Vol. 25(1994) ACTA PHYSICA POLONICA B No 7

CRITICAL PROPERTIES OF THE TWO-DIMENSIONAL
GRAVITY WITH THE R? ACTION*

J. JURKIEWICZ**

The Niels Bohr Institute
Blegdamsvej 17, DK-2100 Copenhagen @, Denmark

AND

Z. TABOR

Institute of Physics, Jagellonian University
Reymonta 4, 30-059 Krakéw, Poland

(Received April 5, 1994)

We study the critical properties of the two-dimensional simplicial grav-
ity with the R? term in the action. Changing the value of the coupling
constant of this term we observe a sharp transition between the surfaces
with low and high Haussdorff dimension. This transition seems not to
be leading to a phase transition. For the whole range of the coupling
constant a value of v, is consistent with the pure gravity value —1/2.

PACS numbers: 04.60. +n

1. Introduction

The Einstein action for pure gravity with cosmological term reads

5(0)= [ a2 ya(KR+ 1) (1)

in which g;; is the metric tensor, R is the scalar curvature and K, A are
two coupling constants. The cosmological constant A multiplies the volume
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element. In two dimensions classical gravity is trivial because the scalar cur-
vature term [ ,/gR is topological (Gauss-Bonnet theorem) and equal 47y,
x is the Euler characteristic of the universe. In quantum case, however, even
two dimensional gravity is non trivial because large quantum fluctuations
may change the genus of the surface and partition function hence involves
a sum over all genera. Thus for the partition function one must take :

Z(B8,7) /Dge( /3A+1x) (2)

where sum over topologies is represented by the summation over h, the
number of handles of the surface, 4 is the area of the surface, equal to
[ /9, and the Euler characteristic x = 2 — 2h is equal to (1/4x) [ \/gR.

It is convenient in the following discussion to consider 2d quantum grav-
ity with an ultraviolet cut-off and we will consider surfaces entering in the
path integral as triangulated surfaces built out of equilateral triangles (see
[1, 2]). Let o(¢) be the number of triangles which meet at vertex i. In this
case the discrete analog of /g is 0(7)/3 and the discrete counterpart to the
Ricci scalar R is R; = 27(6 — o(¢))/o(7) and is negative (positive) at vertex
i depending on whether the number o(7) is more (less) then six. If we call
Ny, N1, Ny the total number of vertices, edges and faces respectively, due
to topological relations Ny — N1 + Ng = x, 3Nz = 2N; and 2N = ), o(%),
one has ([3]):

/Dg\/g} - N2,
/Dg\/ﬁR - sz (1 - %’U = 47wy, (3)

The last equation coincides with the continuum definition. The suinmation
over all random triangulations is thus a discrete analog of the integral [ Dg
over all possible geometries

> [pg~ )3 (4)

enus h random triangulations
g 8

The 2d quantum gravity in the discretized formulation is equivalent to the
large- N matrix models and can be solved analytically (¢f. [6]) and the sum-
mation over genera in 2 can be given a non—perturbative meaning.

In 4d the classical gravity, when quantized with only the Einstein ac-
tion, is nonrenormalizable. It is possible to make the theory renormalizable
by adding the term /\‘/'d“l:c\/_(ﬂ?,2 to the pure gravity action, paying the
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price of appearance of unphysical effects in such a theory (see [4] and ref-
erences therein). In 2d this term corresponds to the irrelevant operator
and naively one would expect that it should have no effect from the renor-
malization group point of view. It is not clear if this remains true on the
non—perturbative level. One can expect dramatic changes of behaviour for
relatively big values of the coupling constant A. For large positive values
of the coupling constant the system will probably favour configuration with
close to zero local curvature, with the Haussdorff dimension [5] tending to
2. By the entropy arguments one can expect in this limit a phase similar
to that of branched polymers. For large negative values of the coupling
constant one expects to get “black hole” configurations with large negative
local curvature. The Haussdorff dimension should be also large. The prob-
lem we try to address in this paper is whether this complicated behaviour
can be attributed to one phase of the model or if there is a non-perturbative
phase transition.
Discrete analog of the R? term is [3]:

A/\@Rz — S(2)
_ 41r3)\ Z (6 ;(Oi()i)) - t(z 3% ~ 3N, — 12x) » (5)

where t = 472X /3. With such a term the model is no longer solvable ana-
lytically and the numerical methods remain the only source of information
about its properties.

In the following we shall restrict ourselves to surfaces with a topology
of a sphere. The numerical study will be made for surfaces with a fixed
area, i.e. with a fixed number of faces NV;. The thermodynamic properties
of such a system can be obtained from the partition function

v = Y exp(-5(1), (6)

triangulations

where the sum extends over all triangulations of the spherical surface with
N faces.

The easiest quantity to measure is (§) = (S(t))/tN2. As usual we
expect a signal of a possible phase transition to come from the maximum
of the specific heat C = —d(S)/dt. On a random lattice we measure also
the distribution of geodesic distances d. The geodesic distance is defined
as the length of the shortest path between two points following the edges
of triangulation. The distribution of d will give us information ahout the
shape of the surface. The mean distance is related to the volume of the
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universe through a relation [5]:
(d) ~ (Ng)'/H, (7)

H is the Haussdorfl dimension of the surface, one of critical exponents for
our system.

The fractal and selfsimilar structure of 2d quantum gravity is connected
with the string susceptibility exponent <y, which is responsible for the
continuum properties of the model. One expects that in the continuum
limit the model can be described as a conformal field theory. In this case
the entropy function for surfaces with the area 4 and the Euler character
x is [7]:

Ny(4) = AX(’Ystr_z)/z_lel‘OA(l +--), (8)

where
our = %5 (c - 1= V= D)(c—29)) , (9)

c is the central charge of the matter sector and A is the area of the surface.
In the case of pure 2d quantum gravity the total area of the surface is
proportional to N3 and ¢ = 0. (8) gives for the 2d gravity canonical partition
function:

Z(Ng, x) ~ eteNaNser() =3, (10)

For x = 2 (sphere) 7s¢r = «-%. Value of 75 can be used as a probe of
the matter content of the theory. We measure this quantity for all studied
values of the coupling constant t using the method developed in [8].

2. Numerical simulations

The simulations were done on lattices of size ranging from 500 to 5000
triangles and using a standard “link-flip” [2] algorithm to update the ge-
ometry. The runs were of the order 10° sweeps long, each sweep consisted
of Ny performed link flips. We were doing measurements for each 10'h
sweep. We used a standard Metropolis algorithm with the Boltzmann fac-
tor exp(—S(t)), where t was the coupling constant. The range of a coupling
constant, where we investigated the structure of the surfaces extended from
about —1.5 to 1.5. Outside this range the acceptance of the algorithm fell
down and we were not able to get results of good quality.

2.1. Measurements of (5)

The dependence of {§) on ¢ is shown in Fig. 1. There is a clear maximum
of the derivative of this quantity for t «x —0.25. For increasing volume we
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observe very small size dependence. In fact for all values of ¢ we were able
to fit the size dependence with the formula

(S)(IV2) = (§)(e0) + ——- (11)

Fig. 1 shows the extrapolated values (5)(co) vs. t. Similar dependence was
observed for the specific heat C. The extrapolated curve C(Nz = 00) is
shown in Fig. 2.

of
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t

Fig. 1. The coupling constant dependence of the extrapolated to the infinite volume
limit mean squared curvature (S(Nz = 0)).
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Fig. 2. The coupling constant dependence of the specific heat C(N; = o).
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From our measurements we cannot exclude the existence of a singularity
for small negative values of t « —0.25. In the range of volumes we studied
the specific heat peak moved very little and its height remained almost
constant. This can mean that if there is a phase transition near this point
it would have to be of high order. To clarify this point it would be necessary
to study much larger systems.

2.2. Measurements of the mean distance

To find the mean distance in the universe we randomly choose a sample
set of vertices and we find the distribution of geodesic distances around
each vertex. From such distribution we extract the first and the second
moments of the distribution. These are just the mean distance and the
mean dispersion of the distance. Figs 3 and 4 show the dependence of the
mean distance (d) and the dispersion of distances D(d) as a function of the
coupling ¢.

Also here we observe a change in the behaviour of the measured quan-
tity. Both the mean distance and the dispersion of mean distance change
particularly fast in the vicinity of ¢ = —0.3. For positive values of the cou-
pling constant we get cigar-like surfaces, with big mean distance and big
dispersion of the mean distance. For negative values of the coupling we
have surfaces with small mean distance and small dispersion of the mean
distance. Vertices are close together in this case. From the volume and the
coupling constant dependence on the mean distance we can extract using (7)
the coupling constant dependence of the Haussdorff dimension H, which is
one of critical exponents of the model. The dependence of H on t is plotted
in Fig. 5. It shows a clear change in behaviour close to —0.3 but it looks to
be rather continuous than singular. For large positive values of the coupling
constant H seems to approach 2, which is the Haussdorff dimension of flat
surfaces. For negative values of the coupling H grows rapidly. For the pure
gravity we get the Haussdorf dimension H = 3.05 + 0.05.

2.8. Measurements of the sy exponent

The first attempts to measure the exponent -y, used a grand canonical
updating [10], which generated directly surfaces with varying area, according
to the distribution (8). The disadvantage of this method is that one had
to perform simulations for a whole range of Ny and 7, appeared as a
subleading correction to the determination of the critical point y.. In this
paper we used another method proposed and developed in [8]. In the case
of spherical topology a closed, non-intersecting loop along the links will
separate the surface in two parts. The smallest such loop will be of length
3. If the smaller part is different from a single triangle we call it a “minimum
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Fig. 3. The coupling constant dependence of the mean distance for four volumes
of configuration {550, 700, 850 and 1000 triangles).
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Fig. 4. The coupling constant dependence of the mean dispersion of the distance
for five volumes of configurations (550, 700, 850, 1000 and 1200 triangles).

neck baby universe”, abbreviated “minbu”. If we assume the distribution
(8) for surfaces, one can prove ([8]) that the average number of minbu’s of
area B on a closed surface of spherical topology and with area NV is given
by :

an(B) ~ (N — By—2B%=2 4 0 (%) : (12)

The above formalism is well suited for numerical simulations. Now vy does
not appear as a subleading correction to . and one can use the canonical
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Fig. 5. The coupling constant dependence of the Haussdorff dimension.

Monte Carlo simulations, performing measurements of the distribution of
minbu’s in one very long run for each value of t.

In order to find if there is a minbu built on a given edge we scan all the
links leaving the two ends of the chosen link and look for a common vertex
of a pair of links. If we find such a vertex, which together with the two
vertices of the chosen link forms a triangle not belonging to the surface, we
succeeded in finding the neck of a minbu. We measure then the area of the
two subsurfaces and call the smaller one the area B of the minbu.

In order to extract vs¢y from the distribution of minbus we follow the
method used in [8]. We introduce a lower cut-off By in the data, because
(12) is only asymptotically correct. We look for the range of By, where yg¢r
does not depend on the lower cut-off. We fitted the distribution of minbus
to the formula:

B const
log(nn,) = A4 (Ystr — 2)log (B (1 - I—\’;)) + 3" (13)

In the case of near zero and negative values of the coupling constant the term
O(1/B) does not change significantly the value of 75¢;. When the coupling
constant grows, O(1/B) becomes more important. This can be illustrated
in Fig. 6, where we plot logarithm of distributions of the baby universe sizes
as a function of log( B(1— B/N2)) for a system with N = 5000 triangles. We
can observe the qualitative change of the distributions for bigger positive ¢.
The Table I shows the coupling constant dependence on vs¢,. In the whole
studied range the fitted value of 74, is consistent with the value —%. It
seemns that 7y becomes more negative, about —0.55 in the neighbourhood
of t = —0.2 but this effect is on the edge of the measurement error.
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TABLE 1

The coupling constant dependence of v,

t Vstr
0.9 —0.46 £ 0.08
0.6 —0.50 + 0.06
0.3 —0.48 + 0.06
0.1 —0.52 £ 0.06
0.0 —0.51%0.04
-0.1 —0.55+ 0.04
-0.2 —0.57+0.02
—~0.4 —0.52 +£0.02
-0.6 —0.50 £ 0.02
—-0.8 —0.50 £ 0.02
s 1
s}

‘; 2r |
0 1
2
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Fig. 6. The distributions of baby universes for four values of the coupling constant
(from the top of the figure these are —0.7, —0.1, 0.3, 0.6, 0.9.) for N, = 5000.

Distributions in Fig. 6 are normalized by the number of measurements.
Their relative position represents the dependence of the number of minbus
on t. We see from the plot that for large t this number drops significantly
and the determination of v, becomes more difficult.

3. Discussion

We investigated a model of the 2d dynamically triangulated gravity with
the discretized version of the R? term added to the pure gravity action. We
studied the model with varying value of the coupling constant t of this
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term. We observe a sharp transition between the large positive ¢, where the
Haussdorff dimension of the system approaches 2, to the large negative ¢,
where the fluctuations of the local curvature become large and H becomes
large too. For all the studied values the measured value of the critical
exponent sy is consistent with the pure gravity value —%.

We observe a sharp change of the behaviour at { = —0.25. We tried to
check if this change is connected with a phase transition, but for the range of
the sizes studied the specific heat seems to approach a limiting distribution
without a singularity. This leads us to interpret our result as indicating that
for all values of t we get a system, belonging to the same universality class as
pure gravity. This is in agreement with the standard renormalization group
perturbative arguments, where the R? term corresponds to the irrelevant
operator. Other critical indices, like a Haussdorff dimension H are, however,
non-trivial functions of ¢.

For large values of t one would nevertheless expect a transition to phases
with different value of y4¢,. Unfortunately we were not able to study this
limit because

(i) the acceptance rate of the standard “flip” algorithm falls down in this
limit and
(i) the total number of minbus becomes small for large ¢.

In effect we were not able to perform numerical simulations with rea-
sonable accuracy.

One of us (ZT) wants to thank the Niels Bohr Institute for the hospi-
tality during his stay there.
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