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The group theoretical foundation of some conservation laws in the
Maxwell electrodynamics in vacuum is considered. In particular the “mys-
terious” conservation laws of Lipkin [4] are found to be a consequence of
the Noether theorem.
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1. Introduction

It is well known that the Maxwell electrodynamics in vacuuin, being a
special example of a linear vacuum field theory, admits an infinite number
of conserved quantities. Some of them, as for example: the energy, the
momentum or the angular momentum, have a well defined group theoretical
origin founded on the Noether theorem. One can also find the non-local
conserved quantity generated by the duality rotation group according to
the Noether theorem [1-3]. However, we know explicitly many conserved
quantities where the group theoretical foundation is not clear or, in fact,
unknown [4-9]. The group theoretical analysis of some of those conserved
quantities is given in [7] and [9] but this analysis concerns the symmetry
of the source-free Maxwell equations and not the variational symmetry. In
other words the group theoretical analysis given in [7] or {9] is non-Noether.

The aim of the present work is to find some conserved quantities in the
vacuum Maxwell electrodynamics which arise from the Noether theorem.
We employ the Fourier representation (the p-representation) of the electro-
dynamics and we assume that the group generators in this representation
are linear with respect to the electric field & and the vector potential A
(compare with [2, 6, 9]). Then we consider symmetries of the source-free
Maxwell electrodynamics (Section 2). In the Z-representation these symme-
tries appear to be non-local or general Lie-Backlund (hidden) symmetries.
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They lead, as it is shown in Section 3, to infinite number of conserved quan-
tities according to the Noether theorem. Thus one gets the total energy, the
total momentum as well as the zilch of Lipkin [4-8] or the non-local con-
served quantity generated by the duality rotation group [1-3]. In Section
4 the conserved quantity Zgo = 1/ Z(Ofipkin) is considered in some details.

Then concluding remarks (Section 5) close our paper.

2. Some symmetries of the source-free Maxwell equations

In this section we intend to study some symmetries of the source-free
Maxwell equations. These symmetries lead to conservation laws which in-
clude, as their special cases, the conservations law generated by the duality
rotation [1-3] as well as the “mysterious” conservation laws of Lipkin [4-8].

For our purpose it is convenient to deal with the Maxwell electrody-
namics within the first order formalism (1, 2]. In this formalism the action
reads

S|B, A, = —/d":c{E- 0 A+ 1B + (Vx A+ 4,V-E}, (21)

where A, defines the electromagnetic potential by 4, = (-9, A) and E
stands for the electric field vector. (In this paper the space-time metric
tensor (g,,) = diag(—1,1,1,1); Greek indices run through 0,1,2,3 and Latin
ones through 1,2,3; the speed of light ¢ = 1). The least action principle
5§ [E, A,] = 0 yields the source-free Maxwell equations

BA-VA +E=0, 8,E-Vx(VxA4A)=0, (2.2)
V-E=0. (2.3)
Using the gauge .
Ag=0, V.-Ad=0, (2.4)
one brings (2.2), (2.3) to the form
BA+E=0, 8,E+ViA=0, (2.5)
V-A=0. (2.6)

(Observe that if , A+ E = 0 and V- A = 0 then also V - E = 0).
Let £ and A, denote the Fourier transforms of E and A, respec-
tively, z.e.

£(t,5) = (2m)/* / BBt 8)e (2.7)

A6, F) = (2m) 30 / Bz A, (t, F)e P (2.8)
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Then, in terms of £ and A,, equations (2.2) and (2.3) take the form
A —iAf+E=0, HE+PX(FxA) = (2.9)
p-€=0, (2.10)

where A = (A, Az, A3). By the Perseval-Plancherel formula one gets

SIE, A,] = S[E,E%, A, A% = /dtd3p{~g—[f-aﬂ* L8 8,4

+ -+ (FxA)-Fx A)—iAep- & +iA5- €]} ,(2.11)

where the star ¢ * * stands for the complex conjugation. Then the least

action principle §S = 0 leads to equations (2.9) and (2.10) and to their
complex conjugation. In terms of A, the gauge (2.4) reads

Ay =0, p-A=0. (2.12)

Thus with (2.12) assumed, the Maxwell equations (2.9), (2.10) can be writ-
ten as follows

wA+E=0, 8,-p*A=0, (2.13)
0 (2.14)

(Note that if A+ E=0and - A=0then also 5- & = 0). It is an easy
matter to show that (2.13) and their complex conjugation can be derived
from the least action principle

S 0
S':/dtd3p£, cﬁ—.;—(s 9 A" E A+ E-E*+pPA- A*). (2.15)

(Observe that if (2.12) holds then § = S§'). We are going to find some
symmetries of the system (2.13) and their complex conjugate. To this end
we use the jet space formalism [10-13]. Denote the set (2.13) and their

complex conjugate by
F=0. (2.16)

Let the general infinitesimal operator X of a symmetry group G of (2.16)
be of the form
d 8
=Y + Zp——
X =Yg + Zegg T o
Yi =anbi+ by Ar+er, Zi=cubi+ duAi + fis (2.17)
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where agy, bri, ki, dri, ) and fi are some functions of p such that

ap(P) = api(=p), bp(P) = br(=F), ..., ete. (2.18)

and c.c. denotes the complex conjugation. Then the invariance condition
for (2.16) reads
'X](j:)|.7:=0 =0, (219)

where X! is the first prolongation of X Refs [10~13]. In local coordinates
(s Prs ExsAks €y .ovys Akyuy..v, » 8 = 1) in the relevant jet spaces one has

o ] 9 9
X'V, ——+Zy——+ Yoo+ Zp y——— + c.c.
oE, T koA, T RepE,, T kega TS
Yk,p - D}LYIc ’ Zk,p, = Dqu ) (2.20)

with D, standing for the total derivative

0 d
D” = ay + gk,#a—gk' -+ Ak’“m + c.

C.

4 9
+ };1 (gk,ul...w/‘m + Ak,ul...u,#m + c.c.) :
s-—.

8, = (81, 07). (2.21)

Having all that one finds easily that the invariance condition (2.19) takes
the form

(D.Z + ?)t]:=0 =0 A cc
(DY -p*Z)r=o=0 A cec.. (2.22)
where D, = Dgy. Then, by (2.13) and (2.17) the conditions (2.22) yield
(a1 = dr)€r+ (i + PPer) A +er =0 A cc,
—(bri + PPer)6i + PP(ak — dit) A — PP fi =0 A cc.. (2.23)
Hence (remember that we don’t assume (2.14))
er =0, fi=0, du=apn, bu=-pcu- (2.24)

Finally the infinitesimal operator (2.17) for given @ = (ay;) and é = (ciy)
will be denoted by X;¢)

0 ]
Xae) = Y(*a)km + Z(aa)km + c.c.

0 0
= (améi —chklAl)'éz:’: + (ept€i + aszz)a—Ak + c.c.. (2.25)
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Simple calculations show that the commutator [X(z¢), X(a7¢n)] of two in-
finitesimal operators X(a¢) and X(4/4) Teads

[X(aé),X(alél)] = X(&E)X(&Iel) - X(alél)X(aé) = X(auéu) y (226)
for

a" = (a',a] - ple',¢], &' =1[d',q+[¢,4q].

Thus the set of all operators of the form (2.25) constitutes an infinite-
dimensional Lie algebra g of some infinite-dimensional point transformation
group G leaving the first set (2.13) of the Maxwell equations and their com-
plex conjugation invariant. One quickly shows that the subalgebra go C g
defined by

Xae) €90 & appr = w(F)pi A crpr = o(B)pr, (2.27)

where w = w(p') and o = o(F) are functions of § such that w*(p) = w(-p)
and ¢*(p) = o(~p), determines the subgroup Gy C G leaving the Maxwell
equations (2.13), (2.14) and their complex conjugation invariant.

3. Conservation laws induced by G

In this section we find the conservation laws induced by the symmetry
group G according to the Noether theorem [10, 11]. In our case (first order
Lagrangian and vertical vector field) the Noether identity (see also [12])
takes the form

) )
XYL)= D N*L)Y+ [ Yi—(L)+ Z—(L) + c.c.) , (3.1)
0&y, S AL
where N# is the Legendre operator
0 0
k=Y, VA
B, | CFOAL,
and §/6€y , §/6A; are the Euler-Lagrange operators
§ e} )
S _ _Dua, ZB_DUB.
86,  0& 0k, 6A, O0A; 0Ak.u,

First we consider X (L), where £ and X are given by (2.15) and (2.25),
respectively. One gets

N

+ c.c. (3.2)

(3.3)

0 0 0
1 = - — aoa ———— -~ - D —
X(&E)(ﬁ) = (y'(ac)k 3E; + Z(ac)k 0A, + Y(ac)k,y 8gk,u

4 & A o A & % O
+Z(aé)k,”a;—#- + C.C.) (—%(5 COAT+ET-BAFE-ET PZA -A ))

= — 3 {ari( AL £ + ELE+ PP ALAL+ EL ALY + e -PPAL A
—pPER A+ PPALE + ExEry) + e} (3.4)
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Consequently, using (2.13) and their complex conjugate, we have the fol-
lowing formulas

X(I&é)(ﬁ)IJ::o ———Dt( - %(akl.AzE[ + ai,Akf),* + Cklgzgl

+ ctibr€l)) | Fao > (35)
or

X(laa)(ﬁ)xjf-':o =Dy( — Hanr A + e Ex AT — crip® AL A,
— tP" AR A)) | g - (3.6)
Now one can also find the relation
DuN*(L) = De( - 3(arEf AL+ aqiEeA] + el &+ c€rél)) . (3.7)
Of course, the system of equations F = 0 is equivalent to the following one

L_, 8L _ . 6L _. 6L
8~ 6A, O s& A

=0; k=1,2,3. (3.8)
Therefore, using the Noether identity (3.1) and combining (3.5) with (3.7)
and then (3.6) with (3.7) one arrives at the conservation laws

D: (3(art = afi)(EXAL ~ ALED) gy = 0, (3.9)

Dy (3(ert + cli)(EREL + PP ALAY) 5o = 0 (3.10)
From (2.7), (2.8) and (2.18) one quickly finds

/d3p[akz(1'>')-aTk(ﬁ)][?fZ(t,ﬁ)Az(t,ﬁ)—Ai(t,ﬁ)fz(t,ﬁ')] = /d3r{Ek(t,5)

X[agi(=iV) — ai(iV)]Ai(¢, £) — Ai(t, £)ari(—iV) — an(iV)]Ey(t, T)} = 21
(3.11)

and

/ ples(P)+ e PEL (L FENE F) PR AL(L F) At F)] = / B2 {Ey(t, 7)

X[cri( =1V )+ ek iV Ei(t, ) — A (t, )[cri(—iV )+ (iV)] V2 A (8, 2)} = 2J.
(3.12)

It is evident that I* = I and J* = J. Thus we have found real quantities I
and J which are conserved, t.e.

3tI =0 A (91,.] =0 9 (313)
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if only equations (2.5) are satisfied. Now we are interested in the conser-
vation laws in the Maxwell electrodynamics in vacuum, so we assume that
both (2.5) and (2.6) are satisfied. From the well-known formula B = V x 4
one finds the relation .

B=ifx A, (3.14)

where B = g(t, P ) denotes the Fourier transform of the magnetic field B =
B(t,Z). Then taking into account (2.14) one gets

A=ip7%px B, (3.15)

(A= -V~2(V x B) in terms of A and B). Thus our conserved quantities
I and J can be written down in a gauge invariant form

I=% /dSP[au(ﬁ) — a(B)p il ;€L Bj + €xi; B} E1)

:% / d%{-Ek[akz(—iV) - alk(iV)]eljmv—2aij

+ €x;m(V720;Bm)ari(—iV) — aie(iV))E} (3.16)
and

J =3 / plen(F) + i (FIEREL + erijerrsp™ *pipe B} Bs)

=3 /d3z{Ek[ckz(—iV) + cie(iV))E; — €xm(V 728, Bm)
X [eri(=iV) + ¢1x(iV)]e1rs0-Bs } (3.17)

Ezamples:

(3.2) ai(F) =0, ci(P) = %h(ﬁ)p"zpieik, , where h = h(p') is a real func-
tion such that hA(p) = h(—p). Then I = 0 and using the condition

— -

p-B=0or V-B =0 one finds J to be
J= %/d%{ﬁ-[h(—iV)V‘zvxE]+§-[h(—iV)V"2Vx§]}, (3.18)
If h(7) = 1 then
J= %/d3z{ﬁ-(v-2v « B)+ B-(V72V x B)},

appears to be the conserved quantity induced by the duality rotation
group [1-3]. For h(F) = —p® one gets

J=%/d%{ﬁ-(VxE)+1§-(Vx§)}£Zoo. (3.19)
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(3.b) api(P) =0, epi(p) = ——p, jk1 - Here, of course, I = 0. Then by some
simple manipulations, using also the condition 7- B = 0 one gets the
following formula for J

J= /d%{(E x 8:E); + (B x 6:B),} = Z;;. (3.20)

(3.¢) ari(P) = —2p%eint, cri(F) = 0. Now J = 0 and I by (2.13), (2.14),
(3.15) reads

I= —%/d%{(ﬁ x 0. B), + (B x 9,B),} = Zo;. (3.21)

(3.d) ap(P) =0, cpi(P) = %EH. Here I = 0. Then, using also the condition
P B = 0, one finds

J= %/d:‘z(ﬁz + B, (3.22)

t.e. J is the total energy of the electromagnetic field.
(3.€) ari(P) = 2p,6k1, cpi(p) = 0. Now J = 0 and I, when the conditions
P B =0and p- £ = 0 are used, reads

I:/d3 (E x B), = P;, (3.23)

where P = (P1, P2, P3) denotes the momentum of the electromagnetic

field.
The conserved quantities (3.19), (3.20) and (3.21) can be written in a
compact form. Indeed, if

Fuy = a”’AV - aVAy_, (3-24)
is the electromagnetic field tensor and
I‘—V'#U = —%fpygaFga; (60123 = 1) 3 (3.25)

is the dual tensor of F,,, then one quickly shows that the conserved quan-
tities (3.19), (3.20) and (3.21) can be presented in a concise form

Zpy = %/d3z(ﬁogauFev — F°9,F,,). (3.26)
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(Note that Zyg given by (3.26) is equal to Zyg given by (3.19) by virtue of
(2.13), (2.14) and (3.15). One can easily show that if the electromagnetic
field is assumed to vanish at the spatial infinity then Z;4 = 0).

Define the following tensor

Zuy ° = 3(F°C0,F,, — F°29,F,,). (3.27)

From (3.26) and (3.27) one gets

Zy = /d%z,w". (3.28)
Then, using the Maxwell equations
8, F*¥ =0, 8, F* =0, (3.29)
we find the following conservation law
0562,,° =0. (3.30)

Formula (3.30) leads to our conserved quantities Z,, defined by (3.26). It
is of some interest to compare our results with those of Lipkin presented
in his paper [4]. (see also [5-8]). Lipkin [4] has found a tensor, which we
denote here by Z(#I:/iak' , such that it satisfies the conservation law
pkin)
00 Z {1 xiny = 0- (3.31)

Comparing the formulas (23) and (24) of [4] with our formula (3.27) one
gets

Z(#Lui;kin) =2Z""7 + %(gmfw’cW + gveeHoPY 4 g""e‘“’ﬂ'Y)EATaﬂ, (3.32)

where T, 5 stands for the energy-momentum tensor of the electromagnetic
field
Top = FaxFs" ~ YgapF s F7°. (3.33)

(Remember that in Lipkin’s paper [4] the signature of the metric is (+ —
— —). In the present paper we take the signature to be (- + + +)).
Therefore

B0 Z{L myiny = 2002777 + 7P70,0,T% (3.34)
and, consequently

(022" =0 A 0,T75=0)=8aZ{ 1, =0. (3.35)
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Moreover, assuming that the electromagnetic field vanishes at the spatial
infinity, one gets from (3.32)

[ ezt =2 [ #2220 < o, [y, (3:39)

e ,as 0y [d*zTog=10

/d%z(“ﬁ‘;km) = /d3zZ‘“’°. (3.37)

The conserved quantity [ a3 zZ(“I:IiZkin) is called the zilch of the electromag-

netic field. Given infinitesimal operator X;; in the p-representation (see
(2.25)) one finds the respective operator X in the Z-representation to be

. .8 - 0
Xae = kéE_k+Zk3_Ak’ (3.38)

where

Y, = (2r) 73/ / Ep Yy, e7% = a(—iV)E, + ciy(—-iV) V4,
Zi = (2m)3/? / d®p Zy, 7% = ¢py(—iV)E + ar(—iV)V2A4,.(3.39)

Of course, by (2.18)
ap(=iV) = (ap(=iV))*, cu(=iV) = (cr(-iV))*. (3-40)

Thus we arrive at the conclusion that the formulas (3.38)-(3.40) define a
non-local symmetry or a general Lie-Bdicklund symmetry (10, 11]. In par-
ticular the conserved quantities Z,, are generated by the Lie-Backlund
symmetry. In the next section we consider Zyg in some details.

Now we observe that the examples (3.d) and (3.e) show that the conser-
vation laws for the energy and the momentum of source-free Maxwell field
can be considered to follow from some general Lie-Backlund symmetries.
Indeed, by (3.d), (3.38) and (3.39) one finds that the energy conservation

law is generated by the infinitesimal operator X
7] e)
O3E, * 2Py,

which leads to the following Lie-Backlund (formal) transformation group
[2, 10]

X = (VA (3.41)

E':cos(%ﬁ)-ﬁ—msin(z\/——vz)-ﬁ',
A' = (v/-V?) sm( \/—Vz) E+cos(2\/—~V2) LA, (3.42)
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where 7 € R is the group parameter. (Note that to find (3.42) we integrate
the Lie equations in the p~representation

E'r=0 = ¢, Ao = A. (3.43)

and then we perform the inverse Fourier transformation). Similarly one
can proceed in the case of the momentum conservation law given by the
example (3.e).

4. Remarks on Zgg

As it has been shown in the example (3.a) of the preceding section
the one-parameter group of transformations G defined by the infinitesimal
operator

i a 1 0

X1 = —zpPerjpjAim— + sekjipi €l 4.1
1 2P €k;iP; ’aek + 26k11P1 laAk (4.1)
leads, according to the Noether theoremn, to the conserved quantity Zgo
given by (3.19). It is quite obvious that for the infinitesimal operator X
the conditions (2.27) are satisfied. Thus G; appears to be the symmetry
group of the source-free Maxwell equations (2.13), (2.14) t.e. G; C G¢. Now

we can find the explicit form of G;. The Lie equations read

d€; 1 dA! i
71—7-& = —EszkaPjAf, —di = SekiPi€i s

S;lezo =&, .Alk 6 = A, TER. (4.2)

=

We assume that 7- £ = 0 and 7- A = 0. Then one can easily integrate
Egs (4.2) to get

£ = £ cos(p’p) — i x Asin(p®p),
A = ip %5 x Esin(pe) + Acos(p?p); 9= 2. (4.3)
Employing (3.15) we write down (4.3) in terms of € and B:
£ = Ecos(p’p) — Bsin(p?p),
B' = Esin(ple) + gcos(p2¢) . (4.4)

Now it is an easy matter to present (4.1), (4.3) and (4.4) in the Z-represen-
tation. Thus we obtain

(4.5)
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E' = cos(¢V?)E + sin(¢V?)V x 4,

A' = sin(eV?) V72V x E + cos(¢V?)A, (4.6)
and

E' = cos(pV?)E + sin(pV?)B,

B' = —sin(eV?)E + cos(¢V?)B. (4.7)
Consequently, X; determines the generalized symmetry which is also called
the general Lie-Bdcklund symmetry (10, 11]. The formulas (4.6) or (4.7)
define one-parameter Lie-Bécklund symmetry given by (4.7). (In physics
such a symmetry is also called the hidden symmetry). As it has been men-
tioned above the Lie-Bicklund transformation group (4.6) or (4.7) leave
the source-free Maxwell equations invariant. Finally, one can write (4.7) in

terms of F),, and F’W as follows
F,, = cos(pV2)F,, + sin(pV?)F,, . (4.8)

The formulas (4.7) and (4.8) resemble the duality rotation [1-3] but in
contrary to the latter one they are the formal transformation groups on the
relevant infinite jet space [10, 11, 13). It is of some interest to calculate the
Zyo density, i.e. Zggo (see (3.19), (3.27) and (3.28))

Zooo = I[E-(V x E)+ B-(V x B)], (4.9)

in some special and physically important cases. First consider the partially
polarized electromagnetic wave which propagates along the z axis. The
wave is defined by
E = (asin(wyt — kyz) + nbsin(wst — koz),
bsin(wyt — k1z + &) — nasin(wat — k2z + ), 0),

B = (- bsin(wyt — kyz + 6) + nasin(wyt — kaz + ),
asin(wyt — kyz) + nbsin(wat — k22), 0), (4.10)

where a,b,wy; # wy, k1 # k2 and § are constant parameters and 7 is the
parameter defining the polarization. Substituting (4.10) into (4.9) one gets

Zooo =ab - (n®ks — k1) siné + n{a®[k; sin(wzt — k2z + 6) cos(wit — k12)
— k2 cos(wzt — kzz + &) sin(wyt — k1 z)] + bz[kl cos{wyt — kyz + §)
sin(waet — k22) — kg sin(wit — ky1z + 6) cos(wat — k2z)]}. (4.11)
Denote the time average of Zggg by Zgoo. Then from (4.11) we quickly find
Zooo = ab - (n%ky — ky)siné. (4.12)
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This formula generalizes the result of Lipkin [4] on the case of the partially
polarized wave (compare with (26a) of [4]). In particular for n = 0 (the
polarized wave) (4.12) yields

Zogo = —abkl sind. (413)

Thus for the linear polarization when § = 0 or § = 7 one gets Zggo = 0.
Another simple case one can consider is the dipole electromagnetic radiation
of the electric charge moving with the constant acceleration @ = const. Then
straightforward calculations show that in this case Zggg = 0.

5. Conclusions

In the paper we have found an infinite number of conserved quantities
in the vacuum Maxwell electrodynamics. These quantities are shown to
be generated according to the Noether theorem. The fundamental problem
which now arises concerns the physical interpretation of our results and
this is evidently connected with a deeper understanding the symmetries
generating the conserved quantities. We intend to consider this problem in
the subsequent paper.
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