con-
trolled by a different inverse temperature 3'. We observe a phase transition
at 8 = B'. For 8' > 8, the flux has a normal diffusive behavior, whereas it
has a subdiffusive behavior for 8' < 8.

2. Hopping process in a one-dimensional lattice
with random spacing

2.1. The model

Consider a particle performing random walk on the sites of a linear
chain, where the intersite distances are independent random variables dis-
tributed according to a given probability distribution g(l;) (I; is the distance
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between the j-th and j + 1-th sites). The hopping process of a particle on
that chain is characterized by the set of the nearest-neighbor transition rates
{Ij,j4+1}, where I'; ;11 is the rate at which particle jumps from the site j
to the site j + 1, and is described by the following master equation

dP(j,t
—-%—) = —(Lj,4+1+ T5,j-1)P(,8) + Tj11,;P(F + 1,8) + [j—1,;P(§ - 1, ¢),
(1)
where P(j,t) is the probability of finding the particle at site j at time ¢. The
transition rates are given functions of the intersite distance, I'; ;411 = I'(l;),
and are symmetric, t.e. I'j 41 = I'j41,;. We consider here the particular
forms of I'(l;) and g(l;) relevant to the triplet excitations transport in
disordered one-dimensional (1D) arrays of donor centers or spectrum of low-
lying excitations in disordered 1D Heisenberg chain [2]. For this physical
situation the probability distribution u(l;) has a negative exponential form

u(l;) = nexp(—nlj), (2)

where n denotes the mean concentration of lattice sites; and the transition
rates are exponentially decreasing functions of the intersite distance

I'(lj) =rexp (—%) , (3)

where r is the amplitude of the transfer and a is the overlapping parameter.

Let us note that the model under consideration belongs to the well-
studied area of random walk in presence of random quenched barriers [1-5].
Analytical results describing the mean-square displacement (MSD) and the
average propagator of a particle on such a chain were derived! in [1, 2] in
terms of certain mean-field approach. It was shown that the single param-
eter which controls the behavior of the characteristics is the value v = an.
In particular, it was found that the MSD grows with time in proportion to
t2v/(2+v) | However, the analysis presented in [1, 2] is quite involved and
does not concern the underlying physical mechanism of the anomalous dy-
namics. In this section we examine behavior of the MSD, passage times and
the disorder average probability current (DAPC) for this model of transport
in random media using simple analysis of the representative realizations of
disorder, which support anomalous behavior of these characteristics. On
the basis of this analysis we recover the result for the MSD [1, 2] and obtain
several new ones. Besides, we calculate rigorously the distribution function
of the probability current.

! This model represents the case C in the notations of [2].
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2.2. Trajectories, passage times and mean square displacement

We begin with the calculation of passage times and the MSD. Consider
some finite segment of the chain, which contains N + 1 sites, N > 1. Since
all the intersite distances are independent random variables, the probability
of having the maximal intersite distance on this segment exactly equal to
lmax can be written down as

Imax
H(lmax) = FN—I(lmax)I‘N(l = lmax); F(lmax) = / dX/"(X) .
]

The maximal intersite distance l;pax is obviously greater than the mean
intersite distance [ & 1/n and we thus have in the large-N limit

I (lmax) < exp(—{1 = F(lmax)IN)tt(l = lmax) -

The maximum of IT(lmax) is approached when II(lnax)V « 1, t.e. lnax is
the typical largest value of the intersite distances for which the expectation
of the number of intervals is of order 1. The typical maximal intersite
distance lnax can be estimated from the latter relation and we find that it
grows with the number of sites N in the segment as lmax x (log(N)/n).
Correspondingly, the typical time needed to jump over the interval lpnax is
then estimated as

tryp (lmax) }Nl/". (4)

Since we have fixed lnax by its typical maximum value, all other distances
are less than this typical value and, therefore, all other jump times have
bounded distributions with finite moments of arbitrary order. In particular,
if v > 1, the mean jump rate equals

lmax

[ exp (952 ae .

v
(t(1,1 < lmax)) = — . = -,
r [ exp(-nf)df
o
whereas if v < 1
1 v _
(811 < Imex)) = ~— 1N_1/" 1,

The sum of N independent jump times for these typical intervals is
equal to 1% N1/¥_ i.e. is smaller than the right-hand-side of Eq. (4) due

1—v
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to the smaller value of the prefactor. Therefore, we can formulate the fol-
lowing statement. For v < 1/2, the particle, confined between two typical
maximum intervals lmax,1 and lmax,2, such that Imax,1 > Imax,2 and both
are greater than all the inbetween intervals, has the smaller probability to
cross the largest interval starting from its boundary then the probability of
jumping through all the inbetween intervals until the next maximum.

Correspondingly, the most probable trajectory is organized as follows.
A particle being at site j jumps through the smallest of the two neighboring
intervals. It moves in the same direction until it meets the interval which
is greater then the first one. Then it changes the direction and jumps until
it encounters the interval which is greater than all explored before. Then it
again changes the direction and the process repeats. Let us also illustrate
this statement for a particular realization. Suppose a segment of the chain,
containes seven sites. The intersite distance between the first and the second
is I3, the distance between the second and the third is l2, and etc. Suppose
next that these intervals satisfy the inequality,

le>hLh>ls>l3>1 >,

and the particle is initially located at position j = 4 having neighboring
intervals I3 and l4. Then the most probable path for the first 13 steps is
as follows (Fig. 1): Since I3 > l; the particle jumps through the smallest
of these two intervals, 4 — 5. Being at site j = 5 it changes its direction
since ls > I3 and jumps 5 — 4 — 3 — 2. Further on, since [3 > [l5 it jumps
2—-3—4—5— 6. Next, since lg > l; it again changes the direction and
jumps 6 - 5 — ... — 1,

Since the particle jumps through the largest interval only from the
neighboring site and the probability of finding it on each site between two
maximum intervals is of the same order, the time which the particle spends
on the chain segment containing N sites is proportional to the product
Ntiyp(lmax). This yields the following scaling relation between the typical
displacement and time,

t o N1+l/v « [ (Xz(t)>]l+l/u (5)
and, thus, we obtain the following result for the mean square displacement
<X2(t)) o t2u/l+u (6)

which was first derived in (1, 2] by means of a mean-field approach.
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2.3. Steady state probability current

Let us next examine the behavior of the steady state disorder average
probability current J. Consider again a segment of the chain containing
N +1 sites with fixed values of the probabilities of finding the particle at the
endpoints, P(j = 0,t = c0) = Py and P(j = N + 1,t = ) = Py4+1. From
the master equation (1) one can readily find the explicit expression for the
J(N) for a given realization of disorder. It is defined by the recursion scheme
(see, e.g., Ref. [3], p.392), which in our case of the symmetric transition rates
reduce to the particularly simple relations

) J(N) .
P(j,t=00)= -+ P(j+1,t =00).
(5t = 00) = gy + P )
Solving these equations one gets for a given realization of disorder
AP
I = (")

where AP = Py — Py and 7(N) is defined by the transparent “inverse
resistivity” form

N
1
T(N)-‘-l;)f(‘ik—)- (8)

The disorder average probability current defined by Eqs (7), (8) can be
calculated exactly. Moreover, it is possible to find all the moments of the
current and the distribution function. We begin with a simple estimate of
its behavior and then present more rigorous results.

Assuming that disorder average current is controlled by the largest in-
terval between donors, we can estimate the DAPC as

oo

(J(N)) AP / 1(max) T (o) dlimas -
N
Performing the integration, we evaluate the following dependence of the

average probability current on the number of sites NV 4+ 1 (the dependence
on the sample’s size is obtained trivially by substitution of N = X/n),

AP
N]/V * (9)

Let us examine the behavior of 7(NV) in Eq. (8). Using Eqgs (3), (4) one can
find the distribution function of variable 1/I'({;). It reads

(J(N))

1 1 1
P(Ti:I_‘—(ij—)):U’I‘ UTJ-] V, ;<T]<00. (10)
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Therefore, 7(N) is the sum of N independent identically distributed random
variables having a broad distribution with infinite moments. A generalized
form of the central limit theorem insures that the suitably rescaled variable,

_1(N)
T(N)—.Nl/”, for 0<rv<i,
or
T(N):T(N)—];,f\;ST(N», for 1<v<2;
T(N):T(N)'I‘Vf‘;if(m), for v>2;

and in the marginal cases
__mN)
T(N) = Nlog(N)’

(V) - N(=(V))
T =~ Niogm)i2

possesses a limit distribution P(T(NN)) when N goes to infinity, P(T(N)) =
L,(T), where L, is non-Gaussian stable (Levy) law. The explicit expres-
sions of the stable laws are known only in two particular cases (except
the trivial case v > 2, when P(T(N)) is the normal law). For v = 1/2,
when it describes the limit distribution of the first return times of a one-
dimensional Brownian motion, and for » = 1/3. However, the large-T and
small-T' asymptotic forms of L,(T) are established (see, e.g., the Appendix
in [6]) for any value of the parameter v. Besides, the negative moments of
L,(T) can be calculated exactly,

for v=1,

for v=2,

7 _ _ I'(m/v) T
T~™dTL(T)= 2" """ 12 2=
b/ vI'(m) sin(wv)I'(v)r

Let us note that the desired average current and its moments are essentially
the negative moments of the distribution L,(T). After some transforma-
tions we obtain the exact expression for the current moments of an arbitrary
order m, if v < 1

vy = LmAarr
vP(m)(ZN)™/
Eq. (11) with m = 1 confirms our estimate in Eq. (9).
The knowledge of the moments in Eq. (11) or the distribution function of
7(N) suffices to evaluate the distribution function of the probability current.
The latter can be readily computed from Eq. (11)

(11)

P(J) = (JANY"1L, (7}\71_1/7) . (12)
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One can evaluate explicitly its asymptotic forms. For JN!/¥ > 1 the
normalized distribution function has a stretched-exponential form,

(vZNJ*)V/A-9)}

v

P(J) x [27&’(1 - v) (J:Z—;) l/(l—y)] _l/zexp [—1 i
(13)

Within the opposite limit N1/¥J « 1 the distribution function diverges as

o ZNTI(1+ v)sin(nv)

T

P(J) JvL, (14)

3. Transmission probability for a random telegraph process
in a random potential

8.1. The model

We consider a particle moving on a segment 0 < z < L which has two
possible velocities £v, in a presence of a potential V(z). When the particle is
at point = with velocity +v (resp. —v) we shall call a4 (2)dt (resp. a_(z)dt)
the probability that in the time interval (¢,t + dt) the particle changes its
velocity from +v to —v (resp. from —v to +v) due to the collisions with
an external bath. Let us also denote by Py (z,t)dz the probability that the
particle is in the interval z,z + dz with velocity +v at time ¢.

It is easy to see that P4 (z,t) satisfy the following system

oP, 0P,
—aT' = —VE‘—(aaPa_a——aP——a)7 (15)

with @ = + or —. Here a should be such that the thermal equilibrium
distribution in potential V is a stationary solution of (15), namely we impose
that P = P_ = e BV is a solution of (15). This implies

dv
ay —a— =vﬂz. (16)

3.2. Transmission fluz

We want to compute the transmission flux for this stochastic process.
This is
$p =vS5L,
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where Sy is the probability that a particle which is released at 0 with velocity
+wv, is transmitted at L (i.e., gets out from the interval [0, L] through L).

We have »

ay(z)dz

L
sp= 1+ / exp[B(V (2)V (0))] (17)
0

One direct method to see this result is the following: we discretize the
interval [0, L] in small intervals

{%,—(}—%Q—L—] for 0<i<N-1
and we call 5; ;41 the probability to be absorbed by i + 1 starting from
i with positive velocity, and S;1;,; the probability to be absorbed by 1,
starting from 7 + 1 with negative velocity. We also define ¢; by the detailed
balance conditions

giSii+1 = Git1Sit1,i-

It is clear that

dz
Siiy1=1-ay—,
v
dz
Siv1,i=1- @,
(de = L/N), so that
i T e =1-p8V'de
gi+1 v

(due to relation (17)) and g¢; is proportional to e 3V as we already know.
Moreover, it is well known (under much more general circumstances, see [6])

that N1
) )
% \SL =5 9k \Skkt1

L
0

so that

St

which is (17).
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3.3. Normal transmission probability

We shall now assume that V is a random potential with the following
structure : the interval [0, L] is divided into N intervals of length ¢ = L/N.
In the interval (ie, (£ +1)e), we assume that the potential V takes a constant
value V; with the following rules:

(i) Vo=0
(i) V; are independent identically distributed random variables W such
that

Prob(W = wy) = px, (18)

oo
where w;, are given values and ) p;, = 1. We also assume that a4 is constant.
k=1
We want to compute the average value (Sp). Let us call

a
K:——'—t,

v

then it is easy to see that

<SL>=7 <exp( aK/ ﬁvd;c)>d0

7 N
/ e " (exp t?Ké:eﬁW) > df.
0

—0Ke

Let us change the variables and writezi = e . The previous formula

becomes
(Sp) = / £ T exp ( (s)) d, (19)
where we have defined:
o(€) = log (fj pkfe**"ﬁwk’) . (20)

k=1

The function ¢(£) increases over the interval [0,1] and takes its maxi-
mum 0 at point £ = 1. When ¢ is fixed, but L tends to infinity, we see from
formula (20) that the maximal contribution to the integral is obtained at
¢ =1 so that

-1
(500~ = (Ee(©les) (21)
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provided that
d

d_f(’a(
With hypothesis (21) we obtain

oo -1
(SL) ~ % (K (Z pkﬁ‘”‘p("“”‘))) (23)
k=1
-1

L
(SL) ~ (/‘%(&‘”)dz . (24)

0

Ole=1 < +00. (22)

or

L
In other words the average of the inverse quantity [ eBW is the inverse
0

of the average and we obtain a normal flux in L~1.
3.4. Abnormal subdiffusive flux

Let us now assume that

d
d_s“’(f)L:l = +oo (25)
which means that
(e?Y) = ) pi exp(Bwy) = +o0. (26)
k=1

In this case, (20) is still valid, but the evaluation (22) does not hold any
more. Under hypothesis (25), p() is still increasing on [0,1], and continuous
at £ = 1, but it is not differentiable at £ = 1. Let us assume that ¢(£)
satisfies a Holder condition for some 0 < y < 1

p(&) ~ —AlE-1]7. (27)

Define a new variable 7 by

AL
n=—lE-1". (28)
It is easy to see that, when L tends to infinity
C
(S1) ~ (29)
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where C is some constant, so that the transmission probability presents a
subdiffusive behavior.

For example, let us assume that the values w; of W are thermally
distributed with another temperature 8’1 different from 8, so that

P ~ e P,

In this case, if we denote a; = exp(Bw;), we have

p(€) =log | 3 apPPee | (30)

k>1
Let us further assume that the series inside the logarithm is a lacunary

series, namely that

a
_ﬁ_l_zl_*_E,

Qg
for some fixed £. Then if %, > 1, ¢ is differentiable at £ = 1 and we have a
normal flux of the type (23), (Sp) ~ L1,
!

If, however, % < 1, it is a consequence of the theory of lacunary Fourier

series that
Z a;ﬁ/ﬁf"‘k

is Holder continuous at £ = 1 with an exponent y = % (see for example [7])

so that if '/ < 1, we have a reduced flux (S ) ~ L~B'/B. The case B =p
is slightly more complicate and gives the behavior (§) ~ (Llog L)™!.

It is seen that these conclusions are exactly similar to those of Section 2,
where the parameter v = an plays the role of 3’/ in the present section.
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