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BAYESIAN PROBABILITY THEORY
AND INVERSE PROBLEMS*

S. Kopeé
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Bayesian probability theory is applied to approximate solving of the
inverse problems. In order to solve the moment problem with the noisy
data, the entropic prior is used. The expressions for the solution and
its error bounds are presented. When the noise level tends to zero, the
Bayesian solution tends to the classic maximum entropy selution in the
L; norm. The way of using spline prior is also shown.

PACS numbers: 02.50. Cw, 02.60. Cb

1. Introduction

There are numerous physical applications where one encounters the
need of solving an inverse problem. The typical examples are: the mo-
ment problem, interpolation, approximation, deconvolution. By means of
standard procedures [1, 2], the problem of solving integral and differential
equations can also be converted to seeking a solution of some particular
set of moment equations. Among various techniques of approximate solv-
ing inverse problems, the approach based on maximization of entropy (in
the sense of information theory) proves successful and becomes increasingly
popular (see e.g. [2-5], and references therein). The Maximum Entropy
(ME) method has, however, several limitations. It applies exclusively to
the problems admitting positive solutions. Moreover, the method can be
used only in the noiseless case, i.e. if available data are known exactly.

The natural formalism of analysing the noisy case is Bayesian probabil-
ity theory [6-8]. By means of Bayesian methods not only is it possible to
find an approximate solution to the problem, but also to give an estimate
of the uncertainty in the solution. The basic tool of the Bayesian analysis is
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the Bayes theorem connecting the posterior probability of the solution with
its prior probability and the posterior probability of the data. The explicit
form of the prior probability is determined by our additional information
about the problem. In particular, one may require that the solution should
maximize the information entropy. Other possible forms of the prior prob-
ability, potentially easier to handle, can be determined from our knowledge
about the nature of the problem [9].

In our paper we show, on an example of the moment problem, how
the Bayesian analysis with the entropy prior can be carried out. We focus
our attention on the moment problem, because the result can be easily
generalized to other inverse problems. We present an expression for the
approximate solution and estimate the uncertainty in the solution obtained
in the (mean + standard deviation) approximation. We also show that
in the limit of the noiseless moments, the Bayesian result is given by the
maximum entropy (MaxEnt) solution to the problem. This result can be
proved in a more formal way. We may interpret the Bayesian solution of the
noisy problem as a solution to “penalized MaxEnt” and show that in the
noiseless limit this solution tends, in a L; norm to the MaxEnt solution.

The entropy prior dos not have to be the most appropriate one for
a given particular problem. It is also not an easy task to perform com-
putations when the entropy prior is used (due to a nonlinear character of
equations it leads to). Therefore other forms of the prior probability are fre-
quently assigned, in accordance to the required properties of the solution.
For example, when one expects the solution to be in some sense “smooth”,
the natural choice is the prior assuring minimalization of the curvature.
In this paper, on the interpolation example, we introduce the spline prior.
As the cubic spline is the smoothest possible interpolating curve [10], we
construct the prior probability such that in the noiseless limit our solution
tends to the one given by the spline interpolation. Again, the result can be
easily generalized to other inverse problems.

2. The MaxEnt approach to the moment problem

The MaxEnt approach to solving the problem of moments was studied
in detail by Mead and Papanicolau [4]. Their analysis, however, implied the
availability of exact moments, which is a severe limitation of the technique.
An attempt to apply MaxEnt to the noisy moment problem was made by
Ciulli et al. [11]. Their solution, although essentially correct, left some im-
portant questions unanswered. In particular, an estimate of the uncertainty
in the estimated function was not presented. In this paper, the noisy mo-
ment problem is addressed using Bayesian probability theory. In [9], where
the deconvolution problem is studied in similar manner, many of the details
omitted here are contained.
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In the moment problem, there are some known moments or data, d;,
which are related to an unknown function z(t):

1
d; = /dtwi(t):c(t)—t-ni, i=1,2,...N, 1)
0

where n; represents a measurement error in the ith moment, and w;(t) are
linearly independent known functions. The magnitude of this error may or
may not be zero and if nonzero may or may not be known.

Using an entropy prior and the standard likelihood function, Bayes
theorem gives

P(z|D,B,0,I) x
1 1

exp _5217_2(2[3 dt(z(t)(logz(t) +1)+Z (d: /dth t)z(t)))
0

(2)

as the posterior probability density for the function z(t), where D denotes
the collection of moments, D = {dy,...,dn}, o is the standard deviation of
noise, and [ is a measure of the relative importance of the prior information.

2.1. Method of solution

To make the (mean t+ standard deviation) estimate of the function in
a Gaussian approximation, we start from location of the maximum of the
posterior probability. Denoting this maximum by £(t), we find that

1

Ba; = di — /dtwi_(t)é(t), i=1,...,N, (3)

0

N
t) = exp (Z akwk(t)) ; (4)
k=1

where the aj play the role of generalized Lagrange multipliers. Note that
this maximum is the mazimum entropy solution to the moment problem,
provided the data are noiseless, i.e., in the limit ¢ — 0 (cf. [2]). However, for
noisy moments the maximum of the posterior probability and the maximum
entropy solution differ.
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2.2. Estimating the uncertainty

We start from discretizing the interval [0,1]. The continuous function
z(t),t € [0,1] is then replaced with a set of its values {2z}, k =1,2,..., M,
with zj := z(t;). The (mean + standard deviation) estimate of z; is given
by

M (e)? 1/2

- 23 .

(2k)est = &1 + 1/ (02) (Z T) , i=1,...,M, (5)
=1

where A and e are the eigenvalues and eigenvectors of the covariance matrix

in the discrete Gaussian approximation. The expected value of the noise
variance, (02), should be replaced by its true value if o is known, and by

(02) :N"I.S'g, (6)
in the event it is unknown, where

1 N

1
Sp = 20 [dt(&(t)(log £(t) ~ ) +1)+ Y di—~/dtw,~(t):i:(t) .()
0

0 i=1

For finite N these “point-like” error bars tend to infinity as the number
of intervals tends to infinity. The reason is apparent — when M grows,
our N moment equations become more and more insufficient to determine
the approximate solution. In other words, macroscopic data (on moments)
cannot affect our knowledge of microscopic structure. Neither the prior
probability, nor the likelihood, introduce any point-to-point correlations in
z), so on small intervals the large variations of z(t) are permitted.

It is still possible, however, to give a global expression for the error
bounds. The finite and independent of M formula for the global error is

M
el'el :
(X2 - (X =02 Y U ®)
iji=1 "
where

M
(X)= 22> 4. (9)

2.8. Eliminating the nuisance parameter

In the above, 8 is assumed known. However, in general § will not
be known and must be estimated from the data. If one applies the rules
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of probability theory, one would multiply by a prior for 8 and integrate.
Unfortunately, 8 appears in these equations in a very nonlinear fashion
and these integrals are not available in a closed form. However, a good
approximation for 3 is available, provided the moments are not very noisy.
In this case it is justified to constrain 3 to Bmax, Where Bmax is the value
of § maximizing the posterior probability:

1

(Aig)” 2. (10)

=&

P(BID, 1)« B ¥ [55] %

~
Il
e

2.4. Penalized MazEnt

When we seek the moment problem solution belonging to L,, it is pos-
sible to show that the sequence of the “noisy” solutions tend to the MaxEnt
solution of the noiseless problem. In this approach we can treat the noisy
case as a “penalized version” of the original problem. The proof follows the
ideas suggested by Lewis (private communication).

Let S be a finite measure space and the sequence aj, as,...,a, belong
to Lo,. Let I be the functional defined by:

I: L;y— (—o0,+00],

I(z) = { Jzlogz forz >0 a.e.
+ o0 otherwise

Let us define the following condition (P):

inf{I(z)| /a,-z b (i=1,2...,n)k (11)

Assume that (P) is consistent, that is there exists & € L; such that
I(2) < 400, [ ajz = b; for all i. Then, as I has w-compact level sets, (P)
has a unique optimal solution £ : I(Z) = V(P).

Let us define also the penalized version of (P), called (P,):

inf{I(z) + rg:l (/ aiz - bi)2}. (12)

There exists exactly one z, optimal for (P.):

n

V(P = Iz +r Y ( [ aie- ) (13)

i=1
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We can easily prove the following Lemmas:
Lemma 1
V(i) S V(P) <..<V(P). (14)

Proof
By definition

V(P) < I(zrq1)+ 7 E (/ a;ZTryy — bi)2 I(zrt1)

+(r+1) Z (/ QiTripy — bi)2 =V(Pry1). (15)

As & is feasible for (P), we have

V(P) <I(z)+7 ) (/ a;& — b,-)2 =I(2) = V(P). (16)

1

Lemma 2

Z(/aizr—bi)zao. (17)

p
Proof

As I has compact level sets, there exists a > —oo such that I(z) > a
for all z. Now we have

a+r Z (/ a;iz, — bi)z < I(zp)+r Z (/ a;z, — bi)z =V(P.) < V(P).
(18)
ogZ(/aim,,_bi)zgr~1(V(P)—a).—>o. (19)

Now we are able to prove the following theorem:
Theorem

Thus

z, — & weaklyin L;. (20)

Proof
Let us suppose the theorem is not true. Then there exists z € Lo, such
that for a subsequence (r')

/(z,.' —2)z>1 forall r'. (21)
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Now

2
I(zr) < I(z,) + rz (/ ity — b,-) =V(P,) < V(P)=1I(z). (22)

1

This means that
zr € L = {z € L|I(z) < I(&)}, forall r, (23)

which is weakly compact. Thus there exists weakly convergent subsequence
z.n — some Z € L. Since

Z(/aizr—bi)z—*ﬂ, Z(/aﬁ:—bi)zzo,

3 1

Thus Z is feasible for (P) with I(2) < I(2) = V(P). By uniqueness, & = &,
which contradicts the assumption.

Actually we can show the stronger convergence.

Lemma3

I(z,) — I(%). (24)

Proof
We know that I(z,) < I(2). Now suppose that I(z,) is different from
I(z). Then there exists a subsequence z,+ and € > 0 with

z € Le = {z € L1|I(z) < I(Z) — €}, (25)

which is again weakly compact. Thus there exists weakly convergent sub-
sequence z,n» — some & € L.. As before get (fa;& — b;) = 0, so Z is
feasible for (P). But I(2) < I(£) — € < I(2) = V(P), which contradicts the
assumption.

Now we can prove

Theorem 2

ler—8ls = [ 12 =21 0. (26)

Proof
The theorem follows from z, — &, I{z,) — I(Z) and strong convexi-
ty of I.
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3. The spline prior

For any given problem the entropy prior may or may not be justified.
For example, when the function is known to take on negative values, the
entropy prior is not only inappropriate, but, since it does not permit nega-
tive solutions, it simply cannot be used. Additionally, there could be other
types of prior information not adequately expressed by entropy. For exam-
ple, one could know something about the asymptotic form of the function,
or one could want an estimate that has a minimal curvature. Such infor-
mation may be incorporated into an appropriate Bayesian prior [9]. The
resulting Bayesian solution will have the same general characteristics as the
one exhibited here: the uncertainty in the function will be a well-behaved
quantity, and in the noiseless limit the Bayesian solution will be equal to
the solution of some constrained optimization problem.

Another condition, which can be imposed, is the requirement that our
solution is the smoothest of all twice-differentiable functions matching the
data when 0 — 0. Then (cf. [10]) the solution must be the cubic poly-
nomial spline fit with second derivatives equal 0 on the boundary.

When we want to solve the interpolation problem

di=z(t;)+n;, i=1,8+1,...8(N-1)+1, (27)

the likelihood function is given by

N
1
P(Dlo,z,I) o exp (-5'(;2‘2(‘1: '—w(z~1)ﬁ+1)2> . (28)
=1

Now in order to define the cubic polynomial we have to impose 4(N —1)
conditions. Let us denote by p* the polynomial at the interval [t(x_1)g.+1,
tkg+1) k= 1,..., N — 1, and by ¢, its second derivative at ¢(x_1)g+1-

We can choose the following conditions:

1. P (tk—1)8+1) = T(k=1)8+1> k=1,2,...,N-1, (29)
2. PE(teg+1) = Trp+1s k=1,2,...,N-1, (30)
3. (P*)' (trp+1) = (") (tkp+1) » k=1,2,...,N-2, (31)
4. ()" (tep+1) = (PN (tep41)s  k=1,2,...,N-2. (32

As we have 4(N — 1) — 2 equations, we need two more to specify our
polynomials uniquely. We choose these two constraints in a form: ¢; =
cny = 0. The reason for our choice is that the spline defined this way is
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the smoothest of all exact matching fits for o — 0. Now our problem is
well-defined and the polynomials pk(t), k=1,...,N -1 can be found in a
unique way by solving a recurrence relation.

As the result we obtain the cubic spline prior

P(lea a, U) x
a N-18-1 )
€XP | =52 Z Z ((‘”(t(k—l)ﬁﬂﬂ)—Pk(t(k_l)g+j+1))
k=1 j=0

+ (w(tm-nﬁﬂ) - P”’“’(t(w—l)ﬁﬂ))2 )) '

The coefficient a serves as a measure of the relative importance of our prior
information. This expression can be used in any inverse problem when we
claim that our solution should be the smoothest one.

4. Final remarks

Probability theory generalizes the Lagrange multiplier equations from
MaxEnt in such a way that a Bayesian solution always exists for some
values of 8. In the case of very noisy moments, 3 is estimated to be large,
the Lagrange multipliers go to zero and the reconstructed function goes to a
uniform function. When the moments are noiseless, o goes to zero and the
Bayesian result is given by the maximum entropy solution to the moment
problem.

In between there is a kind of minimum-maximum trade off going on.
Eq. (3) is the maximum entropy solution to a moment problem when the
moments are given by d; — Ba;; thus entropy is maximized for every value

of B.
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