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Two types of operators (I, II) are constructed in terms of bosonie quan-
tum (g-)oscillator operators. These operators satisfy a relation analogous
to the g-commutation relation for fermionic quantum (g-)oscillators. Both
types of operators (I, II) can be identified with the fermionic harmonic
oscillator in the limit ¢ — 1 by exploiting the presence of certain arbitrary
functions of the deformation parameter g. For I they may be identified
as parameters of U(1) transformations while for II they correspond to
parameters of GL(2,R} transformations. Appropriate fermionic number
operators in the limit ¢ — 1 are also constructed.

PACS numbers: 03.65. Fd

1. Introduction

Quantum (g-) oscillators [1, 10-15] provide a rich arena for testing many
of the basic theoretical tools of quantum physics. They are inextricably
related to quantum groups which have given new insight in quantum inverse
scattering problems [2], quantum deformations of Lie algebras [3], quantum
field theory and statistical mechanics [4, 5].

On the other hand, quantum oscillators promise interesting physical
applications [6—9]). The motive in this paper is to investigate the possibilities
of ¢-bosonization as an analogue of the usual bosonization. Certain ideas
related to g-bosonization have been discussed in [14]. Here the perspective is
different viz. transformations resembling canonical g-transformations [12].
We utilise an algebraic method to construct two types of operators (I and
II) in terms of bosonic g-oscillators. These new operators satisfy a relation
similar to the g-commutation relation for fermionic g-oscillators. For type I
operators, nilpotency can be obtained by choosing two arbitrary functions
of ¢ which occur in the solutions to be equal. But a suitable g-fermionic
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number operator cannot be constructed. For type II operators, nilpotency
cannot be obtained for any realistic choice of arbitrary functions which are
present. Neither can one construct a g-fermionic number operator.

However, in the “classical” limit (i.e. when the deformation parame-
ter ¢ — 1) both types of operators (I and II) can be made to satisfy the
usual fermionic harmonic oscillator anticommutation relations including the
nilpotency conditions by suitably choosing the behaviour of the arbitrary
functions as ¢ — 1. For operators of type I the arbitrary phase factor may be
interpreted as a parameter of U(1) transformations of these operators while
for those of type II these functions correspond to parameters of GL(2, R)
transformations. Appropriate number operators in the limit ¢ — 1 can also
be constructed.

In Section 2 the first (I) type of the abovementioned operators are con-
structed. Section 3 describes operators of the second (II) type. In Section
4 the origin of the various arbitrary functions and phase factors occurring
in the solutions are discussed. We summarize our conclusions in Section 5.

2. Operators of type I

The equations characterizing the ¢-deformed bosonic oscillator system
are

aat —gata=¢™N, Nt=N, (1)
Na=a(N -1), Na'=al(N+1). (2)
a,a' and N are the annihilation, creation and number operators, respec-

tively, ¢ = e® is the deformation parameter and we take it to be real.
Standard bosonic oscillators are described by

aat —ata=1, N=ala=ANt, (3)
Na=a(N -1), Nat=al(N+1). (4)

Fermionic ¢-oscillators are described by the equations
oot + gbto = ¢™M, b2 =(b!)2 =0, (5)
MY =M=M?, Mb=bM-1), Mb =bl(M+1), (6)

where b,b! and M correspond to annihilation, creation and number opera-
tors, respectively. The fermionic harmonic oscillator is defined through the
relations

bbT

Q"l
Q":

("2 =0, (7)

Mb=bM-1), Mbt=b(HM+1). (8)
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We shall also utilise the relations:
[N, N1 = [M, M] = [N, M] =[N, M] =[N, M] = 0. (9)

It is known that the operator IV is a function of ¢ and N [1]. Therefore
they commute. The case of M and M is similar {15]. From usual quantum
mechanics it is known that N and M commute. Therefore, it is plausible to

—

assume that [N, M] = [N, M| = 0. The expression (9) is therefore justified.
Let us transform to new operators b and bt:

b=au(N), b =u*(N)al, (10)

where u is a function of (ﬁ and ¢) to be subsequently determined, and *
denotes complex conjugation. We further demand that

bbt + ¢qbth = qﬁ, (11a)

Mt=M, (11b)

[N, N)=[M, M) =[N, M) =[N, M} =[N, M]=0, (11c)
the operator M being assumed to be some function of N and q viz. ¢(q, K/)
Our assumption is based on the relations (11c) and (10) and the discussion
following equation (9).

Substituting the transformations (10) in Eq. (11a) and using (3) and
(4) we have

U(N +1) + qU(N) = ¢M = ¢#(@M), (12)

where
U(N) = Nu*(N)u(N). (13)

The assumption M = #(q, N) combined with Eq. (4) gives

M

>

‘IM_.I’ (14&)
tgM+1, (14b)

it
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g
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Putting Eq. (12) in either of Eqs (14) leads to
U(N) = ¢*U(N - 2). (15)

The solution of Eq. (15) is found to be

-~

U(g, N) = ¢V X(9) + ¢ N¥(g), (16)
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where the arbitrary functions X(¢) and Y (gq) are given by

X(g) = 3¢*@01, (17a)
Y(q)=U(q,0) - X(q). (17b)

Finite difference equations are analogous to the discrete versions of or-
dinary differential equations. Hence to solve them one requires the speci-
fication of initial conditions. The two arbitrary functions X(q) and Y (q)
encode the two initial conditions u(q,0) and ¢(g,0). (11a) as embodied in
(12) is insensitive to the choice of these initial conditions.

It should be noted here that if U(N) is a solution of (15) then U(—N)
is not a solution. Using the definitions (13) we thus arrive at

- Py 1/2
P~ (qNX(q)+£-—q)NY(9)) exp (Mq,ﬁ)) ,

N

~ -~ 1/2

~

where v(q, N) is an arbitrary phase factor.
The relations (18) satisfy (11a) with the identification

P

M =841+ In(2x). (19)

The squares of the operators b and bt are

(B)% = (51)2 =0 for X(q)=Y(q). (20)

Hence for X(g) = Y (q), the operators b, b! are nilpotent. However, the
operator M cannot be identified with any g-fermionic number operator as

it is evident from (19) that M? # M for any X (g) because X (q) is always
restricted to be a function of ¢ only.
In the “classical” limit ¢ — 1

(X(l) ; (—1)’“1/(1))” i

E —>b1:

[~}

~

7 exp (iu(l,ﬁ)) ,

. 1/2
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Then one has

bibl + b1y =1 for X(1)=Y(1)=1, (22a)
(b1)2 =0 for X(1)=Y(1), (22b)
(b}) =0 for X(1)=Y(1). (22¢)

The number operator in this limit ¢ — 1 should not be obtained from hni M
q-—)

because we have already shown that M is never a g-fermionic number op-
erator. Rather, the correct number operator is

M; =blb,

- M] = b{bl = % (1 + (—1)N) for X(l) = Y(l) = % (23)

and it can be easily verified that M? = M;.
The number operator by definition should also satisfy the following

[My,b1) = —b1, [My,bl]=0]. (24)

This is verified as follows:

(M1, 1]
R - 1/2
- % ((1+ (_1)N)d-&(1+(—1)N)) (%l) ! exp (w(l,N))
6o 0) o+ 07) () e

and
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3. Operators of type II

We now consider the following new transformations for the operators b
and b! satisfying Eq. (11a):

b =af(N)+g(N)al, (25a)
bt = f*(N)al + ag*(N). (25b)

f and g are functions to be determined, x denotes complex conjugation and
Egs (11b) and (11c) are still valid. We now show that consistent solutions
exist to the present problem under the assumption that M is some periodic
function of N i.e. M= &(q, JV), where ¢(q, ]V) = ¢(q,f\7 + 1). Hence, in
so far as commuting operators through M are concerned, M behaves as a
constant (“operator”) term.

With these new expressions (25) for b, bt in (11a) and proceeding as
described in Section 2 one arrives at

F(N +1)+ gF(N) + G(N) + ¢G(N + 1) = ¢™, (26)
F(Mg* (W +1) = —gg*(F)F(N +1), (27)
FH(N)g(N +1) = —qg(N)f*(N +1), (28)

where

F(N)= Nf«(N)f(N), G(N)=Ng*(N)g(N). (29)

As M is hermitian qM is also hermitian since ¢ is real. The requirement
that all non-hermitian quantities vanish gives the relations (27) and (28).

Moreover, in view of (11c) and the assumption that M is some periodic

function of N , ¢M is like some “constant” (operator) term.
Multiplying (27) and (28) gives

~ ~

G(N +1)F(N) = ¢*G(N)F(N +1) (30)

whose solution is

G(R) = ¥ w(q, HF(). (31)

Here the arbitrary function of ¢ W(q,]v) = W(q, N+ 1) and belongs to
what we call the class P of the periodic functions {11, 12]. Considering the
feature:

(W,a] = [W,al] = [W,N] = (W, 8] = (W, b1] = (W, M] = 0,

we can take W without loss of generality to be a function of ¢ only [11, 12].
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Substituting (31) in (26) we get
F(V+1) {1+ 2FOW) = M _gr(W) {14 25W), (32)

where W = ¢~ 1W. To solve the functional Eq. (32) we first determine the
solution Fy(NN) to the corresponding homogeneous equation

Fo(N +1) {1 + qz(*’?’“)W} = (-9)Fo(M) {1+ qzﬁW} . (33)

Following the method elaborately described in Ref. [12] Fo(N ) is found
to be

Fo(N) = Q(N)Q(N + 1)P(N,q), (34)
amy = L0 (35)
1+ quW

where P(N ,q) is an arbitrary P function. For a suitable choice of initial

conditions the general solution of (32) is independent of P(N, )-
The general solution of (32) may be given as

F(N) = Fo(N)Z(N), (36)

where now Z(]V) has to be determined. Solving for Z(ﬁ, ¢) the final solu-
tions are (for Z(0,q) = 0)

H{1 + w4 (-)F 1N 4wyl
(1 + q) (1 + q2ﬁ-ljv) (1 + q'zf\\’+lw)

G(N) = #NWF(N), (37b)

~

F(N) =

. (3Ta)

where M is some periodic function of N. The above solutions are indepen-
dent of P as promised. However, the dependence on W is non-trivial. We
will say more about W in Section 4. It is easily verified that the solutions
(37) satisfy the fundamental relation (32).

Using the definition (29) we have

): I lexp (ia),
( V) = VW2 £(R) ] exp(iB), (38)
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F) M
If(ﬁ)|={ ] )}

where

N

with F(IV) given in equation (37a). Here af(g, ﬁ) and A(g, ZV) are some
arbitrary phase factors subject to the condition that

exp (i{a(N) - BN + 1)}) = exp (i{a(N +1) - A(N) £ (2m + 1)} ,
(39)
where m = 0,1,2,.... This condition guarantees the validity of Eqs (27)
and (28).
We can therefore write the transformations (25) as

[~ 1

I(ﬁ+1)|exp (ia(¥ + 1)) a+ VW2 f(F) | exp (i6(W)) o,

+ qN+1W1/2 | £(V + 1)] exp (—z’ﬁ(f\?’ + 1)) a, (40)

where | f| is given in Eq. (38) and « and 4 satisfy (39). It is straightforward
to verify that the expressions (40) satisfy (11a). However, the operators b

and b! are not nilpotent. Nilpotency cannot be achieved for any consistent
choice of the arbitrary functions W, a and . It may be verified by direct
calculation that if W(q) # 0, then nilpotency can be obtained only if

W(Q)‘—’OO, a —» 00, ,3—700
In the limit ¢ — 1 (40) becomes

E—abzz L+ (-1 exp zal N+1))a
2(N+1 )1+ W(1

L) Gl Dy / exp (iB(1, N)) a! (41a)
2N (14 W(1)) '

1R\
bt - ! = R W ex —ta N &7
bt — b <2ﬁ(1+W(1))) p( (1,N))

1N

+ W/2(1) ( 1+

1/2
2R+ 1) (1+W(1))> exp (—z'ﬂ(l,N+ 1))&

(41b)
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We then find that
bobl +81b, = 1. (42)
It can be readily shown that if we choose Iirri W{(q) = 0 then the oper-
q—’

ators are also nilpotent, 1.e.

2
(b2)* = (8})" = 0. (43)
The choice of the limit Iin} W(g) = 0 does not alter the fundamental an-
q—.

ticommutation relation (42). For W(1) = 0, G(1, N) is also zero and the
relations (27) and (28) are also absent. The equation (39) is then super-

fluous and a(l, N) is the only arbitrary phase factor. So here also we have
the fermionic oscillator anticommutation relation as well as nilpotency of
operators. Proceeding as in Section 2 one can show that the Eqs (42) and
(43) do indeed describe a fermionic harmonic oscillator with the number
operator M, defined as

My = blb, = (1- (1)),
M2 =M,. (44)

For W(1) = 0, (41) becomes

~\ 1/2
1)V ~
b, = l-t;(——}—)-— exp(ia(l,N+1)>&,
2 (N +1
~\ 1/2
p_ (1=(DY it A at
by = ( Py exp( za(l,N))a . (45)

Choosing Mz = b%bg it can again be shown that M, satisfies all the require-
ments of a fermionic number operator.

The reasons why the results following from (10) cannot strictly be ob-
tained as a special case of (25) will become clear in the following Section.

4. On the arbitrary functions and phases

Here we comment on the interpretation of the arbitrary functions and
phases occurring in the solutions. Consider the limit ¢ — 1, assuming that
all the phases are independent of N in this limit.
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For operators of type I we may write
b, = e'b},
bl =e o1, (46)

where
1/2

b, = a(-é-lﬁ (1 +(—1)N)) . (47)

Viewing (b’l,b'lt) as elements of some quantum space of vectors, the
transformations (46) imply a U(1) transformation of (b}, b'lt), the U(1) pa-
rameter being v, preserving the relations (22). For ¢ # 1, a similar approach

would mean that »(g, IV) is the parameter of some type of ¢g-deformed U(1)
transformations. However, for ¢ # 1, a consistent number operator cannot
be obtained.

For the type II operators the relations (41) may be written as

- (o

st 1/2 i 11
2/ \ () e rwyizemia |\
where
B = a (-1— (1 - (—1)ﬁ))1/2. (49)
2 9N

The determinant of the transformations (48) is (1 — W)/(1+ W ). Hence for
the above transformation to be invertible it is necessary that W (1) # £1.
Now W(q) = G(0,q)/F(0,q). Hence for invertibility specifying the ratio is
not enough. There is also the constraint that G(0,1) # £ F(0,1). Therefore,
the four quantities F(0,1), G(0,1), a(1l) and B(1) can be viewed as the
four parameters of GL(2, R) transformations of (b3, b'ZT) which preserve the

relation (42). For ¢ # 1, F(0,q), G(0,q) a(g, N) and B(g, N) should then
be parameters of some g-deformed GL(2, R) transformations. It should be
noted that for W 3 0 the operators are not nilpotent.

For W(1) = 0 these transformations reduce to U(1) transformations
similar to (46) with « the relevant parameter and a different definition for

by wviz.
N 1/2
B, :a(glﬁ (1-(—1)”)) . (50)

The case for ¢ = 1 can be similarly generalized.
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5. Conclusions

(i) Two types of operators (I, II) have been constructed in terms of
bosonic g-oscillator operators. These new operators satisfy a relation remi-
niscent of the fermionic ¢g-commutator relation.

(ii) For operators of type I in the limit ¢ — 1, by appropriately choos-
ing the behaviour of the arbitrary functions of the deformation parameter
g the fermionic harmonic oscillator is obtained. An arbitrary phase fac-
tor v occurring in the solutions can be identified as the parameter of U(1)
transformations of the operators preserving the basic fermionic anticom-
mutator relation. For ¢ # 1, v(q, JV) should then correspond to the pa-
rameter of some ¢g-deformed U(1) transformation that preserves a fermionic
g-commutator relation.

(i1) For the type I operators in the limit ¢ — 1 one can again obtain the
fermionic harmonic oscillator by suitably choosing the arbitrary functions
present in the solutions. Four arbitrary parameters of the solution can be
identified with the four real parameters of GL(2, R) transformations of some
two-dimensional vector (defined in terms of bosonic harmonic oscillator op-
erators) — the transformations again preserving the basic fermionic anti-
commutator relation. The ¢ # 1 case then corresponds to some g-deformed
GL(2, R) transformations which preserve a fermionic g-commutator rela-
tion.

(iv) Appropriate number operators in the limit ¢ — 1 for both types of
operators have been obtained.

REFERENCES

[1] A.J. MacFarlane, J. Phys. A: Math. Gen. 22, 4581 (1989); L.C. Biedenharn,
J. Phys. A: Math. Gen. 22, L873 (1989).

(2] L.D. Fadeev, Les Houches Lectures, North Holland, Amsterdam, 1984; V.G.
Drinfeld, Proc. Int. Congress of Mathematics, American Math. Soc., Provi-
dence, Berkeley 1986, p.798; M. Jimbo, Commun. Math. Phys. 102, 537 (1987);
S.L. Woronowicz, Commun. Math. Phys. 111, 613 (1987); Y.I. Manin, Quan-
tum Groups and Non-Commautative Geomelry, Centre de Recherches Mathe-
matiques, Montreal 1988.

[3] D. Bernard, Lett. Math. Phys. 17, 239 (1989); L.B. Frenkel, N. Jing, Proc.
Natl. Acad. Sci. USA 8S, 9373 (1988); M. Chaichian, P. Kulish, Phys. Lett.
234B, 72 (1990); R. Floreanini, V.P. Spiridonov, L. Vinet, Commun. Math.
Phys. 137, 149 (1991).

[4] M. Jimbo, Lett. Math. Phys. 10, 63 (1986).

[5] V. Pasquier, H. Saleur, Nucl. Phys. 330B, 523 (1990); H. Saleur, Nucl. Phys.
336B, 363 (1990).

[6] M. Chaichian, D. Ellinas, P. Kulish, Phys. Rev. Lett. 65, 980 (1990).



1064 D. GANGOPADHYAY

[7] E. Celeghini, M. Rasetti, G. Vitiellow, Phys. Rev. Lett. 66, 2056 (1991).

(8] P.P. Raychev, R.P. Roussev, Yu.F. Smirnov, J. Phys. G: Nucl. Phys. 16, L137
(1990).

[9] D. Bonatsos, E.N. Argyres, P.P. Raychev, J. Phys. A: Math. Gen. 24, L403
(1991).

(10] A. Jannussis, G. Brodimas, D. Sourlas, V. Zisis Lett. Nuovo Cimento 30, 123
(1981); A.P. Polychronakos, Mod. Phys. Lett. A5, 2325 (1990).

[11] D. Gangopadhyay, A.P. Isaev, Joint Inst Nucl. Res. Rapid Commun. 45, 35
(1990).

[12] A.T. Filippov, D. Gangopadhyay, A.P. Isaev, J. Phys. A: Math. Gen. 24, L63
(1991); D. Gangopadhyay, Mod. Phys. Lett. A6, 2901 (1991).

[13] H.Ui, N. Aizawa, Mod. Phys. Lett. A5, 237 (1990).

[14] D. Fairlie, M. Lohe, C. Zachos, in Proc. Argonne National Laboratory Work-
shop on ¢-Groups, 1991; R. Parthasarathy, K.S. Viswanathan, J. Phys. A:
Math. Gen. 24, 613 (1991).

(15] D. Gangopadhyay, Acta Phys. Pol. B22, 819 (1991); S. Jing, 3.J. Xu, J. Phys.
A: Math. Gen. 24, L891 (1991); K. Odaka, T. Kishi, S. Kamefuchi, J. Phys.
A: Math. Gen. 24, L591 (1991); K. Odaka, J. Phys. A: Math. Gen. 25, L39
(1992); J. Beckers, N. Debergh, J. Phys. A: Math. Gen. 24, 1277 (1991).



