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We discuss nonlinear effects which could be the basis for a theory of
melting involving processes by which energy, initially evenly distributed
in a lattice, can localize itself into large amplitude excitations. In a first
part, we show how nonlinearity can affect the equipartition of energy
in a lattice, and introduce some properties of nonlinear excitations and
solitons. A second part investigates more precisely the question of self-
localization of the energy and the third part present a simple theory of
DNA thermal denaturation. We show in particular how the addition of a
specific type of nonlinear coupling can cause a sharp “melting” transition
in this one-dimensional system.

PACS numbers: 64.60. -i, 05.70. Fh, 87.15. He

1. Introduction

The problem of understanding how solids melt has long challenged
physicists. Although much progress has been done since the early work
of Boltzmann, there are still many unresolved points. One of them is the
explanation of the “Lindemann criterion” which says that a crystal melts
when the amplitude of vibration of the atoms is about 10% of the interpar-
ticle spacing, and provides a relationship to predict the melting point.

The hope that lower dimensional systems would be simpler to under-
stand stimulated studies of two-dimensional surface melting. There are even
one-dimensional systems which exhibit a transition similar to melting: this
is the case of DNA denaturation and it is this problem that led me to
consider melting in the framework of nonlinear theories.

* Presented at the VI Symposium on Statistical Physics, Zakopane, Poland,
September 20-29, 1993.
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Even in two dimensions the understanding of melting turned out to be
very difficult [1]. Kosterlitz and Thouless reformulated the old dislocation
theory into a more modern framework. In this approach, melting is seen as
a defect unbinding theory. Dislocation pairs, present at low temperature,
dissociate near the melting temperature, leaving free dislocations in the sys-
tem. As a result the shear coeflicient drops to zero, which indicates that the
material is no longer in the solid phase. However, at that stage, although
translational order is destroyed, there is still some rotational order which
disappears at a higher temperature by a breaking of the dislocation them-
selves, leading to the liquid state. This theory predicts a smooth transition
and a bump, without divergence, in the specific heat due do the gradual
dissociation of the dislocation pairs. This is in contradiction with the mi-
croscopic Landau theory. In two dimensions however, the real nature of
the transition is not known. Some experiments using rare gas absorbed
on graphite suggest the existence of a continuous melting transition while
others, as well a computer simulations, find a sharp melting [2].

Essentially all theoretical work has been based on the assumption of the
validity of the standard precepts of statistical mechanics and it is assumed
that the thermal energy is homogeneously distributed over the sample. In
the case of DNA denaturation, there are clear ezperimental evidences that
this assumption is not true. Similarly, theoretical and experimental results
on solids show that, at high thermal energy, i.e. when the anharmonicity
(or nonlinearity) of the lattice dynamics is sufficiently excited, equipartition
does not exist. This suggests another vue of melting based on nonlinear local
modes [2]. This approach, using the idea of energy self-focusing may not
be in complete contradiction with the Kosterlitz—Thouless theory, because
local modes could be precursors to the formation of dislocation pairs.

In this set of lectures, I want to develop this idea that nonlinear en-
ergy localization could explain the melting transition, as it seems to happen
in DNA thermal denaturation. In Section 2, I will discuss the problem of
equipartition of energy and show how nonlinear excitations of soliton type
can be formed naturally in lattice dynamics. In Section 3, I will consider par-
ticularly the self-focusing of thermal energy, and Section 4 will be devoted
to the specific problem of DNA thermal denaturation. For this particular
problem, I will show how the introduction of a specific type of coupling
nonlinearity, besides other nonlinearities considered previously, can change
a smooth transition into a very sharp melting. This could perhaps suggest a
connection between the smooth transition given by the Kosterlitz—Thouless
and the first order melting transition that one expects from standard Lan-
dau theory.
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2. Lattice dynamics, equipartition of energy and solitons

The theories of melting discussed in the introduction are based on the
validity of the standard assumption of statistical mechanics and, in partic-
ular, it is assumed that the thermal energy is uniformly distributed among
the different degrees of freedom, and is therefore homogeneous over the sam-
ple. The origin of this equipartition of energy is assumed to be the existence
of anharmonic terms in the lattice equations of motion, which give rise to
interactions between the linear normal modes of the crystal. The first at-
tempt to check this assumption by numerical simulations was made in 1955
by Fermi, Pasta and Ulam. It gave a very surprising result, leading to what
became known as the FPU problem which was solved (only partially) in
1965 by Zabusky and Kruskal.

2.1. The FPU problem and equipartition of energy

Arnold once stated that “the only computer experiments worth doing
are those that yield a surprise”. Clearly the Fermi Pasta Ulam numerical
study belongs to this class [3]. In their work, FPU decided to investigate the
behavior of a one-dimensional chain of 64 particles of mass m, with forces
between neighbors containing nonlinear terms, for times long compared to
the characteristic periods of the corresponding linear problem. Their aim
was to study “experimentally” the rate of approach to the equipartition of
energy among the various degrees of freedom of the system.

The hamiltonian of the system is

N-1 N-1 N-1
H=) i+ Y iK(uir1—w)’ +K§ Y (wir1—w)®, (1)
1==0 i=0 i=0

where u; and p; = mu; are the coordinate and momentum of the i-th par-
ticle. They chose fixed boundary conditions ug = uy = 0. The harmonic
coupling constant is K, and « is a small parameter measuring the magnitude
of the nonlinear term in the interatomic potential.

This hamiltonian can be expressed in terms of the normal coordinates
Ay of the linearized Hamiltonian as

[2 2 ikm
Ap = ¥ ;::0 u; sin (T) (2)

H=1 (Z A2 + mw;‘:Ai) +a> ChimArAiAm, (3)

as
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where w; = 24/ K /msin(kx/2N) is the frequency of the k—th normal mode,
and Cjy,, are constants. In the harmonic case (a = 0), the energy stored ini-
tially in a given mode stays in that mode and the system does not approach
thermal equilibrium. When they started the simulation by exciting the low-
est mode (k = 1), FPU thought that, for a # 0, the mode coupling term in
the hamiltonian would cause energy to flow to the other modes, leading in
the long term to a complete equipartition of energy among the modes. At
the beginning of the simulation, this is indeed what they observed: modes
2, 3, 4 became gradually excited. But, at their surprise, after about 157
periods of the fundamental mode, almost all the energy (with only a 3%
difference) was back to the lowest mode. After this recurrence time, the
initial state was almost restored. Much longer calculations performed later
showed that this periodic recurrence of the initial state could be repeated
many times and a “super-recurrence” which restores the initial state almost
exactly was found, with a longer period.

2.2. Interpretation: the KdV equation and solitons

This remarkable result, known as the FPU paradox, shows that intro-
ducing nonlinearity in a system does not guarantee an equipartition of the
energy. In order to understand the properties of the FPU system (and of
most of the nonlinear systems), it is essential to abandon the expansion on
the linear modes and to consider the full nonlinear excitations of the sys-
tem. This was recognized by Zabusky and Kruskal [4] in 1965 who gave,
ten years after the FPU discovery, an explanation of the FPU paradox in
terms of “solitons”, solution of the Korteweg de Vries equation. It is useful
to examine the derivation of this equation for the FPU atomic chain since
it illustrates the methods which are often used in the theory of nonlinear
systems, and particularly an analysis of the scale of the different terms. A
detailed derivation is given in Appendix A. '

Let us introduce a dimensionless displacement v by u/h = av, where h
is the lattice spacing. The parameter a < 1 sets the scale of the motions.
Its small value should be related to the Lindemann criterion mentioned in
the introduction. The equation of motion which derives from Hamiltonian
(1) is

- c2
Ui =1y (vig1 + viey — 2v;)
zaa 2 2
+ == [(vig1 = v)? = (vi - vim)?] (4)

h

where ¢ = hy/K/m is the speed of sound in the lattice. The discrete
set of nonlinear differential equations (4) is not solvable. However, since
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FPU started from an initial condition which included only the lowest mode
and found a recurrence of the initial state before short wavelength modes
could be significantly excited, their results can be analyzed in terms of
signals with a slow spatial variation. This is equivalent to replacing the
set of equations (4) by a partial differential equation for a function v(z,t),
depending continuously on space and time. Changing to a frame moving
to the speed of sound ¢ and using properly scaled space ({) and time (7)
variables in this frame (see Appendix A for details), one gets the Korteweg
de Vries (KdV) equation

-+ %pawwf + 51-4-w€££ =90, (5)

for the spatial derivative w = v, of the dimensionless displacement v, where
p is a parameter related to the nonlinear term of the interatomic potential.

Using numerical simulations of the KdV equation, Zabusky and Kruskal
exhibited some remarkable properties of its solution which marked the be-
ginning of a new field in mathematical physics, the theory of solitons, and
simultaneously provided a beautiful explanation of the FPU paradox. It
is interesting to notice that the first observation of the “soliton” had been
made in 1836 by J. Scott Russel on a Scottish canal. He had been so fasci-
nated by the “great solitary wave” that he spent more than 10 years of his
life to investigate it. Then the idea was forgotten. In 1895, Korteweg and
De Vries found an analytical explanation of Scott Russel’s observations, but
it is only after the work of Zabusky and Kruskal that soliton studies started
to flourish.
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Fig. 1. Temporal evolution of the initial cosine condition introduced by Zabusky
and Kruskal in the KdV equation (from Ref. [4]).

Zabusky and Kruskal simulated the KdV equation with the initial con-
dition w(¢,0) = cos ¢, which corresponds to the lowest mode introduced
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by FPU. As shown in Fig. 1, they observed a very peculiar behavior which
they described in the following way
Initially the first two terms of Eq. (5) dominate and the classical over-
taking phenomenon occur; that is w steepens in regions where it has
a negative slope. Second, after w has steepened sufficiently, the third
term becomes important and serves to prevent the formation of a dis-
continuity. Instead oscillations of small wavelength develop on the left
of the front. The amplitudes of the oscillations grow and finally each
oscillation achieves an almost steady amplitude and has a shape almost
identical to that of an individual solitary-wave solution of (5). Finally,
each such “solitary-wave pulse” or “soliton” begins to move uniformly
at a rate (relative to the background value of w from which the pulse
rises) which is linearly proportional to its amplitude.
This description does not only give the time evolution of the signal, but it
explains also clearly the origin of the phenomena. It is interesting to no-
tice that the original papers on solitons from Scott Russel or Zabusky and
Kruskal contain rather pictorial descriptions of the formation and dynamics
of soliton. This is perhaps associated to the unusual properties of the soli-
ton for people who have been trained to think in terms of linear dispersive
waves, so that they feel they need to explain what they have seen to the
sceptical reader. The formation of the solitons is the clue to the FPU re-
currence because the numerical study showed that the solitons are perfectly
stable nonlinear excitations of the system. They are bell-shape localized
excitations moving at constant velocity s given by

w(E,7) = (SZ) sech? v/Bs(€ — s7). (6)

Notice that, in the frame (£, 7), moving at the speed of sound with respect
to the lattice, the KdV solitons must have a positive velocity, i.e. KdV
solitons are supersonic excitations. Their amplitude is proportional to their
velocity as observed by Zakusky and Kruskal. When they collide, they
pass through each other and preserve their amplitude and velocity. Their
nonlinear interaction appears only through a phase shift. The original work
of Zabusky and Kruskal has now been completed by many theoretical studies
and we know that the solitons can really be considered as the “nonlinear
normal modes” of the system [5]. Their exceptional stability explains the
FPU paradox: the solitons which emerged from the initial condition arrive
after the recurrence period almost in the same phase as in the initial state
and consequently they almost reconstruct the original waveform. As they
are exactly preserved in the collisions, the sam process can repeat over and
over again.

It is important to notice that Zabusky and Kruskal observed clearly
the solitons, and therefore solved the FPU paradox, because they plotted
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the displacements in real space instead of looking at the Fourier modes. As
shown in Fig. 1, the formation of the solitons is associated to a localization
in space of the energy of the initial signal, each soliton being rather narrow.
This is why they show up clearly when the displacement is plotted as a
function of space.

If the solitons appear so naturally in the simulations, it is because they
are stable excitations of the nonlinear lattice, contrary to the Fourier modes
which are only useful in a purely linear lattice. As explained in the descrip-
tion given by Zabusky and Kruskal, the soliton results from an equilibrium
between dispersion (third term in the KdV equation (5)) and nonlinear-
ity (second term in the KdV equation (5)) which tends on the contrary to
favor high amplitudes and gradients and to steepen the pulse. The impor-
tant point is that this equilibrium is stable: if a pulse is too broad initially
the dispersion is weak and nonlinearity dominate to make it steeper un-
til the dispersion balances the nonlinearity. In a similar manner, a very
sharp initial condition will broaden due to dominating dispersion until the
equilibrium is reached. This is why solitons are so easy to generate in a
nonlinear system. As shown by the numerical simulations of Zabusky and
Kruskal, an arbitrary initial condition evolves spontaneously into the “non-
linear modes of the system”. The inverse scattering transform, developed
after the pionneering work of Zabusky and Kruskal is the equivalent of the
Fourier transform for a nonlinear system [6, 7]. It can be used to determine
the “soliton content” of a given initial condition and predict its evolution.

A possible objection to this enthusiastic view that seems to claim that
solitons are everywhere in a nonlinear system is that Zabusky and Kruskal
have been dealing with the KdV equation which is a very special equation.
It describes an exactly integrable system in which solitons have their exact
mathematical sense of excitations which are perfectly preserved into colli-
sions, and can be analyzed by the inverse scattering transform. However it
was obtained from the original physical system after a series of approxima-
tions (continuum limit approximation, dropping high order terms). There-
fore one may wonder whether the same tendency to form solitons would be
found in the original system. The answer is yes although the solitons are
no longer exact solitons in the mathematical sense, but quasi-solitons [8].
Practically it means that narrow localized pulses are also formed from an
arbitrary initial condition of sufficiently high amplitude to excite the non-
linearities. These pulses propagate at constant speed and pass through each
other almost without losing energy. Even when their width is of the order
of the lattice spacing, so that the continuum approximation breaks down,
they lose less than 2 or 3% of their energies in collisions, so that they are
still long lived excitations of the system.

The KdV-type solitons which appear in the FPU problem are only one
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class of solitons which can be relevant for lattice dynamics. Another class,
the so-called “topological solitons” have been used to describe dislocations,
or domain walls in ferroelectric or ferromagnetic materials [9]. Although
this type of solitons may be relevant for melting, they are not discussed in
these lectures due to lack of time.

In this section, we have seen on the example of the FPU problem, that
the dogma of equipartition of energy should be taken with caution in non-
linear phenomena. Probably most of you knew already about the FPU
paradox and solitons and believed that this is not relevant for a real system
because the FPU model is so special (and in particular one-dimensional).
I hope that the next section will convince you that nonlinear energy local-
ization could be more common than it is usually thought, especially in the
context of melting, i.e. close to a lattice instability where nonlinearities are
highly excited.

3. Nonlinear energy localization

The introduction of solitons as possible excitations in the lattice dy-
namics of solids is an exciting idea due to the exceptional properties of the
solitons. However there are also some objections that come immediately to
mind after the discussion of the previous section:

e solitons are found in the numerical experiment of Fermi Pasta Ulam,
but can they be observed in a real material?

o the FPU problem is a one-dimensional problem. We can expect a strong
sensitivity to dimension, so, can the results be extended to a three
dimensional system?

The first objection can be answered by presenting experimental evi-
dences and I will do that below. The second objection is more fundamental
because there is a theorem, due to Derrick [10] which shows that there are no
permanent-profile soliton-like solutions in more than one dimension, which
has been often cited as an argument that there are no solitons in multi-
dimensional real systems. But the crucial term is permanent-profile. The
Derrick’s theorem does not forbid time-dependent solutions. These solutions
are tightly connected to the experimental evidences that I want to discuss.
Therefore, I will present them first. Moreover they will give me the oppor-
tunity to introduce the very important idea of self focusing or spontaneous
energy localization, which the key to an alternate theory of melting.

3.1. The fundamental equation for self trapping of heat pulses in solids

The analysis of the FPU results has suggested that nonlinear effects can
contribute to localize energy in a crystal lattice. This phenomenon has been
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experimentally observed in NaF crystals at low temperature by Narayana-
murti and Varma [11]. In order to analyze their results, one must go beyond
the simple FPU model. In the course of this analysis, we shall derive another
soliton equation which is perhaps even more important than the KdV equa-
tion because it is more ubiquitous and its properties in dimensions higher
than 1 are very interesting.

To study the propagation of heat pulses in a real solid, we must start
from the full lattice dynamics equations [12]

mﬁ?:ZK?‘Buﬁ+ Z Kf'f;" ﬁu}'—}- E Kf]“la:fuﬁu,u (7

3B il,Bv jlm,Bvé

where u* is the displacement of the i-th atom in the « direction, and the
K’s are the derivatives of the interatomic potential. However, along a sym-
metry direction, the propagation of different polarizations decouple in the
harmonic approximation, and the coupling of the lowest transverse phonon
branch (It) to other branches due to nonlinear terms is very weak, because
it can only occur through a combination with one of the upper branches.
Therefore, for the It branch, only the self interaction due to nonlinear terms
is important. Consequently, for this particular It mode along a symmetry
direction, the dynamics becomes very similar to that of the FPU problem,
except that higher order terms in the potential have to be considered. We
can again consider a scalar variable u and treat a one-dimensional problem.
Let us label K;, K3, K4, the potential parameters for nearest neighbor
interactions at the different orders of nonlinearity. The only significant dif-
ference with the FPU case, is that we shall include the quartic term in the
potential. As for the FPU problem, the cubic term is assumed to be small,
i.e. K3h/K; = ep/2 with € < 1 and p of order 1, but we consider a quartic
term of order 1 by defining K4h%/K, = g/3, where ¢ is of order 1 and h is
the lattice spacing as before.

At a first glance, it may seem strange to consider a quartic term of
the same order as the harmonic (quadratic) term because we are so used
to assuming that nonlinearity is small. However, one should notice that we
are speaking of the potential coefficients and not of the potential energy:
if we assume, as in the FPU case, a small amplitude for the displacement
u with the condition u/h = av with @ < 1 and v of order 1, the quartic
contribution in the potential energy will be of order a? with respect to the
harmonic part. Moreover, I will show below with a simple example that, for
surface melting, the quartic coefficient in the potential can even be dominant
with respect to the harmonic one. Finally, the agreement with experiments
provides another good argument for the chosen scaling!

With this scaling of the terms, the same calculation as in the FPU case
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(see Appendix A) gives for v the equation

4
€
Voo = Evuxx [1+ apvy + ezqazvf(] + TgVXxxx5 (8)

where 6 and X are the dimensionless space and time variable respectively.
Changing again to a frame moving at the speed of sound with £ = X — €0
and introducing the slow time 7 = €360, we obtain a modified KdV equation
which generalizes the KdV equation obtained in the FPU case

wy + japwwe + Fga’wiwe + Fweee = 0. (9)

Setting ¢ = 0, we recover the KdV equation of the FPU problem. The
major difference with the KdV case will be in the type of solutions that we
seek for equation (9).

Fig. 2. Schematic drawing of a phonon wavepacket corresponding to a heat pulse
in a crystal.

We are interested in explaining experimental results for heat pulses
in a crystal. In a first approximation, such a pulse can be considered as
a wavepacket of phonons. Therefore, as shown schematically in Fig. 2,
the solution will contain several scales in space and time. There is a fast
space-time scale associated to the vibrations inside the wavepacket, and a
slower scale associated to the envelope of the wavepacket. A method which
is appropriate to treat this problem is a multiple scale ezpansion. This
approach is often used in the analysis of nonlinear phenomena, but it is
more general and can be applied in various problems, for instance in kinetic
theory as shown recently by J. Piasecki [13]. To apply this method, we must
first identify a small parameter in the expansion. In Eq. (9), the parameter
a € 1 which sets the scale of the atomic displacements is the natural small
parameter. Then we expand the solution in a series of terms ordered with
the powers of a,

w=wytaws +a’wy+---. (10)



Nonlinear Energy Localization and Melting 965

The physical variables £ and 7 are also replaced by a set of independent
variables at the different scales

’LU(E,T)= w(EO)TO’flaTI’E%TZ'”)) (11)
with
o=¢ To=T, (12a)
fir=af 7 =ar, (12b)
f2=a% 7 =adr. (12¢)

The derivatives are modified accordingly, i.e.

o 98 8 4,0
5; - aTo +a8-r, ta aTz to (133)
o 8 8 , 8

— = — 4 a— — e 13b
A T TR T (13b)

These expressions are then introduced in the equation of motion (9)
and the successive powers of a are identified as in a usual perturbation ex-
pansion and the resulting equations are solved order after order. Additional
equations are imposed by requiring the validity of the perturbative expan-
sion, 1.e. by setting to zero any resonating term that would cause an infinite
growth of one of the w;’s (secular terms). The details of the calculation are
given in Appendix B. The result is that the solution is of the form

w(€, 1) = yre’*oé=w0m) 4 C.C.
+a [1,/)0 + hpe?ilkol—wor) 4 C.C.] -0, (14)

where 1 is a function of the “slow” variables ¥1(£] = &1 + %kg'rl, T2) and
obeys a Nonlinear Schrodinger Equation (NLS)

.0y 3 621/’1 1 [ 2172:] 2
o S ko=t + Yk lg— S| ey = 0. 15
: dr, 24 0 3{;2 20 |9 kg ¥11%%1 (15)

Before studying the properties of the NLS equation, some comments
are in order here:

e as expected, the solution has the form of a modulated wavepacket which
is appropriate for the description of a heat pulse. However, one should
not conclude that the standard treatment in terms of linear modes
(phonons) would be as good, without the burden of the multiple scale
expansion. As we shall see below, the NLS equation has unique features
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which would have been completely missed in a phonon expansion. In
particular, it has solutions localized in space (i.e. decaying exponentially
away from the center; they correspond to another class of soliton than
the KdV solitons). These solutions cannot be represented by a phonon
expansion unless one uses an infinite series because the phonons are
extended excitations. The nonlinear approach has captured a feature
that the linear expansion simply cannot show.

Equation (15) is formally identical to the Schrodinger equation, al-
though it appears in a purely classical context, but the “potential”
—|9¥1/|? is expressed as a function of the solution itself. When the po-
tential is a “well” that corresponds to localized solution, we are in a
situation of self-trapping. It is precisely that situation which was ob-
served for the propagation of heat pulses in NaF, and it is also this case
which is important for melting.

If one looks for permanent profile solutions of the modified KdV equa-
tion (9), one can find pulse-like solutions very similar to the solitons
of the KdV equation. It may seem surprising that we can derive also
a completely different solution in the form of a wavepacket. This is
the richness of nonlinear equations which appears here. Instead of the
unique solution of the linear equations (when the boundary conditions
are given), one gets often a large variety of possible solutions which
can be qualitatively different. Moreover, apart from the fully integrable
systems for which all the solutions can be classified in a systematic
manner, one is seldom sure that there are no other, yet unknown solu-
tions, which could bring insight into new phenomena. This feature is
not merely a mathematical property of the equations associated with
different levels of approximations in the solution. It is rather easy to
built physical systems (for instance nonlinear electrical lines) which can
exhibit these different solutions, depending how they are excited [14].

3.2. Some properties of the NLS equation

The nonlinear Schrodinger equation

2
i%’tf+P-a-——+QI¢l ¥v=0, (16)

appears in many areas of physics because it provides a good description of
intrinsically nonlinear systems which admit, in the limit of small amplitude,
harmonic wave train solutions of the form {15, 16]

Y= Aei(kz-—-w(k)t) . (17)

When the nonlinearities are taken into account, they govern the evolution
of the amplitude 4 (or envelope) of the wave. The NLS equation has been
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introduced to model Langmuir waves in a plasma, gravity wavepackets on
water, propagation of vibrational energy along helical proteins [16], but its
most successful application is perhaps nonlinear optics [17]. Since the orig-
inal work of Hasegawa, Tappert and Kodama [18] showing that an optical
pulse can propagate as a soliton into an optical fiber, the theoretical pre-
diction has turned into a successful technical product which can transmit
information on thousands of kilometers at the highest rate ever achieved.
After years of mathematical physics, the soliton may well turn into a huge
commmercial success. Nonlinear optics is specially accessible to theoretical
analysis because, at the current available intensities, the nonlinear coef-
ficients are small and the power spectrum of the electromagnetic field is
concentrated in the neighborhoods of discrete frequencies [17]. These prop-
erties allow one to remove all fast space and time scales from the Maxwell
equations using a multiple scale expansion as we did for the lattice dynamics
case.

Like the KdV equation, the NLS equation is a completely integrable
equation, having exact soliton solutions, which can be studied with the in-
verse scattering method. Is it a fortunate accident that these equations de-
rived from physical equations by standard perturbation methods have such
remarkable mathematical properties? We do not know, but one may notice
that the reduction process introduces new symimetries and new constraints
(conservation laws) without destroying the existing ones. This increases the
chance of getting a very special equation. What is even more remarkable
is that, when physical perturbations, additional terms, discreteness effects,
etc, are taken into account, the exceptional properties of the soliton solu-
tions are almost preserved. In some cases, the additional terms coming from
the physics make the system even more interesting by breaking its exact in-
tegrability in a manner which can be exploited for a particular purpose. For
instance, using Raman effects, it has been possible to “feed up” a soliton
with the energy of a small amplitude linear wave [17] to compensate for the
inevitable losses, or to take advantage of discreteness effects to built large
amplitude local modes from smaller ones [19].

The soliton solution of the NLS equation (16) can be easily found by
looking for a solution under the form

Y(z,t) = Az — vi)ei(FH+me), (18)

i.e. a wavepacket with permanent profile moving at speed v. Introducing
this expression into Eq. (16), one gets an equation for A(z) = A(z — vt).
The cancellation of the imaginary part gives k = v/2P, and the real part
gives

%A

Poz —(

2+ Pr¥)A+QA =0, (19)
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which has a localized solution of amplitude a, A = a sechyz, provided that
the condition
2P4% = Qa? (20)

is satisfied. This condition requires that P and Q have the same sign(PQ > 0)
for the existence of a soliton solution.
The soliton is given by

Y(z,t)=a sech[\/ -2—QI;a(:c — vt)]e(t+r2) (21)

with 2 = Qa?/2 — v?/4P, k = v/2P. Notice that, due to the exponential
term, the NLS soliton does not move with a constant profile as the KdV
soliton. Only the envelope keeps its profile. When the wavevector x is
very small (k = 0), the solution appears as a bell-shaped envelope which
oscillates in time at frequency {2 while it propagates. Such solutions are
called “breather modes”.

For the application to melting, the important result is not the exact form
of the soliton solution, but the condition PQ > 0 which is also the condition
for a spontaneous energy localization in the system. This localization occurs
due to the modulational instability of a wave obeying the NLS equation. This
can be easily seen by noticing that the NLS equation has a solution of the
form of a plane wave

O(z,t) = Age*(x=—1) (22)

where Ay is a positive constant, provided that the condition 2 = Px? —QA%
is satisfied. This condition is a nonlinear dispersion relation which shows
that the frequency of the wave decreases when its amplitude increases. This
solution is valid whatever the sign of PQ, but its stability depends on that
sign. This can be checked by looking at the linear stability of the wave. Let
us look for a solution

P(z,t) = [Ag + b(z,t)] exp ([ 2t + kz + 0(z,1)]) . (23)

Introducing this solution into Eq. (16), and keeping only the linear terms
in b and 6, one gets a system of linear differential equations governing the
evolution of b and 6 (see Appendix C for the details of the calculation). The
solutions are of the form

b=bee’®>=¥) L C.C.  6=6,e4""*) L C.C. (24)

and correspond to a small modulation of the amplitude and phase of the
plane wave. The parameters of this modulation verify

(2xPé — v)? = P§3(P6% — 242Q). (25)
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If P and Q have opposite signs (PQ < 0), the term (2xP§ — v)? is positive
for any value of the modulation wavevector §, so that v is real. In this case,
the plane wave is stable. On the contrary, for PQ > 0, v has an imaginary
part for §2 < 24¢Q/P. According to equation (24), this is associated to an
exponential growth of the modulation. This generates a self-modulation of
the wave. Figure 3 shows the evolution of a plane wave sent into a medium
which exhibits modulational instability (in this case, a nonlinear electrical
line). The wavefront provides the perturbation from which the modula-
tional instability grows. Figure 3 shows that the spontaneous modulation
of the wave evolves into a train of localized excitations which are envelope
solitons. This example shows once more how the solitons can emerge from
an arbitrary initial condition. Simultaneously, the energy density which was
uniformly distributed in the initial plane wave shows large peaks around the
solitons. Modulational instability provides an efficient mechanism for en-
ergy localization in a physical system, and this was already noticed in 1967
for water waves by Benjamin and Feir [20].

The experiments of Narayanamurti and Varma [11] demonstrate that
this mechanism can indeed operate in a real solid and cause the self-focusing
of heat pulses. A strong heat pulse is sent on one side of a NaF crystal at
low temperature (1.4 to 4.2 K) with an alloyed metal film deposited on the
surface to serve as a heater. The signal which is transmitted across the
sample is detected with a superconducting film serving as a bolometer on
the other side of the sample. The experiments can be performed along dif-
ferent crystallographic directions. When a symmetry axis is chosen, they
show an important narrowing of the input pulse which is clearly a nonlinear
effect: an increase of the input power by a factor 20 results in a multipli-
cation of the output amplitude by a factor of 100 because, simultaneously
the output pulse has become narrower. The results agree remarkably well
with the theoretical predictions, discussed in the previous section, that the
transverse pulse, being weakly coupled to other modes should obey the NLS
equation and can show modulational instability if PQ > 0. In the case of
the dynamics of a crystal lattice, the NLS equation (15) shows that the con-
dition for instability can be fulfilled due to the presence of the quartic term
(g term) in the hamiltonian. In the FPU case where ¢ = 0, the coefficients
of the NLS equation are such that P > 0 and Q < 0, so that they corre-
spond to the modutionally stable case. On the contrary, if the quartic term
is large enough (which is the case for NaF, as shown by the experiments
of Narayanamurti and Varma), an instability can develop. Its time evolu-
tion can be predicted, at least initially, by calculating the maximum growth
rate of the perturbation, given by the imaginary part of v, as a function of
the amplitude Ag of the initial wave and compared with the experimental
results at different input power.



870

wwmmﬁﬁmmm, ‘I | I “

M. PEYRARD

J

I*lf | ) 'vu' “M’““H‘\"'? l} “ ” ’l ,,i,} '““r!‘l .,“U | 'ld. |

'
{ ¥

‘ EHM! ” ’ I
} f‘ 'Mb{‘xﬂ'

JM

[ut | ”
I

i

Fig. 3. Evolution of a sinusoidal signal sent at the input of a nonlinear electrical
lines. The pictures show the signal at different times. It propagates along the line,
but simultaneously, the perturbation due to the front of the signal generates a self
modulation of the signal.
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3.3. The NLS equation and surface melting

The experimental results obtained on NaF show unambiguously that,
when the excitation of the crystal is sufficiently large, nonlinearity can cause
a strong energy localization. Around melting temperature the thermal exci-
tation is large so that we can expect strong nonlinear effects. Moreover we
have seen the crucial role of the quartic term in the interatomic potential to
determine the instability condition. A very simple model shows that surface
melting is precisely a case where this quartic term can be very large, or even
dominant, with respect to the harmonic (quadratic) term, so that we can
expect a strong modulational instability at a crystal surface.

Fig. 4. Simple model for surface melting. (a) section of the model crystal in a plane
orthogonal to the surface, (b) schematic drawing of the stretching of an interatomic
bond for an in-plane motion.

The model is shown in Fig. 4. We consider the surface of a cubic crystal
lattice, with lattice spacing h. Among the various motions of the atoms at
the surface, the in-plane motion are particularly interesting because they
are highly nonlinear. The qualitative reason is that, in order to stretch
significantly the bond that connects an atom of the surface to its nearest
neighbor of the first atomic layer below the surface, on needs a very large
displacement (Fig. 4(b)). To describe completely the in-plane motions, one
needs a two-component vector field. However, in order to simplify the pre-
sentation we shall consider only the motion along one crystallographic axis
and use a scalar field u. In this case the problem reduces to the dynamics
of a one-dimensional chain of the surface atoms, lying along the selected
axis. Although the lattice spacing in the bulk is h, near the surface it is
slightly different because the surface atoms are bound only on one side of
the surface. We denote by hj the distance between the surface layer and
the first atomic layer under the surface (hy; > h). The simplest interatomic
potential that we can introduce is a harmonic potential V' = 1/, k(d — h)?
having the bulk interatomic distance as its equilibrium distance. In this
expression, d is the interatomic distance when an atom is displaced from its
equilibrium position. Assuming moreover that the atoms below the surface
are fixed, d is given by

d® = h} +u® = AI(1 + u?/R), (26)
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which can be expanded in series if u> < h? (remember the Lindemann
criterion which says that, at the melting temperature u < 0.1h)

u2 u4 u6
dzh1[1+l—-l~——+0(——)]. (27)
WA T\R

Introducing this expansion in the potential V' and dropping the constant
term, we obtain

V(u) = 1khy [(hl - h);:% (h— %‘-) ’}:4] +0 ( 6) . (28)

Remembering that h;, although bigger than h is very close to h, we no-
tice that, in this case, the harmonic (quadratic) coefficient of the potential
is small with respect to its nonlinear quartic part. Consequently, for the
in-plane motions of surface atoms, nonlinear effects can dominate the dy-
namics, even though we have used an harmonic potential for the stretching
of a bond.

Adding the in-plane interactions among the atoms, the Lagrangian of
the atomic chain that we study is

L = Z 2mu k(‘ll.;.y] ) — %AU? - %Bu;‘ 3 (29)

with A = khy(hy — b) and B = khy(h — h1/2).
Taking as before the continuum limit we obtain

L [ (b= doe)? = Jon - Yot de (30)

with A =m/h,a = A/h, B = B/h, k = kh.
The equation of motion for u is then

Ugy = f;—uu - au - fud. (31)

Although the nonlinearity is now in an “on-site” potential rather than in
the coupling term, this equation can be reduced to a NLS equation which
shows modulational instability with the same type of multiple scale expan-
sion as above. We will not present the calculation here because a similar
(slightly more complicated) case will be discussed in the section on DNA
denaturation.
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3.4. Higher dimensions and discreteness

So far we have only considered one-dimensional cases and we have for-
gotten about the lattice discreteness through the continuum limit approxi-
mation. It turns out that, if one considers higher dimensions (for instance
dimension two for surface melting) or include discreteness, the tendency to
energy localization becomes even stronger.

Since the NLS equation has been applied to such physical problems as
hydrodynamics, surface gravity waves, plasma physics, the question of its
properties in dimension higher than one has been extensively studied. In
multidimensional problems, the energy localization does not simply generate
soliton solutions as discussed previously. It is much more dramatic and may
lead to a divergence of |1)(7,t)| in a finite time known as blow up, or, in the
context of plasma physics, collapse.

This phenomenon is easily observed in optics. The electric field of a
beam propagating in the z direction in a nonlinear medium obeys a two-
dimensional NLS equation [21]

2ik

2 2 2
oE (aE 6E) 3ek? pap o (32)

0z + Oz? + dy? 4ey

where k is the wavevector, g and £9 the linear and nonlinear coefficients
of the dielectric constant. The blow-up appears in optics as a strong self-
focusing of the beam which becomes extremely narrow while the energy
density in its center increases so much that it can cause a breakdown of
the medium (in this case an optical fiber breaks into pieces!). The same
phenomenon is observed in plasmas. It leads to the formation of “hot spots”
with a low density (called “caverns”) which collapse in a finite time. The
nature of the self focusing singularity, ¢.e. the exact law for the collapse has
been analyzed in 1975 by Zakharov and Synakh [22] and studied later for
wider classes of NLS equations with different dimensions and nonlinearities
[23]. These studies show that it can occur in many physical models when
the nonlinearities are sufficient.

However, when blow-up occurs in an evolution equation, it merely in-
dicates that the assumptions made in the evolution equation break down.
In a real physical system, the formation of the blow-up singularity is pre-
vented by higher order nonlinearities, or dissipation. In the case of melting
which concerns the dynamics of a lattice, the main physical feature which
is absent from the NLS equation such as (16) or its counterparts in higher
dimensions is the discreteness of the lattice which has been eliminated by
the continuum limit approximation. Since it fixes a minimum length scale,
discreteness will fix a lower limit to energy localization and therefore control
the blow-up. Lattice discreteness can be restored in the equation describing
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the lattice dynamics at different levels. First, instead of starting from the
partial differential equations (8) or (9), the multiple scale expansion can
be performed directly of the lattice equations. This approach gives again a
solution which has the form of a modulated wave, but the full discreteness is
kept for the carrier wave which contains the fast space and time scales, while
the continuum approximation is introduced only for the envelope which has
a slow space variation [24]. This results again in the NLS equation for the
envelope, but its coefficients P and Q are now functions of the wavevector
of the carrier wave. The instability condition (PQ > 0) is only found for
some range of the carrier wavevector, leading to a selection of the modes
which tend to self-localize. A fully discrete NLS equation

ia_gtﬁ + P($nt1+ ¥n—1 = 2¢n) + Q¥n[*¢n = 0 (33)

can also be derived in some limits for a nonlinear lattice [25] and used to
determine conditions for instability which can then be checked with nu-
merical simulations of the full lattice equations. In two-dimensional atomic
lattices, little has been done yet to study the role of discreteness, but two-
dimensional discrete NLS equations have been studied for electron transfer
in molecular monolayers containing acceptor and donnor molecules [26].
Although the role of discreteness is not yet fully understood, the various
studies confirm that a discrete lattice can indeed show spontaneous energy
localization. Moreover, the chance for localization is generally found to be
higher for a discrete lattice than for its continuum counterpart even though
discreteness imposes a lower bound on the space scale over which energy
concentrates.

Energy localization in a multi-dimensional system does not always lead
to collapse. It has been shown recently that, in a nonlinear lattice of
molecules that can rotate over a corrugated surface, modulational insta-
bility can generate two-dimensional breather modes which are very stable
and have soliton-like properties in collisions [27]. This example shows that
the Derick theorem forbidding permanent profile solitons in more than one
dimension should not be invoked, as is done sometimes, to conclude that
localized excitations cannot exit in most of the real systems because they
are multidimensional.

The theoretical and experimental results that we have discussed in this
section show that spontaneous localization of energy in a nonlinear lattice
is very likely to occur as soon as nonlinearities are sufficiently ezcited. De-
pending on the conditions (dimension of the space, degree of nonlinearity),
the phenomenon can lead to the formation of large amplitude soliton-like
nonlinear excitations, or to a blow-up of the energy density which is only
limited by discreteness or coupling to other degrees of freedom. Since the
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approach of the melting temperature is precisely a situation in which one
can expect the lattice nonlinearity to play a large role, nonlinear energy lo-
calization deserves probably a better consideration in the theory of melting.
The case of DNA denaturation, discussed in the next section, is interesting
in this respect because it is an example in which the energy localization can
be observed experimentally.

4. DNA thermal denaturation: a one-dimensional
phase transition

DNA is central to all living beings, as it carries, for any species, all
the information needed for birth, development, living and probably sets the
average life-time of each species. Physically, DNA is a giant, double stranded
linear macromolecule wound into the well known Watson-Crick double helix
(28], with length ranging from millimeters (bacteria) to meters (humans) and
even approaching kilometers (salamander). Yet DNA is always packed so
as to fit a micrometer size space, either as a loose structure in procaryotes
(bacteria), or in densely packed, dedicated unit, the nucleus, in eucaryotes
(the more evoluted cells).

The genetic information (or coding sequence) of a gene is always de-
posited on one strand only of the double helix. Gene expression involves
successively transcription — the gene is transcribed from the DNA by an
enzyme, RNApolymerase (RNAP), onto a “messenger” RNA — and transla-
tion, the process by which the messenger is translated into the gene product
(protein) by a special “factory”, the ribosome. Gene expression is carefully
controlled and regulated, to ensure supply of the gene product in amounts
at the time and the place required by the actual circumstances (intra- or
extracellular).

DNA transcription is a typical example in which the dynamics of the
molecule is essential to a biological function since the double helix has to
be locally opened in order to expose the coding bases to chemical reactions.
This process is however very complex because it is activated by an enzyme
and it is probably still beyond a detailed analysis. Thermal denaturation
has some similarities with the transcription because it starts locally by the
formation of a so-called “denaturation bubble” similar to the local opening
occurring in the transcription. Therefore investigating thermal denaturation
is a valid preliminary step toward the understanding of the transcription.
At temperature well below the denaturation temperature, DNA shows also
large amplitude motions known as “fluctuational openings” in which base
pairs open for a very short time and then close again. There is a rather clear
experimental evidence that these very large amplitude motions are highly
localized [29] and involve only few base-pairs at a time. They correspond
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to the local modes created by energy localization discussed in the previous
section. These motions are important because, when the base pairs reclose,
they can trap some external molecules causing a defect in the sequence.
This process has been proposed as a possible mechanism of chemical car-
cinogenesis {30]. The fluctuational openings can be considered as intrinsic
precursors to the denaturation.

The denaturation or “melting” transition is the separation of the two
complementary strands. It can be induced by heating or by changing the
ionicity of the solvent. It has been extensively investigated experimentally
and models have been proposed to explain the complicated denaturation
curves found in the experiments [31]. However these models are essentially
Ising-like where a base pair is considered as a two-state system which is
either closed or open. Such an approach cannot reproduce the full dynamics
of the denaturation and it relies on phenomenological parameters for the
probability of opening or cooperative character of this opening, which are
not easily derivable from first principle calculations.

On another hand, the nonlinear lattice dynamics of DNA has recently
been the subject of many investigations based on the idea that vibrational
energy might be trapped into solitary wave excitations. This idea, originally
suggested by Englander et al. [32] to explain the open states of the DNA
molecule, has given rise to many investigations using soliton-like solutions
to describe open states, transition between the A and B forms, or energy
. transport along the molecule. Most of these investigations have focused on
the propagation of solitons along the double helix. However the biological
function of DNA does not necessarily involve transport along the molecule.
Consequently, although it is clear that a realistic model will exhibit non-
linear effects owing to the very large amplitude motions known to exist,
their ability to propagate along the helix is not a requirement of the model.
Rather, for denaturation (and transcription) we are concerned by the for-
mation and growth of these excitations. It is this question that I want to
discuss in these lectures.

4.1. A simple model for DNA melting and its statistical mechanics

Let us consider an approach that goes further than the Ising models, but
still keeps the model as simple as possible in an attempt to determine the
fundamental mechanism of the melting. Therefore we consider a simplified
geometry for the DNA chain in which we have neglected the asymmetry of
the molecule and we represent each strand by a set of point masses that
correspond to the nucleotides. The characteristics of the model are the
following:

(i) The longitudinal displacements are not considered because their typ-
ical amplitudes are significantly smaller than the amplitudes of the smaller
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transverse ones [33]. The stretching of a base-pair in the transverse direc-
tion is represented by a real variable y,, which can therefore describe all the
states of the pair from closed (y, = 0) to completely broken.

(i) Two neighboring nucleotides of the same strands are connected by
a harmonic potential to keep the model as simple as possible. On another
hand, the bonds connecting the two bases belonging to different strands
are extremely stretched when the double helix opens locally so that their
nonlinearity must not be ignored. We use a Morse potential to represent
the transverse interaction of the bases in a pair. It describes not only
the hydrogen bonds but the repulsive interactions of the phosphate groups,
partly screened by the surrounding solvent action as well. The hamiltonian
of the model is then the following:

1 . K -
=Y [omi 4 K= smon? 4 Do 1] (2)

Since we are interested in the thermal denaturation transition of the
molecule, the natural approach is to investigate the statistical mechanics of
the model. For a one-dimensional chain containing N units with nearest
neighbor coupling, the classical partition function can be calculated by the
transfer integral operator (TI) method [34, 36].

The calculation is similar to the one performed by Krumhansl and Schri-
effer [37] for the statistical mechanics of the ¢* field. For the potential
part, it yields Z, = exp(—Npeg), where €p is the lowest eigenvalue of the
transfer operator. We can then compute the free energy of the model as
F =-kgTlnZ = —(NkgT/2)In(2rmkpT) + Ney  and the specific heat
Cy = —T(8%F/8T?). The quantity which gives a measure of the extent of
the denaturation of the molecule is the mean stretching (y,,) of the hydro-
gen bonds, which can also be calculated with the transfer integral method
[35].

In the continuum limit approximation, the TI eigenvalue problem can
be solved exactly, but experiments on proton exchange in DNA [29] show
some evidence of exchange limited to a single base pair which suggests that
discreteness effects can be extremely large in DNA. Therefore we have solved
numerically the eigenvalue equation of the transfer operator without approx-
imations. The TI operator is symmetrized and the integral is replaced by
sums of discrete increments, using summation formulas at different orders.
The problem is then equivalent to finding the eigenvalues and eigenvectors
of a symmetric matrix.

Figure 5 compares the thermal evolution of (y,,,) obtained with the con-
tinuum approximation and the exact numerical calculation, for the model
parameters discussed in the next section. Both methods show a divergence
of the hydrogen bond stretching over a given temperature, but the melting
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Fig. 5. Variation of (y) versus temperature: the dash line corresponds to the TI
results in the continuum limit, the solid line gives the exact TI results obtained by
numerical solution of the TI operator, and the plus signs correspond to molecular
dynamics simulations.

temperature given by the numerical treatment is significantly higher, point-
ing out the large role of discreteness in DNA dynamics if one uses realistic
parameters for the model. The TI calculation shows that the specific heat
has a broad maximum around the denaturation temperature.

4.2. Energy localization in the DNA molecule

The thermodynamics of our DNA model shows that it exhibits a thermal
evolution that is qualitatively similar to the denaturation of the molecule
observed experimentally. But this statistical approach does not give infor-
mations on the mechanism of the denaturation, and in particular, does it
start locally by the formation of denaturation bubbles in agreement with
the experiments. In order to study this aspect, we have investigated the dy-
namics of the model in contact with a thermal bath by molecular dynamics
simulation with the Nose method [38]. Most of the simulations have been
performed with a chain of 256 base pairs with periodic boundary condi-
tions, but in order to achieve better statistics, some simulations have been
performed on a Connection Machine-200 with 16384 base pairs.

We have chosen a system of units adapted to the energy and time scales
of the problem. Energies are expressed in eV, masses in atomic mass unit
(a.m.u.) and length in A. The resulting time unit is 1 t.u. = 1.0214 10~ 4.
The choice of appropriate model parameters is a very controversial topic,
as attested by the debate in the literature [39]. There are well established
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(b)

Fig. 6. Results of molecular dynamics simulations at three different temperatures
{a) T =150 K, (b) T = 340 K, {c) T = 450 K. The horizontal axis indicates the
position along the 256 cells of the molecule and the vertical axis indicates time. The
stretching v, of the base pairs along the molecule is indicated by a grey scale, the
lighter grey corresponding to y < —0.1 A and black indicating y > 1 A. Therefore
black regions show broken base-pairs.

force fields for molecular dynamics of biological molecules, but they have
been designed to provide a good description of the small amplitude motions
of the molecule and are not reliable for the very large amplitude motions
involved in the denaturation. In our model, the Morse potential is an ef-
fective potential which links the two strands. It results from a combination
of an attractive part due to the hydrogen bonds between two bases in a
pair and the repulsive interaction between the charged phosphate groups
on the two strands. The potential for the hydrogen bonds can be rather
well estimated but the repulsive part is harder to determine because the
repulsion is partly screened by ions of the solvent. Consequently we had to
rely on estimations. The parameters that we use have been chosen to give
realistic properties for the model in terms of vibrational frequencies, size of
the open regions, etc, but future work will be needed to confirm our choice.
We do not expect however that a better choice would change gqualitatively
the results presented here. The parameters that we have chosen are: a dis-
sociation energy D = 0.04 eV, a spatial scale factor of the Morse potential
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a = 4.45 A1, a coupling constant K = 0.06 eV/A, a mass m = 300 a.m.u.
The constant of the Nose thermostat has been set to M = 1000.

Figure 6 shows a time evolution of the dynamics of the model at three
temperatures. The stretching of the base pairs is indicated by a grey scale,
darker dots corresponding to larger stretching.

Looking at this figure, one notices immediately two major features.
First, as one moves along an horizontal direction, i.e. along the molecule
for a given time, the amplitude of the stretching varies very much from site
to site. This is especially true at high temperature, but it is still noticeable
at 150 K, well below the melting temperature. This shows that there is
no equipartition of energy in this nonlinear system on a time-scale which is
very long with respect to typical periods of the molecular motions, but on
the contrary a tendency for the energy to localize at some points which is
more and more pronounced as temperature increases. However, the “hot-
spots” due to nomnlinear energy localization are dynamical entities. They,
move, appear and die, and on a macroscopic time-scale one can consider
that the average energy of all the sites is the same. At high temperature,
the figure shows large black regions which correspond to denaturated regions
of the molecule. These black areas are the denaturation bubbles observed
experimentally. At the highest temperature shown here (Fig. 6(c)) they
extend over 20 to 50 base pairs and their boundaries are sharp. If the
temperature is raised slightly above 540 K, the bubbles grow even more and
finally extend over the whole chain: the molecule is completely denaturated.

The second remarkable feature on Fig. 6 can be observed by moving
along a vertical line on the figure i.e. following the time evolution of a given
base pair. If one choses one region of the molecule in which the energy is
concentrated, one can see alternating black and light-grey dots. This is due
to an internal breathing of the localized excitations that oscillate between a
large amplitude (black dots in the figure) and a small amplitude state (light
dots) in a regular manner. These motions are the fluctuational openings of
DNA. They exist even well below the denaturation temperature and coexist
with denaturated bubbles in the high temperature range. Fig. 6(b) shows
that they play the role of precursor motions for the formation of the bubbles.

The calculation of the dynamical structure factor from the molecular
dynamics results exhibits two types of excitations. In the high frequency
range, one recognizes the phonon modes corresponding to linear motions of
the chain. At low temperature their dispersion curve is well described by
the linear dispersion curve resulting from the equations of motions of the
model. Close to melting, on the contrary, most of the chain is on the plateau
of the Morse potential and therefore experiences almost no restoring force
that brings it back to y = 0. The dispersion curve is then the dispersion
relation of a chain of harmonically coupled particles, without a substrate
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potential, i.e. a dispersion relation without gap. This is clearly observed
in the molecular dynamics simulations and results in a phonon softening
which should be observable experimentally in the vicinity of DNA melting
transition. The second characteristic feature of the dynamical structure
factor is a low frequency peak, associated to the fluctuational opening, which
shifts to zero frequency as the denaturation bubbles form near the melting
point.

The results of the molecular dynamics simulations illustrate the phe-
nomenon of nonlinear energy localization discussed above and shows how it
can drive a “melting transition”. The localized “breathing modes” which are
formed spontaneously in the system can be studied with standard methods
of nonlinear dynamics. They are approximately described by soliton solu-
tions of a nonlinear Schrédinger equation [40].

4.3. Is DNA melting a one-dimensional phase-transition?

The model discussed above has been able to describe some of the main
features of DNA melting as it is observed experimentally. However there is
a crucial point in which this model gives incorrect results, it is the sharp-
ness of the phase transition. For an homopolymer, the experiments show
that the melting occurs very abruptly over a temperature interval which is
only a few K or even less. This poses a very fundamental question since
DNA is basically a one dimensional system, which is not expected to have
a phase transition. I want now to show that, within a one-dimensional
model with short range interactions, a sharp transition is possible if one
takes into account properly the nonlinearity of the base stacking interaction
[41]). The possibility of a phase transition in one-dimensional DNA was al-
ready examined within the Ising-model approach by Poland and Scheraga
[42] and Azbel [43] who concluded that it can be attributed to cooperativ-
ity effects and to the role of the winding entropy released when the two
strands separate. Another view of this problem was proposed by Kose-
vich and Galkin [44] who showed that, for a double chain like DNA, one
must not forget that the strands, when they are separated to form bubbles,
explore a three-dimensional space. Therefore, although the model looks one-
dimensional, when one counts the accessible states in the phase space this
three-dimensional character appears. In our simple model, a corresponding
feature comes from the Morse potential. When a portion of the chain is on
the plateau of the Morse potential, it moves in fact in a two-dimensional
space. Therefore the possibility of a phase transition cannot be ruled out.
The interesting result is that it does exist provided the intra-strands inter-
action contain some nonlinearity. A simple extension of our DNA model
(Eq. (34)) can describe the dynamics of these effects an gives a very sharp
transition in agreement with the experiments. The stacking energy between
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two neighboring base pairs is described by the anharmonic potential:

E(ly ea
W(gngn-1) = 5 (14 pe™o@nt3n0) (g — gy}, (35)

This new intersite coupling, replacing the simple harmonic coupling of our
previous approach, is responsible for qualitatively different properties. The
choice of this potential has been motivated by the observation that the
stacking energy is not a property of individual bases, but a character of
the base pairs themselves [45]. When the hydrogen bonds connecting the
bases break, the electronic distribution on bases are modified, causing the
stacking interaction with adjacent bases to decrease. In Eq. (35), this effect
is enforced by the prefactor of the usual quadratic term (¥, — yn—1)2. This
prefactor depends on the sum of the stretchings of the two interacting base
pairs and decreases from 1 K (1 + p) to 3K when either one (or both) base
pair is stretched. Although its form was chosen for analytical convenience,
the qualitative features of potential (35) are in agreement with the properties
of chemical bonds in DNA. They also provide the cooperativity effects that
were introduced phenomenologically in the Ising models. A base pair that
is in the vicinity of an open site has lower vibrational frequencies, which
reduces its contribution to the free energy. Simultaneously a lower coupling
along the strands gives the bases more freedom to move independently from
each other, causing an entropy increase which drives a sharp transition.
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Fig. 7. Variation of the specific heat versus temperature for the DNA model. The
very narrow peak corresponds to the anharmonic coupling case (a = 0.35, p = 0.5),
the dotted curve and the solid broad peak to harmonic coupling (k' = 1.5k and
k" = k, respectively).
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Our approach can be compared to recent views on structural phase transi-
tion in elastic media which stress that intrinsic nonlinear features character-
ize the physics of these transformations, and extend the standard soft mode
picture [46]. It is important to notice that, although cooperativity in intro-
duced through purely nearest neighbor coupling terms, it has a remarkable
effect on the 1D transition. Figure 7 shows the drastic change introduced
by the anharmonic coupling on the specific heat of the model calculated by
the transfer integral method [41].

The full curve corresponding to the anharmonic stacking interaction
shows a sharp peak very similar to that one would expect from a first-
order phase transition, whereas the harmonic coupling investigated before
gives only a smooth maximum. This result suggests that, although DNA
structure is very complicated, a simple nonlinear model is able to reproduce
with a good agreement the main experimental features of its dynamics for
the fluctuational openings as well as the melting curves.

5. Conclusion

When it was discovered in 1965, the soliton generated a great enthusi-
asm. However, up to know, it has been essentially observed at a macroscopic
level in hydrodynamics or optics. In these domains, it really brings new re-
sults and the theoretical studies have even suggested new experiments or
new devices in which the solitons play a major role. This is the case for
optical communications using solitons, or the generation of ultrashort op-
tical pulses in femtosecond lasers which can be described in terms of the
two-soliton solution of the NLS equation. At the microscopic level on the
contrary the role of solitons in the statistical mechanics of solids is more
limited, except in magnetic systems where there are clear signatures of soli-
tons in nuclear magnetic resonance experiments or in neutron diffusion [47].
The direct observation of solitons in lattice dynamics is rather difficult and
apart from the experience of Narayanamurti and Varma [11}, the propaga-
tion of soliton-like excitations has not been clearly demonstrated although
they are believed to play a large role in some properties of solids, like the
central peak in ferroelectrics [50].

I believe that the interest for nonlinear excitations in solids will be
strongly revived by the concept of local modes which is directly connected
to the nonlinear energy localization discussed in these lectures. Since the
original work of Kosevich and Kovalev [48] and the rediscovery of intrinsic
localized modes by Takeno and Sievers [49] 13 years later, the topic has
been expanding very fast, and the possibility to have stable localized modes
have been found in many systems. These modes, which are breathing modes,
i.e. modes with an internal oscillations are not restricted to one-dimensional
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systems. They can form by spontaneous localization of thermal energy when
a sufficient level of excitation is reached and are therefore good candidates
for a new approach to the theory of melting. When one thinks in terms
of local modes, it is rather simple to understand the seemingly surprising
Lindemann criterion saying that a crystal melts when the amplitude of
the thermal fluctuations is of the order of 10% of the lattice spacing. If
one assumes that the thermal energy is uniformly distributed among the
various degrees of freedom, it is difficult to explain how such a “small”
displacement can cause the destruction of the lattice. But, if the same
amount of thermal energy self-focuses into spatially localized modes, in
some places of the crystal the-amplitude can become very high and cause
melting.

The example of DNA denaturation provides an example where the anal-
ysis is sufficiently simple because a one-dimensional model can be used, and
where experiments can probe the existence of local modes. The model has
also shown the crucial role of the nonlinear interaction to change the na-
ture of the transition. One may wonder whether a similar effect could not
be introduced in the Kosterlitz Thouless theory of melting, which gives a
smooth transition, to modify the nature of the transition and find an abrupt
transition in better agreement with the experiments.

The work on DNA thermal denaturation presented in these lectures
has been performed in collaboration with T. Dauxois. Part of the work has
been supported by the CEC Science Program under contract SC1-CT91-
0705. Useful discussions with A.M. Kosevich during the preparation of this
manuscript have been made possible through a grant of the NATO Linkage
Program (930236)

Appendix A

Derivation of the KdV equation for a nonlinear lattice

We consider a one-dimensional lattice of particles of mass m, coupled
by the potential

V(r)=1K,r? + 1K3r® + 1K, (A1)
where 7 is the interatomic distance. Denoting by u;(t) the displacement of
atom ¢ with respect to its equilibrium position, its equation of motion is

mii; = Ko(uit1 + ui—1 — 2u;)
+K3 [(vipr ~ ) — (wi —vic1)?] + Kg [(wigr — w)® — (wi —wis)?] .
(A2)
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If we introduce the dimensionless displacement v by u/h = av where h
is the lattice spacing, and a < 1 gives the scale of the displacement, we get

.

K
b; =-;:—{(vi+1 + vi—1 — 2v;)
aK3h

+ %, (1 = 0)? = (0 = 0im)’]
0.2 2
g:h [(vi41 = v3)® = (v = vi-1)’] } ’ (43)

We are interested in displacements which show only a small variation from
one site to the next, which allows us to use a continuum limit approximation,
i.e. replace the discrete set of functions v;(t) by a function v(z,t) depending
continuously on space as well as time. Let us introduce dimensionless space
and time variables by

o

€z c

X = o 6= o
where ¢ defined by K,/m = c%/h?, which has the dimensions of a velocity,
is the speed of sound (long wavelength linear excitations of the lattice)
and € < 1 is introduced to express in a mathematical sense the slow spatial
variation of the fuction v. In terms of these new variables, §2v/8t% becomes
(c2/h?)(8%v(X,0)/88), and v;+1(0) is expressed with a Taylor expansion of
v(X, 0) around X; = ih

(A4)

viaa (0) =o[e((Z20), 6 1— o(X: £ €,0)
1, 0%v
(Xuf?)ie (X)2 ax2(x")
1, 8% 1 , 0%
e 38X3(X-)+ 54 43}(4( Xi) + O(°). (A5)
Consequently we have
0 929282)(484)( 6y, (A6
vit1(0) + vi—1(0) — 2vi(6) axz (X + Spxa(Xi) +0(), (A6)
and, from
(vi41 — v) = & 22 (X)) + O(), (A7a)
(01 = i) = @ o(Xima) + O(E)) (ATb)
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with a second Taylor expansion for the derivatives, we get

(vit1 —vi)? = (i —vi1)? = € [‘5?)? ( % (x; )) + 0(62)]

e |B) oy s
Similarly we get
(Vi1 — v3)® = (v — v1)® = e‘aix [%(X")] +0(8).  (A9)

As explained in the text, we assume that the third order nonlinearity
is small and define K3h/K2 = ep/2, while the quartic nonlinearity is taken
of order 1 by setting K4h?/K2 = q/3. Introducing the different expressions
calculated above into Eq. (A3), keeping only the terms up to order €%, and
dividing by ¢2/h? = K3/m, we obtain

32'0 2 62
960z ~ © X2

ov v et gty 5
1+ apgy +a q(ax) ] * aaxi T O€)- (A10)

This equation is still difficult to solve, but it can be put into a simpler form
by changing to the frame moving at the speed of sound c. In the absence
of dispersion and nonlinearity, any deformation v propagates in the lattice
at the speed of sound and therefore it appears as static in the frame which
moves at velocity c. Here we consider a case with weak dispersion and weak
nonlinearity. This can been seen from Eq. (A10) because the dispersive and
nonlinear terms are of order e*. Therefore, we can expect that a deformation
v will change very slowly in the frame moving at the speed of sound. This
can be made quantitative by looking for a solution which is function of a
“slow time” 7 = €30. The change of frame means that the space variable is

= (¢/h)(z — ct) = X — €f, and the space and time derivatives are modified
accordingly

0 8
59X ~ B¢ (AL1)
0* 02 02 02
602 —6667_ 24658 +€25—?. (A12)

If these expressions are introduced into Eq. (A10) for which only terms up
to order 4 must be conserved since we have already dropped some terms of
the order €°, we find that the term vgg, which is of order €% cancels on both
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sides and, if we define w = v the remaining terms, which are all of order
€* give the equation

wy + Fapwwe + Fga’wiwe + Frweee = 0, (A13)

which is Eq. (9) of Section 3.1. If we consider an interatomic potential
(A1) without the quartic term as for the FPU problem, i.e. we set ¢ = 0,
Eq. (A13) reduces to the KdV equation (5) of Section 2.2. The final equation
is not invariant with respect to time reversal while the initial one was, but
one must keep in mind that Eq. (A13) is written in a frame moving at
the speed of sound ¢. In this frame, a solution with positive velocity is a
supersonic signal in the original lattice, while a solution with a negative
velocity is a subsonic signal in the lattice. The KdV solitons are always
supersonic signals.

Appendix B

Multiple scale analysis of the modified KdV equation

We present here in details the calculation that was only sketched in
Section 3.1. We start from equation (9) and expand the solution in a series
of terms ordered with the powers of a,

w=wpt+aw; +alwy+---. (B1)

The physical variables £ and 7 are also replaced by a set of independent
variables at the different scales

w(E’T) = w(EOaTOa El: 71’52,72"')7 (B2)
with
fo=¢, To =T, (B3a)
§1 = ak, T = ar, (B3b)
62 = a2£) T2 = a27.. (B3C)

The derivatives are modified accordingly, i.e.

.é.. = -3_+ i+a2_a-+
or  Ony “an 07y
=Dy + aDy +02D2+"‘s (B4a)

9 _0 [ 0 20
o0& 84 06,

=A0+aA1+a2A2+---, (B4b)
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where we have introduced the simpler notations D for a time derivative
and A for a space derivative with an index to specify with respect to which
variable the derivative is calculated. With this notation §%/8£° becomes

: .
?365—3 = A} +3aA2A; 4+ 3a2A%A; + 3420042 4 0(a®).  (B5)

Introducing these expressions in the equation of motion (9) and identifying
the successive powers of a, we get
Order a°:

Dowg + E%Ag‘wo =0 (Bﬁ)
which has the solution
wo = A(Tl,Tz, It R ) exp (Z(kofg - wo‘r‘o)) +C. C., (B7)

provided that wo = —k3 /24 .
Order al:

Dowl + -z%i-Ag‘wl = —Dl’wo — %pwvowo bt %AgAl'wo . (BS)

In this equation we can replace wq by its value (B7) and solve for w;, but the
r.h.s. of Eq. (B8) contains terms with a factor exp i(woTo — ko€p) which are
resonant terms for the linear operator of the L.h.s. These terms must vanish
because otherwise wy will diverge in time and the perturbation expansion
breaks down. Canceling these secular terms gives a first equation for 4

0A 3 ,04
—_— + ——ko—-— =
67'1 24 8&1
which means that, concerning the variables at order ¢, the envelope A4 is a
function of the variable £} = £; — V71, where V, = -3k24/2 is the group
velocity of the carrier wave of frequency wg and wavevector kg. Once the
secular terms have been canceled, the equation at order a simplifies into

0, (B9)

Dow; + iAgwl = ilcogA2 exp (2i(kofo — woTo)) + C.C. (B10)
which has the solution
2 .
wy = k—szz exp (22(’&3060 - WQT())) + C.C.. (Bll)
0

Order a?:
1, 1
Dyws + ﬁAowz = — Diyw; — Dywg — é‘pr(Aowl + Ajwy)
1 1 3
- -é-pwlewo — Eqngo’wo - EZA%Alwl

3 ., 3 2
- -2—4~A0A2w0 - 24A0A1w0 . (B12)
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This linear differential equation for w2 can be solved since we know the
r.h.s., t.e. wg and wj, but, as for the order al!, the r.h.s. contains secular
terms in exp i(ko€o — woTo), which must be canceled to prevent a divergence
of wy. Identifying these secular terms and setting them to 0 gives

94 1 q 3 ,04 824
—— k 2A* + ikg A’*’A* — ki = ’k il
9rs szA +1 + 54k0 5%, - 1085? 0 (B13)

which can be written also as

[ 94 3 204 2p? 2 824
1[31’2 240 ag]+ kO[ kg}lAlA+ koagl =0. (B14)

Since we have noticed that, according to Eq. (B9), A could be naturally
expressed in a frame moving at speed V,, we change to such a frame, i.e.
we introduce new variables

E‘E-}-——»k‘r, =T, B15
0

In this frame, Eq. (B14) simplifies into

84 1 2p 924
i + =k 244 —k =
’afé+2°[q }bAIA+24 Frial (B16)

which is the Nonlinear Schrédinger equation (15) with 4 = ;.
Appendix C

Modulational Instability in the NLS equation

Let us start from the NLS equation

o0 0%
iZ+ PoE QYR = 0. (c1)

The plane wave
¥ = Ag exp (i(rkz — 02t))
is a solution of Eq. (C1) if 2 = Px? — Q A2. In order to study the stability
of this solution we look for the time evolution of a small perturbation of its
amplitude or phase. This is done by chosing
Y(z,t) = [Ao + b(z,t)] exp (i[£2t + Kz + 0(z,1)])
= [4o + b(2,1)}e’%, (C3)
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where b(z,t) and 6(z,t) are supposed sufficiently small so that we can keep
only the expressions which are firts order in b and §. Therefore we have

‘Z_'f gi’ % 1 i0(Ag + b)e’ +ig§e*’4’ + O(b2, 62, b9)
02 8% . 0b ; . a0 .
a_a:f — _a?eté +m-5;e’§ KZ(AO + b)ez¢ _ K"é;'AOezé
. Ob a%6 00 . ;s 2 92
+ ma—ze 4 z-a———Aoe na—zAge + O(b*, 0%, b8)

[912% = (43 + 342b)e’® + O(b?, 6%, b6)

Introducing these expressions in Eq. (B16), the cancellation of the real part
gives

3 b a0
~ (Ao +8) + Po— + QA3(Ag +b) — Ag— 5
—Pr%(Aq +b) — 2PnAog—Z +2QA% =0, (C4)
and the cancellation of the imaginary part gives
ab ob 8%0
— +2kP—+P =0.
or T2 TP A =0 ()

But the three first terms of Eq. (C4) cancel because of the dispersion relation
connecting 2 and « (here for a wave of amplitude Ay + b). The remaining
system of linear differential equations for b(z,t) and é(z,t) has solutions of
the form

b=bee’®2¥) 4 C.C., 6 =46ee =" L C.C., (C6)

where by and 8, obey an homogeneous system of algebraic equation which
has only a trivial zero solution unless its determinant vanishes, which gives
the condition

(2kP8 — v)? = P§%(P§ - 24%Q). (CT7)

connecting the parameters § and v of the modulation to the coefficients P
and @ of the NLS equation. The plane wave is stable only if v is real. If
this is not true, among the two roots in v, one has a positive imaginary part
which causes an divergence of the perturbation. As discussed in Section
3.2., an inconditional stability (stability for all modulation wavevectors §)
can only be achieved if the condition PQ > 0 is satisfied.
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